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Summary. Transfer learning aims at improving the performance on a target task
given some degree of learning on one or more source tasks. This chapter introduces
two transfer learning algorithms that can be employed when the source and target
domains share the same feature space and class labels. The first algorithm is a
hierarchical Bayesian extension of naive Bayes; the second is a version of logistic
regression in which the prior distribution over the weight values is learned from an
ensemble of source tasks. The methods are tested on a real-world task of predicting
whether a person will accept or decline a meeting invitation. The results demonstrate
consistent successful transfer of learning when there is an ensemble of source tasks.

1 Introduction

Transferring knowledge from a familiar domain or task (call it task A) to an
unfamiliar or newly encountered one (task B) is a fundamental and fascinating
aspect of human learning. Transfer of learning takes place in many contexts:
someone starting a new job is likely to employ knowledge and skills aquired in
previous jobs, athletes practice a variety of exercises to improve performance
during competition, and so on. Although this motivating notion is intuitive,
there exists no straightforward and general approach to transfer learning.

In broad terms, the challenge for a transfer learning system is to learn
what knowledge should be transferred and how. For simplicity, let us assume
that the tasks at hand can be represented as classification problems within
the same feature space. Even under this assumption, the decision boundaries
of A and B will generally not lie in exactly the same places. Hence treating
them as identical and pooling their training data together will not work well
and, in fact, may hinder performance if they are too dissimilar. The source
A-task information must be used, therefore, in a more sophisticated manner
to bias learning and improve performance on the target B task.

Previous work has demonstrated that learning for some target B task can
be effectively influenced by inductive bias learned from one or more source A
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tasks e.g., [1, 3, 13, 15]. Even for the restricted class of problems addressed
by supervised learning, transfer can be realized in many different ways. For
instance, Caruana [3] trained a neural network on several tasks simultane-
ously as a way to induce efficient internal representations for the target task.
Wu and Dietterich [15] transferred source training examples either as support
vectors or as constraints (or both) and demonstrated improved image classi-
fication by SVMs. Sutton and McCallum [12] demonstrated effective transfer
by “cascading” a class of graphical models, with the predictions from one
classifier serving as features for the next one in the cascade.

The rest of this chapter is organized as follows: Section 2 describes
“transfer-aware” versions of the naive Bayes and logistic regression algorithms.
Section 3 describes our application problem, which involves predicting whether
a person will accept or decline a request for a meeting. We describe two exper-
iments that evaluate our transfer algorithms on variants of this task. Finally,
the chapter concludes with a discussion of the results and lessons for future
research.

2 Two Transfer Learning Algorithms

We now describe our two transfer learning algorithms: hierarchical naive Bayes
and prior logistic regression.

2.1 Hierarchical Naive Bayes

The standard naive Bayes algorithm—which we call here flat naive Bayes—
has proven to be effective for learning classifiers in non-transfer settings [6].
The flat naive Bayes algorithm constructs a separate probabilistic model for
each output class, under the “naive” assumption that each feature has an
independent impact on the probability of the class. We chose naive Bayes not
only for its effectiveness but also for its relative simplicity, which facilitates
analysis of our hierarchical version of the algorithm. Hierarchical Bayesian
models, in turn, are well suited for transfer learning because they provide a
methodology for combining data from multiple heterogeneous sources [7].

To simplify our presentation, we assume that just two tasks, A and B,
provide sources of data. The flat version of naive Bayes merges all the data
without distinction, whereas the hierarchical version constructs two ordinary
naive Bayes models that are coupled together. Let θA

i and θB

i denote the i-
th parameter in the two models. Transfer is achieved by encouraging θA

i and
θB

i to have similar values during learning. This is implemented by assuming
that θA

i and θB

i are both drawn from a common hyperprior distribution, Pi

that is designed to have unknown mean but small variance. Consequently,
at the start of learning, the values of θA

i and θB

i are unknown, but they are
constrained to be similar. As with any Bayesian learning method, learning
consists of computing posterior distributions for all of the parameters in the
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two models, including the hyperprior parameters. The overall model can cap-
ture the fact that two parameters are very similar by decreasing the variance
of the hyperprior. Alternatively, it can represent the fact that two other pa-
rameters are very different by increasing the variance of the hyperprior. To
compute the posterior distributions, we developed an extension of the “slice
sampling” method introduced by Neal [11].

