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Abstract 
 

Visual dictionaries are widely employed in object 

recognition to map unordered bags of local region 

descriptors into feature vectors for image classifica-

tion. Most visual dictionaries have been constructed 

by unsupervised clustering. This paper presents an 

efficient discriminative approach, called Iterative Dis-

criminative Clustering (IDC), for dictionary learning. 

In this approach, each dictionary entry is defined by a 

representative value and a learned distance metric. In 

IDC algorithm, the dictionary entries are initialized by 

unsupervised clustering and then locally adapted to 

improve their discriminative power. Motivated by stu-

dies of the characteristics of individual dictionary en-

tries, we employ bagged decision lists (BDL) as our 

image classifier in order to explore the conjunctions of 

small number of informative dictionary entries for 

classification. Experiments on benchmark object rec-

ognition datasets show that the system based on the 

new discriminative dictionaries and BDL classifier 

give performance comparable or superior to the state-

of-art generic object recognition approaches.  
 

 

1. Introduction 
 

Recognizing objects in natural scenes is a funda-

mental problem in computer vision. Recently, signifi-

cant advances have been obtained through the use of 

interest region detectors that can find salient regions 

sparsely distributed in images despite variation 

[6,7,12]. Each extracted region is typically represented 

as a vector of descriptors. The result is that the original 

image is transformed into a bag of region descriptor 

vectors. The object recognition problem thus reduces 

to the problem of classifying a bag of descriptor vec-

tors into one of the possible object classes.  

The purpose of a visual dictionary is to provide a 

way of generalizing the descriptor vectors. In previous 

dictionary learning work, the dictionary is constructed 

by pooling all of the descriptor vectors and applying an 

unsupervised clustering algorithm. Each cluster defines 

a dictionary entry, and all descriptors in that cluster are 

treated as equivalent (or similar). Recently, some re-

searchers have begun to introduce discriminative me-

chanisms into the dictionary learning process, for ex-

ample, the generative/discriminative dictionary learn-

ing methods in [5,9]. In any case, once a dictionary is 

constructed, one typical way to build a classifier is to 

convert the bag of descriptor vectors for each image 

into a fixed-length image feature vector whose i-th 

element is the vector quantization or mapping of the 

descriptors according to the dictionary entry i. Stan-

dard learning algorithms have been applied to these 

feature vectors to train the image classifier.   

There are two major challenges for any approach to 

generic object recognition: (a) Small training sets. (b) 

Low signal-to-noise ratio. For generic recognition 

problems, usually only a small fraction of the extracted 

descriptors are discriminative, while the others are 

noisy. This is the main motivation for developing dic-

tionary methods that exploit the class labels to identify 

discriminative features. The challenge is to do this 

without causing overfitting.  

In this paper, we introduce a new efficient dictio-

nary learning method that combines the best of genera-

tive and discriminative learning to address the chal-

lenges in generic object recognition. Our method bene-

fits from generative initialization in its robustness to 

overfitting; and obtains higher test set accuracy from 

discriminative learning. Unlike previous methods, 

which treat all elements of the descriptor vector as 

equally important, our method learns a cluster-specific 

full-rank distance metric that improves cluster genera-

lization and discriminative power. The dictionary is 

learned on sparsely detected interest regions rather 

than densely sampled regions, so it is much more effi-
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cient to compute. In addition, we employ an efficient 

rule learning algorithm, decision list, to create the final 

classifier. This classifier can achieve low bias by iden-

tifying the logic conjunctions of small number of in-

formative dictionary entries from the highly noisy fea-

ture pool. Extensive experiments on three well-

recognized object recognition benchmark datasets 

show performance that matches or exceeds state-of-

the-art dictionary and instance selection based object 

recognition approaches. 
  

2. The method 
 

Our method is composed of two major parts: dis-

criminative visual dictionary learning and image clas-

sifier learning. It consists of the following steps: 

    I. Discriminative visual dictionary learning 

    1. Extract region descriptors: HesAff [7], Salient 

Regions [6] and Curvilinear [12] detectors are applied 

to detect distinctive interest regions. Each region is 

described by a “Steerable Filters” descriptor [4] that 

summarizes the local image contents in the region.  

