
Real-Time Detection of Task Switches of Desktop Users

Jianqiang Shen and Lida Li and Thomas G. Dietterich
1148 Kelley Engineering Center, School of EECS

Oregon State University, Corvallis, OR 97331, U.S.A.
{shenj, lili, tgd}@eecs.oregonstate.edu

Abstract

Desktop users commonly work on multiple tasks.
The TaskTracer system provides a convenient, low-
cost way for such users to define a hierarchy of
tasks and to associate resources with those tasks.
With this information, TaskTracer then supports the
multi-tasking user by configuring the computer for
the current task. To do this, it must detect when the
user switches the task and identify the user’s cur-
rent task at all times. This problem of “task switch
detection” is a special case of the general problem
of change-point detection. It involves monitoring
the behavior of the user and predicting in real time
when the user moves from one task to another. We
present a framework that analyzes a sequence of
observations to detect task switches. First, a clas-
sifier is trained discriminatively to predict the cur-
rent task based only on features extracted from the
window in focus. Second, multiple single-window
predictions (specifically, the class probability esti-
mates) are combined to obtain more reliable pre-
dictions. This paper studies three such combina-
tion methods: (a) simple voting, (b) a likelihood
ratio test that assesses the variability of the task
probabilities over the sequence of windows, and (c)
application of the Viterbi algorithm under an as-
sumed task transition cost model. Experimental re-
sults show that all three methods improve over the
single-window predictions and that the Viterbi ap-
proach gives the best results.

1 Introduction

Today’s desktop information workers continually shift be-
tween different tasks (i.e., projects, working spheres). For
example, Gonzalez and Mark [2004], in their study of infor-
mation workers at an investment firm, found that the average
duration of an episode devoted to a task was slightly more
than 12 minutes, and that workers typically worked on 10 dif-
ferent tasks in a day. Furthermore, the information needed for
each task tends to be fragmented across multiple application
programs (email, calendar, file system, file server, web pages,
etc.). The TaskTracer system [Dragunov et al., 2005] is one

of several efforts that seek to address this problem by creating
“task-aware” user interfaces for the information worker.

TaskTracer provides a convenient way for the user to de-
fine a hierarchy of tasks and associate information resources
(email messages, files, folders, web pages) with those tasks.
The user can declare a “current task” (via a Task Selector
component in the window title bar), and TaskTracer then con-
figures the desktop in several ways to support the selected
task. For example, it supplies an application called the Task
Explorer, which presents a unified view of all of the resources
associated with the current task and makes it easy to open
those resources in the appropriate application. It also predicts
which folder the user is most likely to access and modifies the
Open/Save dialog box to use that folder as the default folder.
If desired, it can restore the desktop to the state it was in when
the user last worked on the task, and so on.

This approach of requiring the user to declare the current
task makes sense when the user is returning from an interrup-
tion and wants to bring up the list of relevant resources. How-
ever, this approach fails when the user is interrupted (e.g., by
a phone call, instant message). The user typically changes
documents, web pages, etc. without remembering to first in-
form TaskTracer. In such cases, we would like TaskTracer to
automatically detect the activity switch.

To address this problem, we wish to apply machine learn-
ing methods to automatically detect task switches. When a
task switch is detected, we would like TaskTracer to pop up
a “balloon alert” asking the user for permission to change the
current declared task. To be usable, this task switch detector
must be highly precise (i.e., have very low false alarm rate),
and it must be timely (i.e., it must detect the task switch as
soon as possible after it occurs so as to avoid interrupting the
user once he or she is fully engaged in the new task). Finally,
it must consume minimal CPU resources so that it does not
interfere with the work the user is trying to accomplish. We
call this task switch detector the TaskPredictor.

The first TaskPredictor for TaskTracer was developed by
Shen et al.[2006] and deployed in TaskTracer in 2006. This
TaskPredictor is a classifier trained to predict the user’s cur-
rent task based only on features describing the window cur-
rently in focus. In the remainder of this paper, we will refer
to this as the Single Window Classifier (SWC). Although the
SWC achieves fairly high accuracy, it is unusable in practice
because it produces far too many task-switch false alarms.

