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Abstract

Bias–variance analysis provides a tool to study learning algorithms and can be used to
properly design ensemble methods well-tuned to the properties of a specific base learner.
Indeed the effectiveness of ensemble methods critically depends on accuracy, diversity and
learning characteristics of base learners. We present an extended experimental analysis of
bias–variance decomposition of the error in Support Vector Machines (SVMs), considering
gaussian, polynomial and dot–product kernels. A characterization of the error decompo-
sition is provided, by means of the analysis of the relationships between bias, variance,
kernel type and its parameters, offering insights into the way SVMs learn. The results
show that the expected trade-off between bias and variance is sometimes observed, but
more complex relationships can be detected, especially in gaussian and polynomial ker-
nels. We show that the bias–variance decomposition offers a rationale to develop ensemble
methods using SVMs as base learners, and we outline two directions for developing SVM
ensembles, exploiting the SVM bias characteristics and the bias-variance dependence on
the kernel parameters.
Keywords: Bias–variance analysis, Support Vector Machines, ensemble methods, multi-
classifier systems.

1. Introduction

Ensembles of classifiers represent one of the main research directions in machine learn-
ing (Dietterich, 2000a). Empirical studies showed that both in classification and regression
problems ensembles are often much more accurate than the individual base learner that
make them up (Bauer and Kohavi, 1999, Dietterich, 2000b, Freund and Schapire, 1996),
and recently different theoretical explanations have been proposed to justify the effectiveness
of some commonly used ensemble methods (Kittler et al., 1998, Schapire, 1999, Kleinberg,
2000, Allwein et al., 2000).

Two main theories are invoked to explain the success of ensemble methods. The first one
consider the ensembles in the framework of large margin classifiers (Mason et al., 2000),
showing that ensembles enlarge the margins, enhancing the generalization capabilities of
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learning algorithms (Schapire et al., 1998, Allwein et al., 2000). The second is based on the
the classical bias–variance decomposition of the error (Geman et al., 1992), and it shows
that ensembles can reduce variance (Breiman, 1996b) and also bias (Kong and Dietterich,
1995).

Recently Domingos proved that Schapire’s notion of margins (Schapire et al., 1998) can
be expressed in terms of bias and variance and viceversa (Domingos, 2000c), and hence
Schapire’s bounds of ensemble’s generalization error can be equivalently expressed in terms
of the distribution of the margins or in terms of the bias–variance decomposition of the
error, showing the equivalence of margin-based and bias–variance-based approaches.

The effectiveness of ensemble methods depends on the specific characteristics of the
base learners; in particular on the relationship between diversity and accuracy of the base
learners (Dietterich, 2000a, Kuncheva et al., 2001b, Kuncheva and Whitaker, 2003), on their
stability (Breiman, 1996b, Bousquet and Elisseeff, 2002), and on their general geometrical
properties (Cohen and Intrator, 2001).

From this standpoint the analysis of the features and properties of the base learners
used in ensemble methods is crucial in order to design ensemble methods well-tuned to the
characteristics of a specific base learner.

For instance, considering that the agglomeration of many classifiers into one classification
rule reduces variance (Breiman, 1996a), we could apply low-bias base learners to reduce both
bias and variance using ensemble methods. To this purpose in this paper we study Support
Vector Machines (SVMs), that are “strong” dichotomic classifiers, well-founded on Vapnik’s
Statistical Learning Theory (Vapnik, 1998), in order to establish if and how we can exploit
their specific features in the context of ensemble methods.

We analyze the learning properties of SVMs using the bias–variance decomposition of
the error as a tool to understand the relationships between kernels, kernel parameters, and
learning processes in SVM.

Historically, the bias–variance insight was borrowed from the field of regression, using
squared–loss as the loss function (Geman et al., 1992). For classification problems, where
the 0/1 loss is the main criterion, several authors proposed bias–variance decompositions
related to 0/1 loss.

Kong and Dietterich (1995) proposed a bias–variance decomposition in the context of
ECOC ensembles (Dietterich and Bakiri, 1995), but their analysis is extensible to arbitrary
classifiers, even if they defined variance simply as a difference between loss and bias.

In Breiman’s decomposition (Breiman, 1996b) bias and variance are always non-negative
(while Dietterich definition allows a negative variance), but at any input the reducible error
(i.e. the total error rate less noise) is assigned entirely to variance if the classification is
unbiased, and to bias if biased. Moreover he forced the decomposition to be purely additive,
while for the 0/1 loss this is not the case. Kohavi and Wolpert (1996) approach leads to a
biased estimation of bias and variance, assigning a non-zero bias to a Bayes classifier, while
Tibshirani (1996) did not use directly the notion of variance, decomposing the 0/1 loss in
bias and an unrelated quantity he called ”aggregation effect”, which is similar to the James’
notion of variance effect (James, 2003).

Friedman (1997) showed that bias and variance are not purely additive: in some cases
increasing variance increases the error, but in other cases can also reduce the error, especially
when the prediction is biased.
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Heskes (1998) proposed a bias-variance decomposition using as loss function the Kullback-
Leibler divergence. By this approach the error between the target and the predicted clas-
sifier densities is measured; anyway when he tried to extend this approach to the zero-one
function interpreted as the limit case of log-likelihood type error, the resulting decomposi-
tion produces a definition of bias that loses his natural interpretation as systematic error
committed by the classifier.

As briefly outlined, these decompositions suffer of significant shortcomings: in particular
they lose the relationship to the original squared loss decomposition, forcing in most cases
bias and variance to be purely additive.

We consider classification problems and the 0/1 loss function in the Domingos’ uni-
fied framework of bias–variance decomposition of the error (Domingos, 2000c,b). In this
approach bias and variance are defined for an arbitrary loss function, showing that the
resulting decomposition specializes to the standard one for squared loss, but it holds also
for the 0/1 loss (Domingos, 2000c).

A similar approach has been proposed by James (2003): he extended the notion of
variance and bias for general loss functions, distinguishing also between bias and variance,
interpreted respectively as the systematic error and the variability of an estimator, and the
the actual effect of bias and variance on the error.

Using Domingos theoretical framework, we tried to answer two main questions:

1. Can we characterize bias and variance in SVMs with respect to the kernel and its
parameters?

2. Can the bias–variance decomposition offer guidance for developing ensemble methods
using SVMs as base learners?

In order to answer these two questions, we planned and performed an extensive series of
experiments on synthetic and real data sets to evaluate bias variance–decomposition of the
error with different kernels and different kernel parameters.

The paper is organized as follows. In Sect. 2, we summarize the main results of Domin-
gos’ unified bias–variance decomposition of error. Sect. 3 outlines how to measure in practice
bias and variance decomposition of the error with artificial or large benchmark data sets,
or when only a small ”real” data set is available. Sect. 4 outlines the main characteristics
of the data sets employed in our experiments and the main experimental tasks performed.
Then we present the main results of our experiments about bias–variance decomposition of
the error in SVMs, considering separately gaussian, polynomial and and dot-product SVMs,
and comparing also the results between different kernels. Sect. 6 provides a characterization
of bias–variance decomposition of the error for gaussian, polynomial and and dot-product
SVMs, highlighting the common patterns for each different kernel. Sect. 7 exploits the
knowledge achieved by the bias–variance decomposition of the error to formulate hypothe-
ses about the effectiveness of SVMs as base learners in ensembles of learning machines, and
two directions for developing new ensemble models of SVM are proposed. An outline of
ongoing and future developments of this work concludes the paper.
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2. Bias–Variance Decomposition for the 0/1 loss function

The analysis of bias–variance decomposition of the error has been originally developed in
the standard regression setting, where the squared error is usually used as loss function.
Considering a prediction y = f(x) of an unknown target t, provided by a learner f on input
x, with x ∈ R

d and y ∈ R, the classical decomposition of the error in bias and variance for
the squared error loss is (Geman et al., 1992):

Ey,t[(y − t)2] = Et[(t − E[t])2] + Ey[(y − E[y])2] + (E[y] − E[t])2

= Noise(t) + V ar(y) + Bias2(y)

In words, the expected loss of using y to predict t is the sum of the variances of t (noise) and
y plus the squared bias. Ey[·] indicates the expected value with respect to the distribution
of the random variable y.