    2. Generative dictionary initialization (Sec 2.1): the 

visual dictionary entries are initialized by K-means 

clustering of the extracted descriptor vectors.  

    3. Discriminative dictionary learning (Sec 2.2): the 

values and the distance metrics of the dictionary en-

tries are learned by locally optimizing their discrimina-

tive power on training images.  

II. Image classifier learning 

4. Feature mapping (Sec 2.3): map the bags of de-

scriptor vectors to image feature vectors based on the 

learned dictionary.  

5. Image classifier learning (Sec 2.4): learn bagged 

decision lists classifier on the training image features. 
  

2.1. Generative initialization of the dictionary 
 

A “visual dictionary” is a set of prototypes that re-

late region descriptors in query images to the ones 

previously seen in training images. Here we define a 

discriminative visual dictionary (DVD) as  

== },,,,{ 1 KkDVD EEE LL  

            },,,,,,,{ 11 ><><>< KKkk WxWxWx LL       (1)                     

where xk and Wk are the representative value and the 

distance metric, respectively, of dictionary entry Ek. A 

separate dictionary DVDc,f  is learned for each object 

class c and each channel f (i.e. a detector/descriptor 

combination). In our method, the dictionary DVDc,f is 

initialized by K-means clustering on the region de-

scriptor vectors of type f from the training images of 

class c. Full rank covariance matrices and the Mahala-

nobis distance are employed during clustering. Each 

representative value, xk, is initialized to the corres-

ponding cluster center, and each distance metric, Wk, is 

initialized to the inverse of the corresponding cova-

riance matrix. So the distance from an initial dictionary 

entry Ek to a descriptor vector x is measured by the 

Mahalanobis distance metric: 

                 2/1
))()((),( xxWxxxE −−= kk

t
kkd       (2) 

 

2.2. Discriminative learning of the dictionary 
 

Previous methods construct large universal dictiona-

ries to capture relevant variation of object parts for all 

the object categories. The dictionaries are usually 

learned from unlabeled images of a large set of catego-

ries. But in real-world applications, it is common that 

the universal dictionary is suboptimal and not discri-

minative enough for a specific problem [9]. The main 

contribution of our dictionary learning method is to 

apply supervised learning directly to construct prob-

lem-specific discriminative dictionaries for image clas-

sification. Our Iterative Discriminative Clustering 

(IDC) algorithm combines and adapts the idea of the 

EM-DD [11] algorithm for multiple-instance learning 

and Relevant Component Analysis (RCA) [10] for dis-

tance metric learning.  

The IDC algorithm is applied separately to each en-

try Ek = < xk ,Wk > in a dictionary. Let c be the class of 

the dictionary. Consider a training image i represented 

by its bag of region descriptor vectors Bi. Let p be the 

descriptor vector in Bi that is closest to Ek according to 

d(Ek, Bij); we will call p the nearest neighbor point 

from image i. Let {NN
+
}k be the set of all nearest 

neighbor points p for dictionary entry k drawn from 

positive examples of class c, and let {NN
−
}k be the 

corresponding set drawn from negative training exam-

ples (i.e., examples of other classes c’≠ c). If {NN
+
}k is 

compact and well-separated from {NN
−
}k, then Ek is a 

compact, discriminative entry, because it has consis-

tent nearest neighbor points in images of class c, and it 

is far away from the images of other classes. Other-

wise, if {NN
+
}k

 
has high variance or {NN

+
}k and 

{NN
−
}k overlap, then Ek is suboptimal in term of dis-

crimination, and we seek to improve its performance 

with supervised learning. 