This paper describes a set of experiments to develop an im-
proved TaskPredictor. Our basic idea is to develop algorithms
that analyze the sequence of predictions from the SWC to
make more reliable task switch predictions.

The remainder of this paper is structured as follows. First,
we describe the Single Window Classifier in detail. Then we
present a framework that we have applied to the task switch
detection problem. This framework makes the task switch
decision based on a metric that combines multiple task pre-
dictions over time. Three different metric functions are pro-
posed in this paper. Third, we show experimental results on
both synthetic and real user data. We conclude the paper with
a review of related work and a discussion of future work.

2 TaskTracer and the Single Window
Classifier (SWC)

TaskTracer operates in the Microsoft Windows environment
and collects a wide range of events describing the user’s
computer-visible behavior. TaskTracer collects events from
MS Office 2003, MS Visual .NET, Internet Explorer and the
Windows XP operating system. Then various TaskTracer
components provide services to the user based on this in-
formation. From the raw event stream, the SWC extracts a
sequence of Window-Document Segments (WDSs). A WDS
consists of a maximal contiguous segment of time in which
a window is in focus and the name of the document in that
window does not change. The SWC extracts information
about the window title and the file pathname from each WDS.
Then it heuristically segments these into a bag of “words”
and creates a binary variable xj in the feature set for each
unique word. To put more weight on long-duration WDSs,
TaskPredictor creates multiple training instances for each
WDS. For a WDS that lasts t seconds, TaskPredictor gen-
erates n = � 5

1+5 exp(−0.1t)� identical training instances.

For the sake of both accuracy and speed, the information
gain [Yang and Pedersen, 1997] of each feature is computed
and then the 200 features with the highest (individual) pre-
dictive power are retained and the rest are discarded. We will
refer to these 200 features as the “informative” features .

It is reasonable to ask whether feature selection causes a
large number of WDSs to have empty bags of words (i.e., to
be uninformative). We checked this on one user’s 2-month
TaskTracer dataset. This dataset contains 781 distinct words.
We discretized time into 60-second periods and applied fea-
ture selection to the entire dataset. Figure 1 shows the frac-
tion of episodes that have at least one informative feature as
a function of the number of features selected. With 200 fea-
tures, more than 95% episodes still have informative features.

The first version of our TaskPredictor worked by applying
the SWC to predict the task of every informative WDS. If the
predicted task was different than the user’s declared task and
if the prediction was sufficiently confident, then TaskPredic-
tor issued a task switch alarm. Initial experience with this
TaskPredictor revealed that it was very sensitive to noise and
that it issued many false alarms. Clearly, we need a more
sophisticated technique to solve this problem.

0100200300400500600
0.4

0.5

0.6

0.7

0.8

0.9

1

The number of features

C
ov

er
ag

e

Figure 1: Impact of feature selection. Fraction of one-minute
intervals that have informative observations as a function of
the number of selected features.

3 Switch Detection With Informative
Observations

Detecting switches from individual task predictions fails
mainly because decisions based on just one observation are
not reliable: given the observations {x1,x2, . . . ,xt}, the
SWC only uses xt to predict the task at time t. Instead, we
should detect switches based on the previous � observations
{xt+1−�, . . . ,xt}. The larger value of � can bring more in-
formation to make the task switch predictions. However, this
comes at the cost of reducing the timeliness of the predic-
tions, because roughly we have to wait for �/2 observations
before the system has enough information to reliably detect
the task switch.

3.1 A Framework to Detect Task Switches
Figure 2 presents our framework for detecting task switches.
We execute the detector every f seconds or when an event is
received. If the bag of features for a WDS contains no infor-
mative features (i.e., it is the null bag), then it is ignored. This
usually happens for short-duration pop-up windows, empty
Internet Explorer windows, new office documents (“Docu-
ment1”), and so on.

The informative WDS observations are pushed into a first-
in-first-out queue X of maximum length �. Once X contains
� elements, each new element added to X causes the oldest
element to be removed. The function SWITCHMETRIC com-
putes the switch metric value Λ from X and also returns the
predicted new task as discussed below. If Λ exceeds a thresh-
old, a task-switch alert is shown to the user, and the user is
asked to confirm it. If the user agrees, then the current task is
changed to the new task, otherwise it is left unchanged.