This decomposition cannot be automatically extended to the standard classification
setting, as in this context the 0/1 loss function is usually applied, and bias and variance are
not purely additive. As we are mainly interested in analyzing bias–variance for classification
problems, we introduce the bias–variance decomposition for the 0/1 loss function, according
to the Domingos unified bias–variance decomposition of the error (Domingos, 2000b).

2.1 Expected loss depends on the randomness of the training set and the
target

Consider a (potentially infinite) population U of labeled training data points, where each
point is a pair (xj , tj), tj ∈ C, xj ∈ R

d, d ∈ N, where C is the set of the class labels. Let
P (x, t) be the joint distribution of the data points in U . Let D be a set of m points drawn
identically and independently from U according to P . We think of D as being the training
sample that we are given for training a classifier. We can view D as a random variable, and
we will let ED[·] indicate the expected value with respect to the distribution of D.

Let L be a learning algorithm, and define fD = L(D) as the classifier produced by L
applied to a training set D. The model produces a prediction fD(x) = y. Let L(t, y) be the
0/1 loss function, that is L(t, y) = 0 if y = t, and L(t, y) = 1 otherwise.

Suppose we consider a fixed point x ∈ R
d. This point may appear in many labeled

training points in the population. We can view the corresponding labels as being distributed
according to the conditional distribution P (t|x). Recall that it is always possible to factor
the joint distribution as P (x, t) = P (x)P (t|x). Let Et[·] indicate the expectation with
respect to t drawn according to P (t|x).

Suppose we consider a fixed predicted class y for a given x. This prediction will have an
expected loss of Et[L(t, y)]. In general, however, the prediction y is not fixed. Instead, it is
computed from a model fD which is in turn computed from a training sample D.

Hence, the expected loss EL of learning algorithm L at point x can be written by
considering both the randomness due to the choice of the training set D and the randomness
in t due to the choice of a particular test point (x, t):

EL(L,x) = ED[Et[L(t, fD(x))]],
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where fD = L(D) is the classifier learned by L on training data D. The purpose of the
bias-variance analysis is to decompose this expected loss into terms that separate the bias
and the variance.

2.2 Optimal and main prediction.

To derive this decomposition, we must define two things: the optimal prediction and the
main prediction: according to Domingos, bias and variance can be defined in terms of these
quantities.

The optimal prediction y∗ for point x minimizes Et[L(t, y)] :

y∗(x) = arg min
y

Et[L(t, y)] (1)

It is equal to the label t that is observed more often in the universe U of the data points,
and corresponds to the prediction provided by the Bayes classifier. The optimal model
f̂(x) = y∗, ∀x makes the optimal prediction at each point x, and corresponds to the Bayes
classifier; its error rate corresponds to the Bayes error rate.

The noise N(x), is defined in terms of the optimal prediction, and represents the re-
maining loss that cannot be eliminated, even by the optimal prediction:

N(x) = Et[L(t, y∗)]

Note that in the deterministic case y∗ = t and N(x) = 0.
The main prediction ym at point x is defined as

ym = arg min
y′ ED[L(fD(x), y′)]. (2)

This is a value that would give the lowest expected loss if it were the “true label” of x. It
expresses the ”central tendency” of a learner, that is its systematic prediction, or, in other
words, it is the label for x that the the learning algorithm “wishes” were correct. For 0/1
loss, the main prediction is the class predicted most often by the learning algorithm L when
applied to training sets D.

2.3 Bias, unbiased and biased variance.

Given these definitions, the bias B(x) (of a learning algorithm L on training sets of size m)
is the loss of the main prediction relative to the optimal prediction:

B(x) = L(y∗, ym)

For 0/1 loss, the bias is always 0 or 1. We will say that L is biased at point x, if B(x) = 1.
The variance V (x) is the average loss of the predictions relative to the main prediction:

V (x) = ED[L(ym, fD(x))] (3)

It captures the extent to which the various predictions fD(x) vary depending on D.
In the case of the 0/1 loss we can also distinguish two opposite effects of variance (and

noise) on the error: in the unbiased case variance and noise increase the error, while in the
biased case variance and noise decrease the error.

There are three components that determine whether t = y:
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Figure 1: Case analysis of error.

1. Noise: is t = y∗ ?

2. Bias: is y∗ = ym ?

3. Variance: is ym = y ?

Note that bias is either 0 or 1 because neither y∗ nor ym are random variables. From this
standpoint we can consider two different cases: the unbiased and the biased case.

In the unbiased case, B(x) = 0 and hence y∗ = ym. In this case we suffer a loss if the
prediction y differs from the main prediction ym (variance) and the optimal prediction y∗
is equal to the target t, or y is equal to ym, but y∗ is different from t (noise).

In the biased case, B(x) = 1 and hence y∗ �= ym. In this case we suffer a loss if the
prediction y is equal to the main prediction ym and the optimal prediction y∗ is equal to
the target t, or if both y is different from ym (variance), and y∗ is different from t (noise).
Fig. 1 summarizes the different conditions under which an error can arise, considering the
combined effect of bias, variance and noise on the learner prediction.

Considering the above case analysis of the error, if we let P (t �= y∗) = N(x) = τ and
P (ym �= y) = V (x) = σ, in the unbiased case we have:

L(t, y) = τ(1 − σ) + σ(1 − τ) (4)
= τ + σ − 2τσ

= N(x) + V (x) − 2N(x)V (x)

while, in the the biased case:

L(t, y) = τσ + (1 − τ)(1 − σ) (5)
= 1 − (τ + σ − 2τσ)
= B(x) − (N(x) + V (x) − 2N(x)V (x))
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Figure 2: Effects of biased and unbiased variance on the error. The unbiased variance
increments, while the biased variance decrements the error.

Note that in the unbiased case (eq. 4) the variance is an additive term of the loss
function, while in the biased case (eq. 5) the variance is a subtractive term of the loss
function. Moreover the interaction terms will usually be small, because, for instance, if
both noise and variance term will be both lower than 0.1, the interaction term 2N(x)V (x)
will be reduced to less than 0.02.

In order to distinguish between these two different effects of the variance on the loss
function, Domingos defines the unbiased variance, Vu(x), to be the variance when B(x) = 0
and the biased variance, Vb(x), to be the variance when B(x) = 1. We can also define
the net variance Vn(x) to take into account the combined effect of the unbiased and biased
variance:

Vn(x) = Vu(x) − Vb(x)

Fig. 2 summarizes in graphic form the opposite effects of biased and unbiased variance on
the error.

If we can disregard the noise, the unbiased variance captures the extents to which the
learner deviates from the correct prediction ym (in the unbiased case ym = y∗), while
the biased variance captures the extents to which the learner deviates from the incorrect
prediction ym (in the biased case ym �= y∗).