The idea of the learning algorithm is to locally adapt 

the representative value and the distance metric of en-

try Ek with the goal of making it discriminative. We 

limit the adaptation to the local neighborhood of entry 

Ek to avoid situations in which all dictionary entries 

converge to the same global maximum and the learned 

dictionary has low discriminative power. The pseudo-

code for the IDC algorithm is given in Fig 1. IDC al-

gorithm iterates between the following two steps: in 
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Input: Bags of descriptor vectors of m training images:    

    D  = {<B1, l1>, …,<Bi, li> , …,<Bm, lm>}; 

    Initial dictionary of class c: DVD = 

    {<x1,W1>, … , <xk, Wk>, … , <xK, WK>}; 

Learning: 

 for (k = 1; k ≤ K; k ++) 

    Ek = <xk, Wk>;     // initial dictionary entry     

    while (not converged) 

        {NN
+}k

 = {};  {NN
−}k = {}; 

         for (each bag Bi ∈D)  

             // nearest neighbors search           

            ),(minarg ijkd
iij

BEp BB ∈
= ;                    

             if (li == c)  then Add  p  to {NN
+}k; 

             else Add  p  to {NN
−}k;               

         xk = Mean ({NN
+}k);      // entry updates 

         Wk = RCA ({NN
+}k, {NN

−}k);  

         Ek = <xk, Wk>; 

the “nearest neighbors search” step, the nearest neigh-

bor point sets {NN
+
}k and {NN

−
}k

 
are computed for 

dictionary entry Ek based on the representative value 

and distance metric from the previous iteration. In the 

following “entry updates” step, the representative val-

ue of Ek is updated to be the mean of positive nearest 

neighbor points; and the RCA algorithm is used to 

learn a new distance metric to sphere and better sepa-

rate the point sets {NN
+
}k and {NN

−
}k. These two 

steps iterate until convergence. 

RCA learns a linear transformation to assign large 

weights to the relevant dimensions and small weights 

to the irrelevant dimensions. Here the “relevant dimen-

sions” are the dimensions that help to discriminate 

between the sets: {NN
+
}k

 
and {NN

−
}k. The adaptation 

of a dictionary entry is limited to its local neighbor-

hood using early-stopping conditions. IDC algorithm 

described above is applied to each entry in the dictio-

nary. It is usual that this causes several entries to con-

verge to the same point. In this case, only one of them 

is kept to compress the size of the dictionary. We 

tested the performance of the recognition system using 

different settings of the dictionary learning parameters. 

The performance is quite robust. The details of the 

algorithm will be provided in supplementary material. 
 

2.3. Feature mapping based on the dictionary 
 

    A separate dictionary is learned for each object class 

(including the background class) and each channel. All 

these separate dictionaries are concatenated to con-

struct the final dictionary; suppose it has M entries. 

Then a new image Bi = {Bij: j=1,…,ni} is mapped to a 

image feature vector Vi according to its minimum dis-

tances to the dictionary entries, that is:  
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2.4. Image classifier: bagged decision lists 

    Based on the learned dictionary, we have chosen 

bagged decision lists as our classifier, which combines 

and adapts the boosting feature selection method in [8] 

and the idea of cascaded classifiers framework. Deci-

sion List classifier is better suited to this problem than 

other standard classifiers for two reasons. First, deci-

sion lists favor situations in which the conjunctions of 

a small number of features are capable of discriminat-

ing the two classes, which matches our experience and 

the results in [8]. Second, decision lists have low bias  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. pseudo-code for the IDC algorithm 

 

— they can adjust their complexity as necessary to fit 

the data. 

Decision list  A decision list is a variable-length se-

quence of decision nodes. Each node N is defined by 

an image feature dimension kN, a classification thre-

shold θN, and a class label CN for prediction. An image 

i is classified by node N into class CN if  

                            Vi(kN) ≤   θN                               (4) 

where Vi(kN) is the value of the image feature vector Vi 

at dimension kN. An example is classified by 

processing it against each node in the decision list until 

one of the nodes is able to classify the example. 

Training  Given all the training image features, the 

decision list is grown by starting with the empty list 

and adding decision nodes one at a time until all these 

training examples are correctly classified. The detailed 

steps of the algorithm are as follows: 

1. Find the best decision node: The algorithm calls 

the function “NodeFinder” to search for the image 

feature dimension and corresponding threshold and 

class label that has the highest overall performance. 