The variable SILENTNUMBER stores the number of infor-
mative observations since the last switch alarm was made. To
avoid annoying the user, the method does not raise any new
alarms for at least the next r informative observations after a
switch alarm.

If no event occurs for a long time (more than d seconds),
then there is no point in predicting a switch, so we can avoid

Procedure SWITCHDETECTOR(�, d, r, threshold)

Input: � – we will store � observations in queue X
d – efficiency delay; skip switch computation if WDS

has lasted longer than d seconds
r – recovery time; keep silent for the next r informative

observations after a switch alarm
NOEVENTTIME← 0
SILENTNUMBER←∞
do (every f seconds or if an event happens)

if (no event happened)
NOEVENTTIME← NOEVENTTIME + f

else NOEVENTTIME← 0
//skip inference if nothing has happened for d seconds
if (NOEVENTTIME > d) continue
//update the observation queue X = (x1, . . . ,x�)
xnow ← GETOBSERVATION()
if (xnow is not null)

UPDATEQUEUE(X,xnow, �)
SILENTNUMBER← SILENTNUMBER + 1

else continue
if (SILENTNUMBER ≤ r) continue
(Λ, PREDICTEDTASK)← SWITCHMETRIC(X)
if (Λ > threshold)

SILENTNUMBER← 0
if (POPUPALERT(PREDICTEDTASK) == OK)

SETCURRENTTASK(PREDICTEDTASK)
until the system is shutdown

Figure 2: Generic framework for detecting task switches.

the cost of computing the switch metric. We do not want X to
be full of identical observations from the same long-duration
WDS. Hence, there is no need to update X either.

With some user studies, we set the default parameters for
this framework as follows: f = 5, d = 25, and r = 10.

3.2 Metric Functions
We now describe three methods for computing metric func-
tions based on the FIFO queue of informative observations
X. First we describe the baseline method, which is similar to
what has been deployed in the latest TaskTracer release.

Baseline Method
The Baseline Method applies the SWC to each observation
individually. Given an observation x, the SWC returns three
things: a predicted class label ŷ, a probability distribution
Θ = P (y|x) over the possible class labels, and a confidence
measure that estimates P (x). The baseline method considers
a prediction to be confident if P (x) exceeds a given threshold
[Shen et al., 2006]. It compares the class labels of the two
most recent confident predictions and declares a task switch
alarm if they are different.

Class Probability Voting
A simple solution to combine multiple predictions is voting.
Let X = (x1, . . . ,x�) be the queue of informative observa-

tions. The basic idea is to vote for the task of (x1, . . . ,x�/2)
and the task of (x�/2+1, . . . ,x�) and see whether they are

the same. First, compute ya = arg maxy

∑�/2
i=1 P (y|xi)

and yb = arg maxy

∑�
i=�/2+1 P (y|xi). Then calculate the

switch metric as

Λ = I[ya �= yb] ·
⎧⎨
⎩

�/2∑
i=l

P (ya|xi) +
�∑

i=�/2+1

P (yb|xi)

⎫⎬
⎭ ,

(1)

where I[p] = 1 if p is true and −1 otherwise. Throughout
this paper, we train support vector machines to do class prob-
ability estimation [Platt, 1999; Wu et al., 2004]. This voting
method votes the class probability distributions to calculate
the metric. It is straightforward and cheap, but it doesn’t take
into account the variability of the task probabilities.

Likelihood Ratio Scores
Instead of just looking at the sum of the predicted class
probability distributions, we can also consider the variabil-
ity of those distributions. Although voting may suggest a task
switch, if the class probability distributions within each half
of X are highly variable, this suggests low confidence in the
prediction.