7



Valentini and Dietterich

2.4 Domingos bias–variance decomposition.

Domingos (2000a) showed that for a quite general loss function the expected loss is:

EL(L,x) = c1N(x) + B(x) + c2V (x) (6)

For the 0/1 loss function c1 is 2PD(fD(x) = y∗) − 1 and c2 is +1 if B(x) = 0 and −1 if
B(x) = 1. Note that c2V (x) = Vu(x)−Vb(x) = Vn(x) (eq. 3), and if we disregard the noise,
eq. 6 can be simplified to:

EL(L,x) = B(x) + Vn(x) (7)

Summarizing, one of the most interesting aspects of Domingos’ decomposition is that
variance hurts on unbiased points x, but it helps on biased points. Nonetheless, to obtain
low overall expected loss, we want the bias to be small, and hence, we see to reduce both
the bias and the unbiased variance. A good classifier will have low bias, in which case the
expected loss will approximately equal the variance.

This decomposition for a single point x can be generalized to the entire population by
defining Ex[·] to be the expectation with respect to P (x). Then we can define the average
bias Ex[B(x)], the average unbiased variance Ex[Vu(x)], and the average biased variance
Ex[Vb(x)]. In the noise-free case, the expected loss over the entire population is

Ex[EL(L,x)] = Ex[B(x)] + Ex[Vu(x)] − Ex[Vb(x)].

3. Measuring bias and variance

The procedures to measure bias and variance depend on the characteristics and on the
cardinality of the data sets used.

For synthetic data sets we can generate different sets of training data for each learner
to be trained. Then a large synthetic test set can be generated in order to estimate the
bias–variance decomposition of the error for a specific learner model.

Similarly, if a large data set is available, we can split it in a large learning set and in a
large testing set. Then we can randomly draw subsets of data from the large training set
in order to train the learners; bias–variance decomposition of the error is measured on the
large independent test set.

However, in practice, for real data we dispose of only one and often small data set. In
this case, we can use cross-validation techniques for estimating bias–variance decomposi-
tion, but we propose to use out-of-bag (Breiman, 2001) estimation procedures, as they are
computationally less expensive.

3.1 Measuring with artificial or large benchmark data sets

Consider a set D = {Di}n
i=1 of learning sets Di = {xk, tk}m

k=1. The data sets Di can be gen-
erated according to some known probability distribution or can be drawn with replacement
from a large data set D according to an uniform probability distribution. Here we consider
only a two-class case, i.e. tk ∈ C = {−1, 1}, xk ∈ X, for instance X = R

d, d ∈ N, but
the extension to the multiclass case is straightforward.

The estimates of the error, bias, unbiased and biased variance are performed on a test
set T separated from the training set D. In particular these estimates with respect to a
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single example (x, t) ∈ T are performed using the classifiers fDi = L(Di) produced by a
learner L using training sets Di drawn from D. These classifiers produce a prediction y ∈ C,
that is fDi(x) = y. The estimates are performed for all the (x, t) ∈ T , and the overall loss,
bias and variance can be evaluated averaging over the entire test set T .

In presence of noise and with the 0/1 loss, the optimal prediction y∗ is equal to the label
t that is observed more often in the universe U of data points:

y∗(x) = arg max
t∈C

P (t|x)

The noise N(x) for the 0/1 loss can be estimated if we can evaluate the probability of the
targets for a given example x:

N(x) =
∑
t∈C

L(t, y∗)P (t|x) =
∑
t∈C

||t �= y∗||P (t|x)

where ||z|| = 1 if z is true, 0 otherwise,
In practice it is difficult to estimate the noise for ”real world” data sets, and to simplify

the computation we consider the noise free case. In this situation we have y∗ = t.
The main prediction is a function of the y = fDi(x). Considering a 0/1 loss, we have

ym = arg max(p1, p−1)

where p1 = PD(y = 1|x) and p−1 = PD(y = −1|x), i.e. the main prediction is the mode.
To calculate p1, having a test set T = {xj , tj}r

j=1, it is sufficient to count the number of
learners that predict class 1 on a given input x:

p1(xj) =
∑n

i=1 ‖fDi(xj) = 1‖
n

where ‖z‖ = 1 if z is true and ‖z‖ = 0 if z is false
The bias can be easily calculated after the evaluation of the main prediction:

B(x) =
{

1 if ym �= t
0 if ym = t

=
∣∣∣∣ym − t

2

∣∣∣∣ (8)

or equivalently:

B(x) =
{

1 if pcorr(x) ≤ 0.5
0 otherwise

where pcorr is the probability that a prediction is correct, i.e. pcorr(x) = P (y = t|x) =
PD(fD(x) = t).

In order to measure the variance V (x), if we define yDi = fDi(x), we have:

V (x) =
1
n

n∑
i=1

L(ym, yDi) =
1
n

n∑
i=1

||(ym �= yDi)||

The unbiased variance Vu(x) and the biased variance Vb(x) can be calculated evaluating
if the the prediction of each learner differs from the main prediction respectively in the
unbiased and in the biased case:

Vu(x) =
1
n

n∑
i=1

||(ym = t) and (ym �= yDi)||
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Vb(x) =
1
n

n∑
i=1

||(ym �= t) and (ym �= yDi)||

In the noise-free case, the average loss on the example x ED(x) is calculated by a simple
algebraic sum of bias, unbiased and biased variance:

ED(x) = B(x) + Vu(x) − Vb(x) = B(x) + (1 − 2B(x))V (x)

We can easily calculate the average bias, variance, unbiased, biased and net variance,
averaging over the entire set of the examples of the test set T = {(xj , tj)}r

j=1. In the
remaining part of this section the indices j refer to the examples that belong to the test
set T , while the indices i refer to the training sets Di, drawn with replacement from the
separated training set D, and used to train the classifiers fDi .

The average quantities are:
Average bias:

Ex[B(x)] =
1
r

r∑
j=1

B(xj) =
1
r

r∑
j=1

∣∣∣∣ym(xj) − tj
2

∣∣∣∣
Average variance:

Ex[V (x)] =
1
r

r∑
j=1

V (xj)

=
1
nr

r∑
j=1

n∑
i=1

L(ym(xj), fDi(xj))

=
1
nr

r∑
j=1

n∑
i=1

||ym(xj) �= fDi(xj)||

Average unbiased variance:

Ex[Vu(x)] =
1
r

r∑
j=1

Vu(xj) =
1
nr

r∑
j=1

n∑
i=1

||(ym(xj) = tj) and (ym(xj) �= fDi(xj))||

Average biased variance:

Ex[Vb(x)] =
1
r

r∑
j=1

Vb(xj) =
1
nr

r∑
j=1

n∑
i=1

||(ym(xj) �= tj) and (ym(xj) �= fDi(xj))||

Average net variance:

Ex[Vn(x)] =
1
r

r∑
j=1

Vn(xj) =
1
r

r∑
j=1

(Vu(xj) − Vb(xj))

Finally, the average loss on all the examples (with no noise) is the algebraic sum of the
average bias, unbiased and biased variance:

Ex[L(t, y)] = Ex[B(x)] + Ex[Vu(x)] − Ex[Vb(x)]
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3.2 Measuring with small data sets

In practice (unlike in theory), we have only one and often small data set S. We can
simulate multiple training sets by bootstrap replicates Sb = {x|x is drawn at random with
replacement from S}.

In order to measure bias and variance we can use out-of-bag points, providing in such a
way an unbiased estimate of the error.

At first we need to construct B bootstrap replicates of S (e. g., B = 200): S1, . . . , SB.
Then we apply a learning algorithm L to each replicate Sb to obtain hypotheses fb =

L(Sb).
Let Tb = S\Sb be the data points that do not appear in Sb (out of bag points). We can

use these data sets Tb to evaluate the bias–variance decomposition of the error; that is we
compute the predicted values fb(x), ∀x s.t. x ∈ Tb.
For each data point x, we have now the observed corresponding value t and several pre-
dictions y1, . . . , yK , where K = |{Tb|x ∈ Tb, 1 ≤ b ≤ B}|, K ≤ B, and on the average
K � B/3, because about 1/3 of the predictors is not trained on a specific input x. Note
that the value of K depends on the specific example x considered. Moreover if x ∈ Tb then
x /∈ Sb, hence fb(x) makes a prediction on an unknown example x.