The NodeFinder function is similar to the 

“Weak_Hypotheses_Finder” algorithm in [8], but it 

differs in several ways. The detailed introduction of 

the algorithm will be given in supplementary material. 

2. Split the current training set based on the selected 

node: the correctly classified examples are removed 

from the training set; all the unclassified or misclassi-

fied examples are passed to the next node. 

3. Repeat steps 1 & 2, adding new decision nodes to 
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the list until the training set is empty, i.e., all the train-

ing examples have been correctly classified.  

Classification  Applying the learned decision list to 

a new image is similar to the training process. Its re-

gion descriptor vectors are first mapped to the image 

feature vector according to (3). The resulting feature 

vector is passed down the decision list until the image 

is classified by a decision node. Classification is effi-

cient because most of the examples are classified by 

the nodes that appear early in the decision list.  

Bagged decision lists (BDL)  Note that although 

the decision lists have low bias, they can have high 

variance, which can lead to overfitting and poor per-

formance. So we perform 200-fold bagging. This is 

accomplished by drawing 200 bootstrap replicates of 

the training images, and learning a separate decision 

list for each replicate training data set. A new image is 

classified by each of the 200 decision lists, which then 

vote to determine the overall prediction. 
 

3. Experiments 
 

Our method was tested on three families of object 

recognition problems: Caltech dataset [1,3,8], UIUC 

cars side dataset [3,8], and GRAZ dataset [8]. All the 

problems are binary object present versus object ab-

sent decision problems. On the test datasets, our me-

thod is compared with state-of-art generic object rec-

ognition approaches. Experiment settings are the same 

as in previous papers for fair comparison. The results 

are reported as the ROC-equal-error-rates (EERs). The 

results are summarized in Table 1 – Table 3. We can 

see that our method, IDC-BDL (Iterative Discrimina-

tive Clustering + Bagged Decision Lists), gives supe-

rior performance on most of the problems. On all prob-

lems where we obtain improvements, the differences 

are statistically significant at a 95% level using an un-

paired test for the difference between two proportions 

[2]. Even on object classes where our method is not the 

best, its performance is comparable to other methods. 

In summary, the overall recognition performance of 

our approach matches or exceeds the state of the art.  

    In order to analyze the contribution of the major 

parts of our system, we also compare the whole IDC-

BDL system to the ablated versions on the Caltech 

problems. The results show that both supervised dic-

tionary learning and bagging strategy contribute to the 

high performance of the system. In addition, we also 

studied on the length of the decision lists learned by 

IDC-BDL. The decision lists are usually fairly short. 

This shows that only a small number of learned dictio-

nary entries are sufficient for accurate classification. 

 

 

Table 1. EERs on Caltech dataset 

Dataset IDC- 

BDL 

[3] [8] [1] 

Airplanes 

Faces 

Motorbikes 

Leopards 

Cars (Rear) 

99.2 

98.4 

98.3 

98.0 

95.5 

93.7 

91.7 

96.7 

89.0 

91.2 

88.9 

93.5 

92.2 

/ 

91.1 

98.0 

99.5 

96.7 

/ 

94.5 

 

Table 2. EERs on UIUC cars side dataset 

Dataset Average length 

[confidence interval] 

IDC-

BDL 

[3] [8] 

Cars  

(side) 

27.3 

[23.8, 31.5] 

92.7 88.5 

 

83.0 

 

Table 3. EERs on GRAZ dataset 

Dataset Average length 

[confidence interval] 

IDC-

BDL 

[8] 

Bikes 

Persons 

14.1 [12.3, 16.2] 

16.2 [14.1, 18.7] 

76.5 

71.7 

73.5 

63.0 

 

4. Conclusion 
 

    This paper introduced an efficient new method to 

construct discriminative visual dictionaries based on 

bags of region descriptor vectors. The proposed system 

is robust to overfitting and low signal-to-noise ratio, 

which is shown by its competitive performance on 

several object recognition benchmark datasets. 
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