Let Θi be the posterior probability distribution over the
tasks given observation xi, and µa, µb be the true means
of {Θ1, . . . ,Θ�/2} and {Θ�/2+1, . . . ,Θ�} respectively. We
seek to test the hypothesis H0 : µa = µb against the alterna-
tive H1 : µa �= µb. Developed by Neyman and Pearson, the
likelihood ratio test provides a general methodology to test
a two-sided alternative against a null hypothesis [Mukhopad-
hyay, 2000]. The central limit theorem states that the sample
mean is approximately a Gaussian distribution given a suffi-
ciently large sample. Thus, we can compute the switch metric
Λ as the Gaussian likelihood ratio score

Λ =(Θa −Θb)T

(
2
�
Σa +

2
�
Σb

)−1

(Θa −Θb), (2)

where Θa and Θb are the sample means and Σa and Σb

are the sample covariance matrices of {Θ1, . . . ,Θ�/2} and
{Θ�/2+1, . . . ,Θ�} respectively. We should reject H0 for
large values of Λ. If we assume ∀i �= j, yi and yj are in-
dependent, and treat Σa and Σb as diagonal matrices, then
the computation time is O(� · |y|) excluding the expense for
the SWC to compute P (yj |xi).

The central limit theorem suggests that � should be quite
large (e.g., > 30). However, very large � values will substan-
tially delay the task switch alarms. Fortunately, our experi-
mental results are good even when � = 8.

Minimal Transition Costs
Our third metric is based on hypothesizing a task switch cost
and applying an additive conditional cost formula similar to
that of hidden Markov models (HMMs). We define the cost
of labeling X by Y as

C(Y|X) =
∑

1≤i≤�

Ca(yi|xi) +
∑

1<i≤�

Ct(xi|xi−1), (3)

where Ca is the atemporal cost of labeling observation i
with yi and Ct is the transition cost of moving from task
yi−1 to task yi. We define Ca as the negative log likelihood
Ca = − log P (yi|xi). As in Fern et al. [2005], we define the
transition cost function as Ct = c · δ[yi �= yi−1], where c is a
real and δ[p] = 1 if p is true and 0 otherwise. This model sim-
ply charges an equal cost for all task switches, even though
it’s possible that some switches are more likely than others.

We assume that the sequence X is short enough that it only
contains 0 or 1 switches. We are concerned with whether
there is one switch for sequence X. So we compare the min-
imal cost under the assumption of 0 switches to the minimal
cost under the assumption of one switch:

α = min
a

C(y1 = y2 = . . . = y� = a|X), (4)

β = min
i,a�=b

C(y1 = . . . = yi = a, yi+1 = . . . = y� = b|X).

(5)

We apply the Viterbi algorithm to find these minimal costs.
Given (x1, . . . ,xi), let αij be the minimal cost if we predict
the task at time i as yj and predict no switch until time i. Let
βij be the minimal cost if we predict the task at time i as yj

and that one switch has occurred prior to time i. For each yj ,
we initialize α1j = Ca(yj |x1) and β1j = +∞. For task yj ,
if we assume that no switch has occurred until time i, then
αij is simply the sum of the atemporal costs plus α(i−1)j . If
we assume that one switch has occurred prior to time i, there
are two possibilities: this switch occurred at time i or before
time i. We then pick the choice with the smaller cost and add
the atemporal cost to give βij . Thus, ∀1 < i ≤ �, we can
recursively calculate the cost for each yj at time i as

αij = α(i−1)j + Ca(yj |xi), (6)

βij = min {β(i−1)j ,min
k �=j

α(i−1)k + c}+ Ca(yj |xi). (7)

The minimal costs over the entire sequence X will be α =
minj α�j and β = minj β�j . We set the value of the metric
as their difference:

Λ = α− β. (8)

This Viterbi search will take O(� · |y|2) time excluding the
expense for Ca(yj |xi). In step i we only need to calculate
Ca(yj |xi) for each yj , and these values can be cached for
future reuse.