In order to compute the main prediction, for a two-class classification problem, we can
define:

p1(x) =
1
K

B∑
b=1

||(x ∈ Tb) and (fb(x) = 1)||

p−1(x) =
1
K

B∑
b=1

||(x ∈ Tb) and (fb(x) = −1)||

The main prediction ym(x) corresponds to the mode:

ym = arg max(p1, p−1)

The bias can be calculated as in eq. 8, and the variance V (x) is:

V (x) =
1
K

B∑
b=1

||(x ∈ Tb) and (ym �= fb(x))||

Similarly can be easily computed unbiased, biased and net–variance:

Vu(x) =
1
K

B∑
b=1

||(x ∈ Tb) and (B(x) = 0) and (ym �= fb(x))||

Vb(x) =
1
K

B∑
b=1

||(x ∈ Tb) and (B(x) = 1) and (ym �= fb(x))||

Vn(x) = Vu(x) − Vb(x)

Average bias, variance, unbiased, biased and net variance, can be easily calculated
averaging over all the examples.
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4. Bias–Variance Analysis in SVMs

The bias–variance decomposition of the error represents a powerful tool to analyze learning
processes in learning machines. According to the procedures described in the previous
section, we measured bias and variance in SVMs, in order to study the relationships with
different kernel types and their parameters. To accomplish this task we computed bias–
variance decomposition of the error on different synthetic and ”real” data sets.
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Figure 3: P2 data set, a bidimensional two class synthetic data set. Roman numbers label
the regions belonging to the two classes.

4.1 Experimental setup

In the experiments we employed 7 different data sets, both synthetic and ”real”.
P2 is a synthetic bidimensional two–class data set 1; each region is delimited by one or

more of four simple polynomial and trigonometric functions (Fig. 3).
The synthetic data set Waveform is generated from a combination of 2 of 3 ”base” waves;

we reduced the original three classes of Waveform to two, deleting all samples pertaining
to class 0. The other data sets are all from the UCI repository (Merz and Murphy, 1998).

Tab. 1 summarizes the main features of the data sets used in the experiments.

In order to perform a reliable evaluation of bias and variance we used small training
set and large test sets. For synthetic data we generated the desired number of samples.

1. The application gensimple, that we developed to generate the data, is freely available on line at
ftp://ftp.disi.unige.it/person/ValentiniG/BV/gensimple.
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Table 1: Data sets used in the experiments.

Data set # of # of tr. # of tr. # base # of
attr. samples sets tr. set test samples

P2 2 100 400 synthetic 10000
Waveform 21 100 200 synthetic 10000
Grey-Landsat 36 100 200 4425 2000
Letter 16 100 200 614 613
Letter w. noise 16 100 200 614 613
Spam 57 100 200 2301 2300
Musk 166 100 200 3299 3299

For real data sets we used bootstrapping to replicate the data. In both cases we computed
the main prediction, bias, unbiased and biased variance, net-variance according to the
procedures explained in Sect. 3.1. In our experiments, the computation of James’ variance
and systematic effect (James, 2003) is reduced to the measurements of the net-variance and
bias, and hence we did not explicitly compute these quantities (see Appendix A for details).

With synthetic data sets, we generated small training sets of about 100 examples and
reasonably large test sets using computer programs. In fact small samples show bias and
variance more clearly than having larger samples. We produced 400 different training sets
for P2 and 200 training sets for Waveform. The test sets were chosen reasonably large
(10000 examples) to obtain reliable estimates of bias and variance.

For real data sets we first divided the data into a training D and a test T sets. If the
data sets had a predefined training and test sets reasonably large, we used them (as in
Grey-Landsat and Spam), otherwise we split them in a training and test set of equal size.
Then we drew from D bootstrap samples. We chose bootstrap samples much smaller than
|T | (100 examples). More precisely we drew 200 data sets from D, each one consisting of
100 examples uniformly drawn with replacement.

Summarizing, both with synthetic and real data sets we generated small training sets for
each data set and a much larger test set. Then all the data were normalized in such a way
that for each attribute the mean was 0 and the standard deviation 1. In all our experiments
we used NEURObjects (Valentini and Masulli, 2002)2, a C++ library for the development
of neural networks and machine learning applications, and SVM-light (Joachims, 1999), a
set of C applications for training and testing SVMs.

We developed and used the C++ application analyze BV, to perform bias–variance
decomposition of the error3. This application analyzes the output of a generic learning
machine model and computes the main prediction, error, bias, net–variance, unbiased and
biased variance using the 0/1 loss function. Other C++ applications have been developed
to process and analyze the results, using also Cshell scripts to train, test and analyze bias–
variance decomposition of all the SVM models for each specific data set.

2. Download web site: http://www.disi.unige.it/person/ValentiniG/NEURObjects.
3. The source code is available at ftp://ftp.disi.unige.it/person/ValentiniG/BV. Moreover C++

classes for bias–variance analysis have been developed as part of the NEURObjects library
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Figure 4: Grey-Landsat data set. Error (a) and its decomposition in bias (b), net variance
(c), unbiased variance (d), and biased variance (e) in SVM RBF, varying both C
and σ.
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4.2 Experimental Tasks

To evaluate bias and variance in SVMs we conducted experiments with different kernels
(gaussian, polynomial and dot-product) and different kernel parameters. For each kernel
we considered the same set of values for the parameter C that controls the trade-off between
training error and margin, ranging from C = 0.01 to C = 1000.

1. Gaussian kernels. We evaluated bias–variance decomposition varying the parame-
ters σ of the kernel and the C parameter. In particular we analyzed:

(a) The relationships between average error, bias, net–variance, unbiased and biased
variance, the σ parameter of the kernel and the C parameter.

(b) The relationships between generalization error, training error, number of support
vectors and capacity with respect to σ.

We trained RBF-SVM with all the combinations of the parameters σ and C, using
the a set of values for σ ranging from σ = 0.01 to σ = 1000. We evaluated about 200
different RBF-SVM models for each data set.

2. Polynomial kernels. We evaluated bias–variance decomposition varying the degree
of the kernel and the C parameter. In particular we analyzed the relationships between
average error, bias, net–variance, unbiased and biased variance, the degree of the
kernel and the C parameter.

We trained polynomial-SVM with several combinations of the degree parameter of the
kernel and C values, using all the polynomial degrees between 1 and 10, evaluating in
such a way about 120 different polynomial-SVM models for each data set. Following
the heuristic of Jakkola, the dot product of polynomial kernel was divided by the
dimension of the input data, to ”normalize” the dot–product before to raise to the
degree of the polynomial.

3. Dot–product kernels. We evaluated bias–variance decomposition varying the C
parameter. We analyzed the relationships between average error, bias, net–variance,
unbiased and biased variance and the parameter C (the regularization factor) of the
kernel. We trained dot–product-SVM considering different values for the C parameter,
evaluating in such a way 12 different dot–product-SVM models for each data set.

Each SVM model required the training of 200 different SVMs, one for each synthesized or
bootstrapped data set, for a total of (204+120+12)×200 = 67200 trained SVM for each data
set (134400 for the data set P2, as for this data set we used 400 data sets for each model).
The experiments required the training of more than half million of SVMs, considering all
the data sets and of course the testing of all the SVM previously trained in order to evaluate
the bias–variance decomposition of the error of the different SVM models. For each SVM
model we computed the main prediction, bias, net-variance, biased and unbiased variance
and the error on each example of the test set, and the corresponding average quantities on
the overall test set.