This method is easily extended to handle multiple source tasks simply by
asserting that corresponding parameter values for each naive Bayes classifier
are all drawn from a common hyperprior distribution (a detailed description
are provided in a technical report).

2.2 Logistic Regression with Learned Priors

Our second transfer learning algorithm requires an ensemble of source tasks.
It works by fitting a separate logistic regression model to each source task and
then analyzing the parameter values of the learned models to identify their
joint probability distribution. This joint distribution is then applied as a prior
distribution in the target task.

Logistic regression is one of the best known and most-effective methods
for classification [10]. The logistic regression model has the following form:

P (y = 1|x) =
1

1 + exp
{

−(w0 +
∑n

j=1
wjxj)

} , (1)

where y is the class label, x is a vector of n features, the wj are real-valued
weights, and P (y = −1|x) = 1 − P (y = 1|x). A standard way of fitting this
model is to assume an independent Gaussian prior on the weight values. That
is, each weight is drawn from a Gaussian distribution: wj ∼ N (µj , σj). The
model is fit by maximizing the following objective function:

N
∑

i=1

log P (yi|xi) −
n

∑

j=0

1

2

(

wj − µj

σj

)2

, (2)

where i = 1, . . . , N indexes the training examples and j = 0, . . . , n indexes
the features.

Typically, the values µj = 0 and σj = σ are employed, with σ (a constant,
positive value) set by holdout or cross-validation methods [5]. The variance
for the intercept weight, w0, is typically set to be relatively large to avoid
excessive penalties for deviations from µ0. The model can be fit via iteratively
reweighted least squares [9], boosting [8], or improved iterative scaling [2].

Following Chelba and Acero [5], we adjust this scheme for transfer learning
as follows. Let K be the number of source A tasks and n be the number of
features in the (common) feature space. First, we fit K independent logistic
regression models (with prior mean 0 and σ = 1) and obtain fitted weights
{

wk
j

}

, k = 1, . . . , K (the superscript k indicates the training task k). From
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these, we then estimate the prior mean µj and standard deviation σj for
parameter j = 0, . . . , n as follows:

µj =
1

K

K
∑

k=1

wk
j for j = 1, . . . , n

σj =

√

√

√

√

1

K − 1

K
∑

k=1

(wk
j − µk

j )2 for j = 1, . . . , n . (3)

Finally, we fit a logistic regression model to the target B data using µj and σj

to specify the prior distribution over the weights. The effect of this is that wj

values that are similar across all A tasks get a small standard deviation σj and
so are tightly constrained in task B to have a value close to µj . Conversely,
weights wj that are highly variable across the A tasks will have large values
for σj and will not be very constrained at all. This is slightly different from
Chelba and Acero [5]: they fit µj to the data from a single A task and then set
the σj values to a constant σ tuned with holdout data on the target task B.
Such a strategy, because it relies on holdout methods, requires a substantial
amount of B data. In our application, and in most transfer learning settings,
there is not enough task B data to employ holdout methods.

3 Experimental Tests of These Algorithms

We now report on experimental tests of these two algorithms. We first describe
the application problem that served as the test domain, and then we describe
two experiments and their results.

3.1 The Meeting Acceptance Domain

We tested our transfer-aware versions of naive Bayes and logistic regression
on data from a meeting acceptance task. In this task, the goal is to learn to
predict whether a person will accept an invitation to a meeting given informa-
tion about (a) the current state of the person’s calendar, (b) the person’s roles
and relationships to other people and projects in his or her world, and (c) a
description of the meeting request including time, place, topic, importance,
and expected duration. Twenty-one individuals participated in the experi-
ment: eight from a military exercise and 13 from an academic setting. Each
participant provided two months of calendar data (after removing sensitive
events) and also populated a relational database that described their projects,
the people working on those projects, and their relationship to each person.
From this information, we wrote a program that generated synthetic meet-
ing requests from these people and placed them in the final two week period
of the two-month calendar. Each participant then labeled each request (in-
dependently) according to whether they would accept or reject the request.