4 Experimental Results
We tested the framework and the three task switch metrics on
synthetic data and on data from four real users.1

We generated 20 synthetic datasets using the following
process. Each dataset contained 8 tasks and 500 distinct
words. For each task, its multinomial distribution over words
was randomly generated so that 150 of the words were ap-
proximately 7 times more likely to appear than the remaining
350 words. Then, we sequentially generated 300 episodes:
first we chose a task y uniformly at random and generated the
length of the episode m uniformly in the range (10 ≤ m ≤

1Available at http://www.cs.orst.edu/˜shenj/TT Data

Table 1: Datasets for Evaluating Switch Detection (# of
words is computed after stoplist and stemming)

Data Set FA FB FC SA
size(in months) 6 2 4 2.5
of switches 374 246 1209 286

of tasks 83 51 176 8
of words 575 781 1543 514

60). Then we generated m observations for task y accord-
ing to its multinomial distribution such that each observation
lasts 1 second and contains less than 5 words.

The real user data was obtained by deploying TaskTracer
on Windows machines in our research group and collecting
data from four users, whom we referred to as FA, FB, FC,
and SA. The collected data is summarized in Table 1. Each
episode in these data sets was hand-labeled with the associ-
ated task, although these labels probably exhibit considerable
levels of noise.

We now present the results for two performance metrics:
COAP and precision.

COAP given the size of the queue. We measure the prob-
ability that segment boundaries are correctly identified by the
co-occurrence agreement probability (COAP) [Beeferman et
al., 1999; McCallum et al., 2000]. The sequence of observa-
tions can be divided into segments using either the observed
or the predicted task switch points. Consider two arbitrary
time points t1 and t2 in the segmented sequence. Either t1
and t2 belong to the same segment, or they belong to different
segments. The COAP is computed by choosing a probabil-
ity distribution D over (t1, t2) and measuring the probability
that the observed and the predicted segmentations agree on
whether these two points belong to the same or different seg-
ments. In our case, D is the uniform distribution over all pairs
(t1, t2) such that |t1 − t2| ≤ 30 time units. For the synthetic
data set, the time unit was 1 second; for the real user data, the
time unit was 60 seconds.

For each dataset, the data is ordered according to time and
divided into three equal time intervals: A, B, and C. We first

4 6 8 10 12 14 16 18 20 22 24
0.56

0.6

0.64

0.68

0.72

The size of the queue

C
O

A
P

Transition Cost
Voting
Likelihood Ratio
Baseline Method

Figure 3: The average COAP values of the synthetic data as a
function of �, the length of the observation queue X

4 6 8 10 12 14 16 18 20 22 24
0.73

0.74

0.75

0.76

0.77

0.78

0.79

The size of the queue

C
O

A
P

Transition Cost
Voting
Likelihood Ratio
Baseline Method

Figure 4: The average COAP values of the real user data as a
function of �

train the Single Window Classifier using A. Then for a given
switch detection algorithm, we vary the threshold and evalu-
ate on B to choose the best threshold. Recall that we issue a
switch alarm when the metric value is larger than the thresh-
old. Finally, we retrain the SWC using A+B and apply the
learned SWC and threshold value to evaluate on C. The re-
sults on C are plotted in Figure 3 and 4.

From the plots, � (the size of informative observation
queue) is crucial to the accuracy of methods. When � is in-
creased, the COAPs first increase and then decrease for all
three metric functions. The initial increase is presumably due
to the increase in the amount of information available. The
subsequent decrease is presumably due to the fact that when
the queue X is too long, it contains more than one task switch,
but our framework assumes only 0 or 1 task switches occur.
There might be 2 or even more switches when � is large. The
maximal COAPs are reached when � is around 12 for the syn-
thetic data and around 10 for the real user data. The highest
COAP value of any metric function is larger than that of the
baseline method.

The minimal transition cost metric gives the best perfor-
mance, particularly on the synthetic data. One reason may be
that unlike the other metrics, it is not constrained to predict
the switch point in the center of the observation queue X.
The likelihood ratio metric is more conservative in predict-
ing switches, since it will not issue any alarm if the predicted
P (y|xi) is not stable. Thus it misses some real switches, but
it makes fewer false alarms. This sometimes leads to a low
COAP value. The voting method is the least effective.