15



Valentini and Dietterich

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.02 0.1 0.2 0.5 1 2 5 10 20 50 100
sigma

avg. error
bias

net variance
unbiased var.

biased var

C=10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.02 0.1 0.2 0.5 1 2 5 10 20 50 100
sigma

avg. error
bias

net variance
unbiased var.

biased var

C=10

(a) (b)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.02 0.1 0.2 0.5 1 2 5 10 20 50 100

avg. error
bias

net variance
unbiased var.

biased var

C=0.1

sigma

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.02 0.1 0.2 0.5 1 2 5 10 20 50 100
sigma

avg. error
bias

net variance
unbiased var.

biased var

C=1

(c) (d)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.02 0.1 0.2 0.5 1 2 5 10 20 50 100
sigma

avg. error
bias

net variance
unbiased var.

biased var

C=10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.02 0.1 0.2 0.5 1 2 5 10 20 50 100
sigma

avg. error
bias

net variance
unbiased var.

biased var

C=1

(e) (f)

Figure 5: Bias-variance decomposition of error in bias, net variance, unbiased and biased
variance in SVM RBF, varying σ and for fixed C values: (a) Waveform, (b)
Grey-Landsat, (c) Letter-Two with C = 0.1, (c) Letter-Two with C = 1, (e)
Letter-Two with added noise and (f) Spam.
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5. Results

In this section we present the results of the experiments. We analyzed bias–variance de-
composition with respect to the kernel parameters considering separately gaussian, polyno-
mial and dot product SVMs, comparing also the results among different kernels. Here we
present the main results. Full results, data and graphics are available by anonymous ftp at
ftp://ftp.disi.unige.it/person/ValentiniG/papers/bv-svm.ps.gz.

5.1 Gaussian kernels

Fig. 4 depicts the average loss, bias net–variance, unbiased and biased variance varying the
values of σ and the regularization parameter C in RBF-SVM on the Grey-Landsat data
set. We note that σ is the most important parameter: although for very low values of C
the SVM cannot learn, independently of the values of σ, (Fig. 4 a), the error, the bias, and
the net–variance depend mostly on the σ parameter. In particular for low values of σ, bias
is very high (Fig. 4 b) and net-variance is 0, as biased and unbiased variance are about
equal (Fig. 4d and 4e). Then the bias suddenly drops (Fig. 4b), lowering the average loss
(Fig. 4a), and then stabilizes for higher values of σ. Interestingly enough, in this data set
(but also in others, data not shown), we note an increment followed by a decrement of the
net–variance, resulting in a sort of ”wave shape” of the net variance graph (Fig. 4c).

Fig. 5 shows the bias–variance decomposition on different data sets, varying σ, and for
a fixed value of C, that is a sort of ”slice” along the σ axis of the Fig. 4. The plots show
that average loss, bias, and variance depend significantly on σ for all the considered data
sets, confirming the existence of a “high biased region” for low values of σ. In this region,
biased and unbiased variance are about equal (net–variance Vn = Vu − Vb is low). Then
unbiased variance increases while biased variance decreases (Fig. 5 a,b,c and d), and finally
both stabilize for relatively high values of σ. Interestingly, the average loss and the bias do
not increase for high values of σ, especially if C is high.

Bias and average loss increases with σ only for very small C values. Note that net-
variance and bias show opposite trends only for small values of C (Fig. 5 c). For larger C
values the symmetric trend is limited only to σ ≤ 1 (Fig. 5 d), otherwise bias stabilizes and
net-variance slowly decreases. Fig. 6 shows more in detail the effect of the C parameter on
bias-variance decomposition. For C ≥ 1 there are no variations of the average error, bias
and variance for a fixed value of σ. Note that for very low values of σ (Fig. 6a and b) there
is no learning. In the Letter-Two data set, as in other data sets (figures not shown), only
for small C values we have variations in bias and variance values (Fig. 6).

5.1.1 Discriminant function computed by the SVM-RBF classifier

In order to get insights into the behaviour of the SVM learning algorithm with gaussian
kernels we plotted the real-valued functions computed without considering the discretization
step performed through the sign function. The real valued function computed by a gaussian
SVM is the following:

f(x, α, b) =
∑
i∈SV

yiαi exp(−‖xi − x‖2/σ2) + b
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Figure 6: Letter-Two data set. Bias-variance decomposition of the error in bias, net vari-
ance, unbiased and biased variance in SVM RBF, while varying C and for some
fixed values of σ: (a) σ = 0.01, (b) σ = 0.1, (c) σ = 1, (d) σ = 5, (e) σ = 20, (f)
σ = 100.

18



Bias–variance analysis of SVMs

     0.5
       0

    −0.5
      −1

0
2

4
6

8
X

2
4

6
8

10

Y

−1.5

−1

−0.5

0

0.5

1

Z

Figure 7: The real valued function computed by the SVM on the P2 data set with σ = 0.01,
C = 1.
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Figure 8: The real valued function computed by the SVM on the P2 data set, with σ = 1,
C = 1.
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where the αi are the Lagrange multipliers found by the solution of the dual optimization
problem, the xi ∈ SV are the support vectors, that is the points for which αi > 0.

We plotted the surface computed by the gaussian SVM with the synthetic data set P2.
Indeed it is the only surface that can be easily visualized, as the data are bidimensional
and the resulting real valued function can be easily represented through a wireframe three-
dimensional surface. The SVMs are trained with exactly the same training set composed
by 100 examples. The outputs are referred to a test set of 10000 examples, selected in an
uniform way through all the data domain. In particular we considered a grid of equi-spaced
data at 0.1 interval in a two dimensional 10 × 10 input space. If f(x, α, b) > 0 then the
SVM matches up the example x with class 1, otherwise with class 2.

With small values of σ we have ”spiky” functions: the response is high around the
support vectors, and is close to 0 in all the other regions of the input domain (Fig. 7). In
this case we have overfitting: a large error on the test set (about 46 % with σ = 0.01 and
42.5 % with σ = 0.02 ), and a training error near to 0.
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Figure 9: The real valued function computed by the SVM on the P2 data set. (a) σ = 20
C = 1, (b) σ = 20 C = 1000, (c) σ = 500 C = 1, (d) σ = 500 C = 1000.
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Figure 10: Grey-Landsat data set. Bias-variance decomposition of error in bias, net vari-
ance, unbiased and biased variance in SVM RBF, while varying σ and for some
fixed values of C: (a) C = 0.1, (b) C = 1, (c) C = 10, (d) C = 100.

If we enlarge the values of σ we obtain a wider response on the input domain and the
error decreases (with σ = 0.1 the error is about 37 %). With σ = 1 we have a smooth
function that fits quite well the data (Fig. 8). In this case the error drops down to about
13 %.

Enlarging too much σ we have a too smooth function (Fig. 9 (a)), and the error increases
to about 37 %: in this case the high bias is due to an excessive smoothing of the function.
Increasing the values of the regularization parameter C (in order to better fit the data), we
can diminish the error to about 15 %: the shape of the function now is less smooth (Fig. 9
(b)).

As noted in Scholkopf and Smola (2002), using very large values of sigma, we have a very
smooth discriminant function (in practice a plane), and increasing it even further does not
change anything. Indeed, enlarging σ to 500 we obtain a plane (Fig 9 (c)), and a very biased
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Figure 11: Bias-variance decomposition of the error in bias, net variance, unbiased and
biased variance in SVM RBF, while varying σ and for some fixed values of C:
(a) P2, with C = 1, (b) P2, with C = 1000, (c) Musk, with C = 1, (d) Musk,
with C = 1000.

function (error about 45 %), and even if we increment C, we can obtain better results, but
always with a large error (about 35 %, Fig 9 (d)).