Two Algorithms for Transfer Learning 5

Each individual supplied between 99 and 400 labeled examples (3966 total
examples). Each example was represented as a 15-dimensional feature vector
that captured relational information about the inviter, the proposed meeting,
and any conflicting meetings. The features were designed with the meeting
acceptance task in mind but were not tailored to the algorithms studied. The
features are described in Table 1.

Table 1. The features used in our experiments

Name Values

meeting start time morning*, afternoon*, early, mid-day, late
(* denotes specific time was not indicated)

meeting duration <16 min., 16–30 min., 31–60 min., >60 min.

urgency indicated unimportant, possibly important,
important, very important, critical

topic importance values as above

inviter job military officer, military planner, student,
faculty, administrator, funding agent

inviter-recipient rel. subordinate, peer, supervisor, family member, other

recent meeting same day, 2–3 days ago, same week, a week ago or more

next meeting same day, in 2–3 days, same week, in a week or more

day load six values incorporating mixture of schedule and background-activity load

relevant half-day load values as above

available free slot <16 min., 16–30 min., 31–60 min.,
61–90 min., 90–135 min., >135 min.

conflicting activity exist, not exist

confl. act. importance values as for urgency indicated and topic importance above

confl. act. frequency none, one-time, occasional, regular

confl. act. location six values combining locations of suggested meeting and conflicting

activity, if exists, where location is one of “local” and “away”

3.2 Experiment 1: Hierarchical Naive Bayes on Task Pairs

In the first experiment, we considered transferring from one source domain
(i.e., one person) to one target domain (i.e., another person). We evaluated
all pairs of people. When a person serves as the target B task, we would first
take 100 of his or her examples and set them aside as the test set. Then, from
the remaining examples, we chose (at random, stratified by class), nested sets
of 32, 16, 8, 4, and 2 training examples. For example, if a person had 228 total
examples available, 100 were employed as the test set, and the remaining 128
examples provided four disjoint training sets of size 32; eight disjoint training
sets of size 16; sixteen disjoint training sets of size 8; thirty-two disjoint train-
ing sets of size 4; and sixty-four disjoint training sets of size 2. These training
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sets were employed to measure a learning curve. When a person serves as the
source A task, all of his or her data is employed for training.

We evaluated three learning configurations: (i) our hierarchical naive Bayes
method, (ii) “flat” naive Bayes in which the task A and task B training data
were merged into a single training set, and (iii) B-only in which only the B

training data was given to the naive Bayes algorithm.
Statistical significance was evaluated by performing an analysis of deviance

in the statistical package R based on a logistic regression model in which there
is an effect for each algorithm and a random effect for each training set. The
statistical test assesses whether the effect due to the choice of learning algo-
rithm is significant while controlling for random variation due to the different
training sets (more details are provided in a technical report).

Figure 1 summarizes the results of these statistical tests. The bar chart
in Figure 1a shows that for most cases, the hierarchical method is either
statistically significantly superior to the flat method or else indistinguishable
from it. There are only a few cases (at sample sizes 2 and 4) where the flat
method is statistically significantly superior to the hierarchical naive Bayes
method. The bar chart in Figure 1b compares hierarchical naive Bayes to
B-only naive Bayes. Here the results are mixed. At a sample size of 2, the
hierarchical method wins about half the time and loses about 40% of the
time, so it has only a slight advantage over B-only. However, at a sample size
of 32, the hierarchical method wins about 40% of the time, B-only wins about
10% of the time, and 50% of the time the methods are tied. Hence we see that
there is often positive transfer, but sometimes there is also negative transfer.
In data not shown, we find that the error rate of the hierarchical and B-only
methods is about the same when averaged across all pairs of individuals.

3.3 Experiment 2: Logistic Regression on Task Ensembles

The second experiment tested transfer learning via logistic regression. For
this experiment, we employed a leave-one-person-out cross-validation design.
In each of the 21 iterations, a single person was chosen as the target (B) data
source, 100 of his or her examples were set aside as the test set, and from
the remaining examples 2, 4, 8, 16, or 32 examples were used for training
following the same scheme as in experiment 1. The examples from each of the
20 remaining individuals served as 20 source training sets.