Precision given coverage. We measured precision and
coverage as follows. If a correct (user-labeled) switch occurs
at time t and a switch is predicted to occur between t−60 and
t + 180, then the first such switch prediction is considered to
be correct. However, subsequent predictions in the same time
interval are counted as errors. Precision is the probability that
a switch prediction is correct. Coverage is the probability that
a user-labeled switch is predicted correctly.

We adopted an on-line learning methodology to evaluate
the algorithms on the real user data. We divided the data
into days and assign d0 to be the day that is 25% of the way

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Coverage

P
re

ci
si

on

Transition Cost
Voting
Likelihood Ratio
Baseline Method

Figure 5: The average precision values as a function of the
coverage for real users given 10 observations, created by
varying the prediction threshold.

through the data set. This defines an initialization period. For
each day d from d0+1 to the end of the data set, we trained the
system on the data from days 0 through d− 1 and then evalu-
ated its performance on day d. The precision given coverage
for � = 10 informative observations is plotted in Figure 5.

Our framework with any of the metric functions outper-
forms the baseline method. These results show that using
more observations does reduce the false alarms. The minimal
transition cost metric gives the best results for coverage below
40%. Compared to the baseline method, the minimal transi-
tion cost metric can improve precision by more than 15%.
The likelihood ratio metric gives the best results for coverage
from 40% to 65%. Voting is the worst of the three metrics.

5 Related Work
Our method of task switch detection is based on task recog-
nition and prediction, for which many methods have been de-
veloped (see Shen et al., [2006] for a review). There are also
some attempts in understanding the user’s interest in informa-
tion retrieval area [Ohsawa and Yachida, 1997].

Task switch detection is also related to change-point detec-
tion [Chen and Gopalakrishnan, 1998; Guralnik and Srivas-
tava, 1999]. The standard approach of change-point detec-
tion has been to (a) apriori determine the number of change-
points that are to be discovered, and (b) decide the function
that will be used for curve fitting in the interval between suc-
cessive change-points [Guralnik and Srivastava, 1999]. These
approaches usually do not employ supervised learning tech-
niques. Our switch detection method sheds some light on
such problems: we can hand-label observations and train a
switch detector to predict change points.

Task switch detection is different from novelty detec-
tion [Schölkopf et al., 2000; Campbell and Bennett, 2001;
Ma and Perkins, 2003] and first story detection [Allan et al.,
2000]. Novelty detection, or anomaly detection, tries to au-
tomatically identify novel or abnormal events embedded in a
large body of normal data. One application is to liberate sci-
entists from exhaustive examination of data by drawing their

attention only to unusual and “interesting” phenomena [Ma
and Perkins, 2003]. The problem is typically solved by learn-
ing a pattern to cover most normal data points. Any point
outside of this pattern will be considered as a novelty. How-
ever, in switch detection, when the user is changing tasks, the
current observation may be neither novel nor abnormal. First
Story Detection (FSD) is the task of online identification of
the earliest report for each news story as early as possible.
Existing FSD systems usually compare a new document to all
the documents in the past, and they predict a first story if the
similarity score is smaller than some threshold. This method
does not work for switch detection, because task switches of-
ten involve repeating activities that the user did in the past.

Text segmentation tries to predict where boundaries oc-
cur in text [Beeferman et al., 1999]. Maximum entropy
Markov models [McCallum et al., 2000] and conditional ran-
dom fields [Lafferty et al., 2001] have been successful in nat-
ural language tasks. With some additional requirements, it is
possible to apply these state-of-the-art models to detect task
switches. First, since task switch detection is done in real
time, we should do efficient filtering (instead of smoothing).
Second, the cost for wrong predictions is unbalanced: A false
alarm costs a lot; it is more acceptable to miss some switches.

6 Conclusions And Further Work
In this paper, we introduced a special case of the general prob-
lem of change-point detection, which we term task switch de-
tection. This involves monitoring the user’s behavior and pre-
dicting when the user switches to a different task. To reduce
false alarms, we made our decision based on multiple infor-
mative observations–observations exhibiting one or more of
the 200 most informative features. We tested this framework
in the TaskTracer system and compared three switch metrics,
each computed from information produced by a learned Sin-
gle Window Classifier (SWC). We found that the metric based
on an assumed task switch transition cost and the Viterbi al-
gorithm gave the best results.