5.1.2 Behavior of SVMs with large σ values

Fig 4 and 5 show that σ parameter plays a sort of smoothing effect, as the value of σ
increases. In particular with large values of σ we did not observe any increment of bias
nor decrement of variance. In order to get insights into this counter-intuitive behaviour we
tried to answer these two questions:

1. Does the bias increase while variance decrease with large values of σ, and what is the
combined effect of bias-variance on the error?
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2. In this situation (large values for σ), what is the effect of the C parameter?

In Fig. 5 we do not observe an increment of bias with large values of σ, but we limited
our experiments to values of σ ≤ 100. Here we investigate the effect for larger values of σ
(from 100 to 1000).

In most cases, also increasing the values of σ right to 1000 we do not observe an increment
of the bias and a substantial decrement of the variance. Only for low values of C, that is
C < 1, the bias and the error increase with large values of σ (Fig. 10). With the P2 data
set the situation is different: in this case we observe an increment of the bias and the error
with large values of σ, even if with large values of C the increment rate is lower (Fig. 11 a
and b).

Also with the musk data set we note an increment of the error with very large values of
σ, but surprisingly this is due to an increment of the unbiased variance, while the bias is
quite stable, at least for values of C > 1, (Fig. 11 c and d).

Larger values of C counter-balance the bias introduced by large values of σ. But with
some distributions of the data too large values of σ produce too smooth functions, and
also incrementing C it is very difficult to fit the data. Indeed, the discriminant function
computed by the RBF-SVM with the P2 data set (that is the function computed without
considering the sign function) is too smooth for large values of σ: for σ = 20, the error is
about 37%, due almost entirely to the large bias, (Fig. 9 a), and for σ = 500 the error is
about 45 % and also incrementing the C value to 1000, we obtain a surface that fits the
data better, but with an error that remains large (about 35%). Indeed with very large
values of σ the gaussian kernel becomes nearly linear (Scholkopf and Smola, 2002) and if
the data set is very far from being linearly separable, as with the P2 data set (Fig. 3), the
error increases, especially in the bias component (Fig. 11 (a) and (b)). Summarizing with
large σ values bias can increment, while net-variance tends to stabilize, but this effect can
be counter-balanced by larger C values.

5.1.3 Relationships between generalization error, training error, number
of support vectors and capacity

Looking at Fig. 4 and 5, we see that SVMs do not learn for small values of σ. Moreover the
low error region is relatively large with respect to σ and C.

In this section we evaluate the relationships between the estimated generalization er-
ror, the bias, the training error, the number of support vectors and the estimated Vapnik
Chervonenkis dimension, in order to answer the following questions:

1. Why SVMs do not learn for small values of σ?

2. Why we have a so large bias for small values of σ?

3. Can we use the variation of the number of support vectors to predict the ”low error”
region?

4. Is there any relationship between the bias, variance and VC dimension, and can we
use this last one to individuate the ”low error” region?
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Figure 12: Letter-Two data set. Error, bias, training error, support vector rate, and esti-
mated VC dimension in SVM RBF, while varying the σ parameter and for some
fixed values of C: (a) C = 1, (b) C = 10, (c) C = 100, and C = 1000.

The generalization error, bias, training error, number of support vectors and the Vapnik
Chervonenkis dimension are estimated averaging with respect to 400 SVMs (P2 data set)
or 200 SVMs (other data sets) trained with different bootstrapped training sets composed
by 100 examples each one. The test error and the bias are estimated with respect to an
independent and sufficiently large data set.

The VC dimension is estimated using the Vapnik’s bound based on the radius R of the
sphere that contains all the data (in the feature space), approximated through the sphere
centered in the origin, and on the norm of the weights in the feature space (Vapnik, 1998). In
this way the VC dimension is overestimated but it is easy to compute and we are interested
mainly in the comparison of the VC dim. of different SVM models:

V C ≤ R2 · ‖w‖2 + 1
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Figure 13: Grey-Landsat data set. Error, bias, training error, support vector rate, and
estimated VC dimension in SVM RBF, while varying the σ parameter and for
some fixed values of C: (a) C = 1, (b) C = 10, (c) C = 100, and C = 1000.

where
‖w‖2 =

∑
i∈SV

∑
j∈SV

αiαjK(xi,xj)yiyj

and
R2 = max

i
K(xi,xi)

The number of support vectors is expressed as the halved ratio of the number (% SV ) of
support vectors with respect to the total number of the training data:

%SV =
#SV

#trainingdata · 2

In the graphs shown in Fig. 12 and Fig. 13, on the left y axis is represented the error,
training error and bias, and the halved ratio of support vectors. On the right y axis is
reported the estimated Vapnik Chervonenkis dimension.
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For very small values of σ the training error is very small (about 0), while the number of
support vectors is very high, and high is also the error and the bias (Fig.12 and 13). These
facts support the hypothesis of overfitting problems with small values of σ. Indeed the real-
valued function computed by the SVM (that is the function computed without considering
the sign function, see Sect. 5.1.1) is very spiky with small values of σ (Fig. 7). The response
of the SVM is high only in small areas around the support vectors, while in all the other
areas ”not covered” by the support vectors the response is very low (about 0), that is the
SVM is not able to get a decision, with a consequently very high bias. In the same region
(small values for σ) the net variance is usually very small, for either one of these reasons: 1)
biased and unbiased variance are almost equal because the SVM performs a sort of random
guessing for the most part of the unknown data; 2) both biased and unbiased variance are
about 0, showing that all the SVMs tend to answer in the same way independently of a
particular instance of the training set (Fig. 5 a, b and f). Enlarging σ we obtain a wider
response on the input domain: the real-valued function computed by the SVM becomes
smoother (Fig. 8), as the ”bumps” around the support vectors become wider and the SVM
can decide also on unknown examples. At the same time the number of support vectors
decreases (Fig. 12 and 13).

Considering the variation of the ratio of the support vectors with σ, in all data sets the
trend of the rate of support vectors follows the error, with a sigmoid shape that sometimes
becomes an U shape for small values of C (Fig.12 and 13). This is not surprising because
it is known that the support vector ratio offers an approximation of the generalization
error of the SVMs (Vapnik, 1998). Moreover, on all the data sets the %SV decreases in
the ”stabilized” region, while in the transition region remains high. As a consequence the
decrement in the number of support vectors shows that we are entering the ”low error”
region, and in principle we can use this information to detect this region.

In our experiments, an inspection of the support vectors relative to the Grey-Landsat
and Waveform data sets found that most of the support vectors are shared in polynomial
and gaussian kernels with respectively the best degree and σ parameters. Even if these
results confirmed the ones found by other authors (see e.g. Vapnik (1998)), it is worth
noting that we did not perform a systematic study on this topic: we considered only two
data sets and we compared only few hundreds of different SVMs.