To apply logistic regression to the features described in Table 1, it is neces-
sary to convert the features into boolean indicator functions, because, unlike
naive Bayes, features with more than 2 values cannot be modeled directly in
logistic regression. For features with a discrete set of values (e.g., urgency, im-
portance, inviter job, etc.), we created a separate indicator function for each
feature-value combination. For features that represent intervals (e.g., meet-
ing duration, available free slot, etc.), we employed a so-called “thermometer
representation” with one indicator function for each threshold value (e.g.,
one indicator for meeting-duration >15min., meeting-duration >30min., and
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Fig. 1. Effects of B training set size on performance of the hierarchical naive Bayes
algorithm versus (a) flat naive Bayes and (b) training with no source data. Shown
are the fraction of tested A-B pairs with a statistically significant transfer effect (p <

0.05). Black and gray respectively denote positive and negative transfer, and white
indicates no statistically significant difference. Performance scores were quantified
using the log odds of making the correct prediction.

so on). After this conversion, the 15 original features were represented by 64
boolean indicator functions. The logistic regression algorithm learned a weight
for each of these. We did not employ an intercept term.

Figure 2 plots the results compared to two baselines: a logistic regression
classifier trained only on the B data (“B only”), with a fixed prior vaiance set
to 1, and a logistic regression model trained on the union of all available A

training instances and the B training examples (“flat”). In addition, the figure
plots the mean, over the data for all individuals, of the proportion of the more
prevalent class. The figure shows that logistic regression with a learned prior
is substantially more accurate at all sample sizes than the B-only classifier.
The flat classifier performs very poorly, because the non-B training examples
overwhelm the small number of task B examples.

We conducted further experiments to measure transfer within and be-
tween the military and research domains. Recall that 8 of our participants
were military personnel performing a training exercise, while the remaining
13 participants were academic or industrial researchers. Figure 3 plots the
same information as Figure 2, but with the source and target tasks restricted
to the military or research domains. For example, Figure 3a reports a 13-
fold cross-validation in which there are 12 source researchers and one target
researcher; Figure 3c reports a 13-fold cross-validation in which there are 8
source military personnel (in all cases) and one target researcher; and so on.
The main conclusion once again is that logistic regression with learned priors
outperforms the other three methods in all cases. When the target domain is
a military person, the learning curves do not rise as steeply or as high as when
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Fig. 2. Mean proportion of correct predictions averaged over all 21 B tasks. The
logistic regression method improves over the B-only (transfer-unaware) and flat base-
lines. Each B task consists of the meeting acceptance data for one person. The en-
semble of task As consists of the remaining 20 individuals. The differences relative to
the B-only baseline are all statistically significant (one-tailed paired t test, p < .05;
the significant differences are marked by solid squares).

the target domain is a researcher. This may signal that the military meeting
acceptance task was harder to predict.

One interesting observation is that the flat method performs better across

domains than within domains. This contradicts the intuition that instances
collected from sources similar to the target task should enhance learning under
the flat method compared to sources that are different from the target. One
possible explanation is based on recalling that logistic regression learns a
separate weight for each feature-value combination. Suppose there are feature
value combinations that are only observed in research or only in the military.
In such cases, when the source domains are all research and the target domain
is military (or vice versa), there will be feature values that are always zero in
the source domains but non-zero in the target domain. In such cases, only the
training examples in the target domain contribute to learning the weight for
those feature-value combinations, so the flat and B-only methods can both
learn well.

But now consider what happens when the source and target are all from
the military (or all from research). Further suppose that there is considerable
diversity within the military (or within research). Then the same feature-value
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Fig. 3. Transfer within and across domains: (a) transfer among researchers, (b)
transfer among military personnel, (c) transfer from military to research, (d) trans-
fer from research to military. In all cases, logistic regression with learned priors
gives better results than the other methods, although there are fewer statistically-
significant differences. Statistically significant differences between transfer-aware lo-
gistic regression and the B-only baseline are marked by solid squares

combinations are observed in both the source and target tasks, so the flat and
B-only methods will have difficulty learning the correct weights. In this case,
the learned prior will have a large variance, so the learned prior will not tightly
constrain the weight learned in task B. Consequently, the learned prior will
work much better than either flat or B-only.