We are exploring four directions for future improvement.
First, we are testing methods for overcoming noise in the
user’s task switch labels by treating those labels as noisy mea-
surements of the true labels and training the SWC using EM.
Second, we are studying methods of active learning to reduce
the number of labels that the user needs to provide. Third, we
want to learn episode-duration models and apply them (e.g.,
in place of the fixed recovery time parameter r). Finally, we
would like to replace our simple decision threshold with a
decision-theoretic procedure based on the estimated costs and
benefits of interrupting the user with a task switch alarm.

Acknowledgments
Supported by the NSF under grant IIS-0133994 and by the
DARPA under grant no. HR0011-04-1-0005 and contract no.
NBCHD030010. The authors thank the TaskTracer team.

References
[Allan et al., 2000] J. Allan, V. Lavrenko, and H. Jin. First

story detection in tdt is hard. In Proc. of CIKM-00, pages
374–381, 2000.

[Beeferman et al., 1999] D. Beeferman, A. Berger, and
J. Lafferty. Statistical models for text segmentation. Ma-
chine Learning, 34(1-3):177–210, 1999.

[Campbell and Bennett, 2001] C. Campbell and K. Bennett.
A linear programming approach to novelty detection. In
NIPS 13. 2001.

[Chen and Gopalakrishnan, 1998] S. Chen and P. Gopalakr-
ishnan. Speaker, environment and channel change detec-
tion and clustering via the bayesian information criterion.
In DARPA speech recognition workshop, 1998.

[Dragunov et al., 2005] A. Dragunov, T. Dietterich, K. John-
srude, M. McLaughlin, L. Li, and J. Herlocker. Tasktracer:
A desktop environment to support multi-tasking knowl-
edge workers. In Proc. of IUI-05, pages 75–82, 2005.

[Fern, 2005] A. Fern. A simple-transition model for rela-
tional sequences. In IJCAI-05, pages 696–701, 2005.

[Gonzalez and Mark, 2004] V. Gonzalez and G. Mark.
“Constant, constant, multi-tasking craziness”: Managing
multiple working spheres. In CHI 2004, 2004.

[Guralnik and Srivastava, 1999] V. Guralnik and J. Srivas-
tava. Event detection from time series data. In Proc. of
KDD-99, pages 33–42, 1999.

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and
F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
Proc. of ICML-01, pages 282–289, 2001.

[Ma and Perkins, 2003] J. Ma and S. Perkins. Online novelty
detection on temporal sequences. In Proc. of SIGKDD-03,
pages 613–618, 2003.

[McCallum et al., 2000] A. McCallum, D. Freitag, and
F. Pereira. Maximum entropy markov models for infor-
mation extraction and segmentation. In Proc. of ICML-00,
pages 591–598, 2000.

[Mukhopadhyay, 2000] N. Mukhopadhyay. Probability and
Statistical Inference. Marcel Dekker Inc., 2000.

[Ohsawa and Yachida, 1997] Y. Ohsawa and M. Yachida. An
index navigator for understanding and expressing users co-
herent interest. IJCAI-97, 1:722 – 728, 1997.

[Platt, 1999] J. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood meth-
ods. In Advances in Large Margin Classifiers. 1999.

[Schölkopf et al., 2000] B. Schölkopf, R. Williamson,
A. Smola, J. Shawe-Taylor, and J. Platt. Support vector
method for novelty detection. In NIPS 11. 2000.

[Shen et al., 2006] J. Shen, L. Li, T. Dietterich, and J. Her-
locker. A hybrid learning system for recognizing user tasks
from desktop activities and email messages. In Proc. of
IUI-06, pages 86–92, 2006.

[Wu et al., 2004] T. Wu, C. Lin, and R. Weng. Probability
estimates for multi-class classification by pairwise cou-
pling. In NIPS 16. 2004.

[Yang and Pedersen, 1997] Y. Yang and J. Pedersen. A com-
parative study on feature selection in text categorization.
In Proc. of ICML-97, pages 412–420, 1997.