In order to analyze the role of the VC dimension on the generalization ability of learning
machines, we know from Statistical learning Theory that the form of the bounds of the
generalization error E of SVMs is the following:

E(f(σ,C)kn)) ≤ Eemp(f(σ,C)kn)) + Φ(
hk

n
) (9)

where f(σ,C)kn represents the set of functions computed by an RBF-SVM trained with n
examples and with parameters (σk, Ck) taken from a set of parameters S = {(σi, Ci), i ∈ N},
Eemp represents the empirical error and Φ the confidence interval that depends on the car-
dinality n of the data set and on the VC dimension hk of the set of functions identified by
the actual selection of the parameters (σk, Ck). In order to obtain good generalization capa-
bilities we need to minimize both the empirical risk and the confidence interval. According
to Vapnik’s bounds (eq. 9), in Fig. 12 and 13 the lowest generalization error is obtained for
a small empirical risk and a small estimated VC dimension.
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But sometimes with relatively small values of V C we may have a very large error, as
the training error and the number of support vectors increase with very large values of
σ (Fig. 12 a and 13 a). Moreover with a very large estimate of the VC dimension and
low empirical error (Fig. 12 and 13) we may have a relatively low generalization error. In
conclusion it seems very difficult to use in practice these estimate of the VC dimension to
infer the generalization abilities of the SVM. In particular it seems unreliable to use the VC
dimension to infer the ”low error” region of the RBF-SVM.

5.2 Polynomial and dot-product kernels

In this section we analyze the characteristics of bias–variance decomposition of the error in
polynomial SVMs, varying the degree of the kernel and the regularization parameter C.
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Figure 14: Bias-variance decomposition of the error in bias, net variance, unbiased and
biased variance in polynomial SVM, while varying the degree and for some fixed
values of C: (a) Waveform, C = 0.1, (b) Waveform, C = 50, (c) Letter-Two,
C = 0.1, (d) Letter-Two, C = 50.
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Figure 15: P2 data set. Error (a) and its decomposition in bias (b) and net variance (c),
varying both C and the polynomial degree.

Error shows a U shape with respect to the degree. This shape depends on unbiased
variance (Fig. 14 a and b), or both by bias and unbiased variance (Fig. 14 c and d). The U
shape of the error with respect to the degree tends to be more flat for increasing values of
C, and net-variance and bias show often opposite trends (Fig. 15).

Average error and bias tends to be higher for low C and degree values, but, incrementing
the degree, the error is less sensitive to C values (Fig. 16).

Bias is flat (Fig. 17 a) or decreasing with respect to the degree (Fig. 15 b), or it can be
constant or decreasing, depending on C (Fig. 17 b). Unbiased variance shows an U shape
(Fig. 14 a and b) or it increases (Fig. 14 c) with respect to the degree, and the net–variance
follows the shape of the unbiased variance. Note that in the P2 data set (Fig. 15) bias and
net–variance follow the classical opposite trends with respect to the degree. This is not the
case with other data sets (see, e.g. Fig. 14).
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Figure 16: Letter-Two data set. Bias-variance decomposition of error in bias, net vari-
ance, unbiased and biased variance in polynomial SVM, while varying C and for
some polynomial degrees: (a) degree = 2, (b) degree = 3, (c) degree = 5, (d)
degree = 10

For large values of C bias and net–variance tend to converge, as a result of the bias
reduction and net–variance increment (Fig. 18), or because both stabilize at similar values
(Fig. 16).

In dot–product SVMs bias and net–variance show opposite trends: bias decreases, while
net–variance and unbiased variance tend to increase with C (Fig. 19). On the data set
P2 this trend is not observed, as in this task the bias is very high and the SVM does not
perform better than random guessing (Fig. 19a). The minimum of the average loss for
relatively low values of C is the result of the decrement of the bias and the increment of the
net–variance: it is achieved usually before the crossover of bias and net–variance curves and
before the stabilization of the bias and the net–variance for large values of C. The biased
variance remains small independently of C.
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Figure 17: Bias in polynomial SVMs with (a) Waveform and (b) Spam data sets, varying
both C and polynomial degree.
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Figure 18: Bias-variance decomposition of the error in bias, net variance, unbiased and
biased variance in polynomial SVM, varying C: (a) P2 data set with degree = 6,
(b) Spam data set with degree = 3.

5.3 Comparing kernels

In this section we compare the bias–variance decomposition of the error with respect to the
C parameter, considering gaussian, polynomial and dot–product kernels. For each kernel
and for each data set the best results are selected. Tab. 2 shows the best results achieved by
the SVM, considering each kernel and each data set used in the experiments. Interestingly
enough in 3 data sets (Waveform, Letter-Two with added noise and Spam) there are not
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Figure 19: Bias-variance decomposition of error in bias, net variance, unbiased and biased
variance in dot-product SVM, varying C: (a) P2, (b) Grey-Landsat, (c) Letter-
Two, (d) Letter-Two with added noise, (e) Spam, (f) Musk.

significant differences in the error between the kernels, but there are differences in bias, net–
variance, unbiased or biased variance. In the other data sets gaussian kernels outperform
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Table 2: Compared best results with different kernels and data sets. RBF-SVM stands
for SVM with gaussian kernel; Poly-SVM for SVM with polynomial kernel and
D-prod SVM for SVM with dot-product kernel. Var unb. and Var. bias. stand
for unbiased and biased variance.

Parameters Avg. Bias Var. Var. Net
Error unb. bias. Var.

Data set P2
RBF-SVM C = 20, σ = 2 0.1516 0.0500 0.1221 0.0205 0.1016
Poly-SVM C = 10, degree = 5 0.2108 0.1309 0.1261 0.0461 0.0799
D-prod SVM C = 500 0.4711 0.4504 0.1317 0.1109 0.0207
Data set Waveform
RBF-SVM C = 1, σ = 50 0.0706 0.0508 0.0356 0.0157 0.0198
Poly-SVM C = 1, degree = 1 0.0760 0.0509 0.0417 0.0165 0.0251
D-prod SVM C = 0.1 0.0746 0.0512 0.0397 0.0163 0.0234
Data set Grey-Landsat
RBF-SVM C = 2, σ = 20 0.0382 0.0315 0.0137 0.0069 0.0068
Poly-SVM C = 0.1, degree = 5 0.0402 0.0355 0.0116 0.0069 0.0047
D-prod SVM C = 0.1 0.0450 0.0415 0.0113 0.0078 0.0035
Data set Letter-Two
RBF-SVM C = 5, σ = 20 0.0743 0.0359 0.0483 0.0098 0.0384
Poly-SVM C = 2, degree = 2 0.0745 0.0391 0.0465 0.0111 0.0353
D-prod SVM C = 0.1 0.0908 0.0767 0.0347 0.0205 0.0142
Data set Letter-Two with added noise
RBF-SVM C = 10, σ = 100 0.3362 0.2799 0.0988 0.0425 0.0563
Poly-SVM C = 1, degree = 2 0.3432 0.2799 0.1094 0.0461 0.0633
D-prod SVM C = 0.1 0.3410 0.3109 0.0828 0.0527 0.0301
Data set Spam
RBF-SVM C = 5, σ = 100 0.1263 0.0987 0.0488 0.0213 0.0275
Poly-SVM C = 2, degree = 2 0.1292 0.0969 0.0510 0.0188 0.0323
D-prod SVM C = 0.1 0.1306 0.0965 0.0547 0.0205 0.0341
Data set Musk
RBF-SVM C = 2, σ = 100 0.0884 0.0800 0.0217 0.0133 0.0084
Poly-SVM C = 2, degree = 2 0.1163 0.0785 0.0553 0.0175 0.0378
D-prod SVM C = 0.01 0.1229 0.1118 0.0264 0.0154 0.0110

polynomial and dot–product kernels, lowering bias or net–variance or both. Considering
bias and net–variance, in some cases they are lower for polynomial or dot–product kernel,
showing that different kernels learn in different ways with different data.