An initial inspection of the data for the academic researchers (where the
effect is strongest) confirms this explanation. The academic researchers are
extremely diverse in their meeting acceptance behavior. Each individual re-
searcher makes decisions based on different features and, in several cases,
researcher react differently to the same feature (for instance, accepting versus
rejecting early morning meetings).

3.4 Discussion

The experiments show that the logistic regression method with learned priors
is a good transfer learning algorithm when applied to an ensemble of source
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tasks. It out-performs the simple “flat” transfer learning algorithm, and it
also out-performs the no-transfer (B-only) method.

The results for the hierarchical naive Bayes method were less compelling.
Hierarchical naive Bayes clearly out-performs the simple “flat” transfer learn-
ing method. But its performance against the no-transfer (B-only) method was
less clear cut. It was better than B-only a majority of the time, but at small
sample sizes there are still many cases where B-only is better.

As our two experiments employ different features and different experiment
designs, we have performed some exploratory experiments for comparison. We
have checked how well logistic regression, with individual-A-based means and
fixed prior variance, works in a setting similar to Experiment 1. The results
confirm that on average, it is difficult to see an improvement over B-only when
transferring from only one source domain.
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Fig. 4. Effects of B training set size on performance of the hierarchical naive Bayes
algorithm for three cases: no transfer (“B-only”) and transfer from the best and
worst individual, i.e., “best A” and “worst A”, respectively. At each B training size,
differences between the transfer conditions and the corresponding B-only condition
were all statistically significant (p < 0.05).

We have also explored whether training hierarchical naive Bayes on an
ensemble of source domains would improve its performance compared to the
B-only case. However, those initial experiments have not shown any particular
benefit. Indeed, the main effect is to weaken the transfer effect by increasing
the variance of the hyperprior, because the source domains are so diverse. This
suggests that we need a two-level hyperprior that can “cluster” the source do-
mains into groups based on similarity and then determine which groups are
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most similar to the target domain. Figure 4 shows the results of a simple ex-
periment to see how well hierarchical naive Bayes works when good (or bad)
source domains are chosen. For each target domain, we determined which
source domain (i.e., which individual) was most similar to the target by mea-
suring the accuracy on the target domain of a classifier trained only on the
source domain. We also determined which individual was the worst source
domain for each target. The figure plots the average percentage of correct
classifications (over the 21 target domains) for three cases: (a) training on the
best source domain, (b) training only in the target domain (B-only), and (c)
training on the worst source domain. This shows that if a learning algorithm
could choose the correct source domain, hierarchical naive Bayes would give
excellent results. This, however, depends on a significant yet unsolved part of
the transfer problem: estimating the relevance of a source domain using the
small amount of B data available in a typical transfer learning situation.

4 Concluding Remarks

Most research in transfer learning has been performed in situations where the
source domains were constructed for the purpose of transfer, and therefore
they were guaranteed to provide good transfer learning with suitable learning
algorithms. This chapter has addressed the problem of transfer learning “in the
wild”, where it is possible that the source domains are significantly different
from the target domain. The results in Figure 4 show that in our experiment,
such significant differences do arise.

The mediocre performance of our hierarchical naive Bayes algorithm sug-
gests that it is vulnerable to such significant differences. The logistic regression
approach appears to be less vulnerable, although the reasons are unclear. It
may be a result of the representational difference between logistic regression
coefficients and the probability parameters of the naive Bayes model, or it may
be a consequence of the discriminative nature of logistic regression models.

In any case, the use of an ensemble of several source domains—possibly
from a different domain pool than the target’s—was critical for the successful
performance of the logistic regression method.

Future research must deepen our understanding of how transfer learning
algorithms can learn about the relationships between different learning tasks
and then use this knowledge to perform successful transfer. Future work must
also consider situations in which the source and target tasks employ different
ontologies and representations, so that transfer also requires understanding
how these ontologies and representations are related.
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