Considering the data set P2 (Fig. 20 a, c, e), RBF-SVMs achieve the best results, as
bias is lower. Unbiased variance is comparable between polynomial and gaussian kernel,
while net–variance is lower, as biased variance is higher for polynomial-SVM. In this task
the bias of dot–product SVM is very high. Also in the data set Musk (Fig. 20 b, d, f)
RBF-SVM obtains the best results, but in this case unbiased variance is responsible for
this fact, while bias is similar. With the other data sets the bias is similar between RBF-
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SVM and polynomial-SVM, but for dot–product SVM often the bias is higher (Fig. 21
b, d, f). Interestingly enough RBF-SVM seems to be more sensible to the C value with
respect to both polynomial and dot–product SVM: for C < 0.1 in some data sets the bias
is much higher (Fig. 21 a, c, e). With respect to C bias and unbiased variance show
sometimes opposite trends, independently of the kernel: bias decreases, while unbiased
variance increases, but this does not occur in some data sets. We outline also that the
shape of the error, bias and variance curves is similar between different kernels in all the
considered data sets: that is, well-tuned SVMs having different kernels tend to show similar
trends of the bias and variance curves with respect to the C parameter.
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Figure 20: Bias-variance decomposition of the error in bias, net variance, unbiased and
biased variance with respect to C, considering different kernels. (a) P2, gaussian;
(b) Musk, gaussian (c) P2, polynomial; (d) Musk, polynomial; (e) P2, dot–
product; (f) Musk, dot–product.
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Figure 21: Bias-variance decomposition of the error in bias, net variance, unbiased and
biased variance with respect to C, considering different kernels. (a) Waveform,
gaussian; (b) Letter-Two, gaussian (c) Waveform, polynomial; (d) Letter-Two,
polynomial; (e) Waveform, dot–product; (f) Letter-Two, dot–product.
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Table 3: Evaluation of the variation of the estimated values of bias variance decomposi-
tion with the Musk data set. RBF-SVM stands for SVM with gaussian kernel;
Poly-SVM for SVM with polynomial kernel and D-prod SVM for SVM with dot-
product kernel. Net Var. Var unb. and Var. bias. stand for net, unbiased and
biased variance. For each value is represented the mean value over 100 replicated
experiments and the corresponding value of the standard deviation.

Kernel Avg. Bias Var. Var. Net
type Error unb. bias. Var.
RBF 0.0901± 0.0087 0.0805 ± 0.0126 0.0237± 0.0039 0.0141± 0.0025 0.0096 ± 0.0019
Poly 0.1158± 0.0069 0.0782 ± 0.0083 0.0585± 0.0071 0.0109± 0.0018 0.0376 ± 0.0047
D-prod 0.1305± 0.0133 0.1179 ± 0.0140 0.0285± 0.0084 0.0159± 0.0045 0.0126 ± 0.0035

In our experiments we used relatively small training sets (100 examples), while the
number of input variables ranged from 2 (P2 data set) to 166 (Musk data set). Hence,
even if for each SVM model (that is for each combination of SVM parameters) we used
200 training sets Di, 1 ≤ i ≤ 200 in order to train 200 different classifiers fDi , you could
wonder whether the estimated quantities (average error, bias, net-variance, unbiased and
biased variance) could be noisy. An extensive evaluation of the sensitivity of the estimated
quantities to the sampling procedure would be very expensive. Indeed if we replicate only
10 times our experiments on all the data sets, we should train and test more than 5 millions
of different SVMs. Anyway, in order to get insights about this problem, we performed 100
replicates of our experiments limited only to the Musk data set (that is the data set with the
largest dimensionality in our experiments), for a subset of the parameters near the optimal
ones. We found that the standard deviation of the estimated values is not too large. For
instance, considering the best model for gaussian, polynomial and dot-product kernels we
obtained the values shown in Tab. 3. It seems that the computed quantities are not too
noisy, even if we need more experiments to confirm this result.

5.4 Bias–variance decomposition with noisy data

While the estimation of the noise is quite straightforward with synthetic data, it is a dif-
ficult task with ”real” data James (2003). For these reasons, and in order to simplify the
computation and the overall analysis, in our experiments we did not explicitly consider
noise.

Anyway, noise can play a significant role in the bias–variance analysis. Indeed, ac-
cording to Domingos, with the 0/1 loss the noise is linearly added to the error with a
coefficient equal to 2PD(fD(x) = y∗) − 1 (eq. 6). Hence, if the classifier is accurate, that is
if PD(fD(x) = y∗) � 0.5, then the noise N(x), if present, influences the expected loss. In
the opposite situation also, with very bad classifiers, that is when PD(fD(x) = y∗) 	 0.5,
the noise influences the overall error in the opposite sense: it reduces the expected loss.
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Figure 22: Effect of noise on bias and variance. The bias–variance decomposition of the
error is shown while varying the C regularization parameter with polynomial
and gaussian kernels. (a) Letter-Two: gaussian kernel, σ = 5, (b) Letter-Two
with added noise: gaussian kernel, σ = 5, (c) Letter-Two: polynomial kernel,
degree = 3, (d) Letter-Two with added noise: polynomial kernel, degree = 3.

If PD(fD(x) = y∗) ≈ 0.5, that is if the classifier performs a sort of random guessing, then
2PD(fD(x) = y∗) − 1 ≈ 0 and the noise has no substantial impact on the error.

Hence if we know that the noise is small we can disregard it, but what about the effect
of noise when it is present but not explicitly considered in the bias–variance decomposition
of the error? The analysis of the results in the data set Letter-Two without and with
20 % added noise shows that the main effect of noise in this specific situation consists in
incrementing the bias and consequently the average error. Indeed, with gaussian kernels
(Fig. 22 (a) and (b)) the bias is raised to about 0.3, with an increment of about 0.25 with
respect to the data set without noise, while the net–variance is incremented only by about
0.02, as the increment of the unbiased variance is counter-balanced by the increment of the
biased variance. A similar behavior is registered also with polynomial (Fig. 22 (c) and (d))
and dot-product kernels (Fig. 19 (c) and (d)).
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Figure 23: The 3 regions of the error in RBF-SVM with respect to σ.

6. Characterization of Bias–Variance Decomposition of the Error

Despite the differences observed in different data sets, common patterns of bias and variance
can be detected for each of the kernels considered in this study. Each kernel presents a
specific characterization of bias and variance with respect to its specific parameters, as
explained in the following sections.

6.1 Gaussian kernels

Error, bias, net–variance, unbiased and biased variance show a common trend in the 7 data
sets we used in the experiments. Some differences, of course, arise in the different data
sets, but we can distinguish three different regions in the error analysis of RBF-SVM, with
respect to increasing values of σ (Fig. 23):

1. High bias region. For low values of σ, error is high: it depends on high bias. Net–
variance is about 0 as biased and unbiased variance are equivalent. In this region
there are no remarkable fluctuations of bias and variance: both remain constant, with
high values of bias and comparable values of unbiased and biased variance, leading to
net–variance values near to 0. In some cases biased and unbiased variance are about
equal, but different from 0, in other cases they are equal, but near to 0.

2. Transition region. Suddenly, for a critical value of σ, the bias decreases rapidly.
This critical value depends also on C: for very low values of C, we have no learning,
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then for higher values the bias drops. Higher values of C cause the critical value of
σ to decrease (Fig. 4 (b) and 5). In this region the increase in net–variance is lower
than the decrease in bias: so the average error decreases. The boundary of this region
can be determined at the point where the error stops decrementing. This region is
characterized also by a particular trend of the net–variance. We can distinguish two
main behaviors:

(a) Wave-shaped net–variance. Net–variance first increases and then decreases,
producing a wave-shaped curve with respect to σ. The initial increment of the
net–variance is due to the simultaneous increment of the unbiased variance and
decrement of the biased variance. In the second part of the transition region,
biased variance stabilizes and unbiased variance decreases, producing a parallel
decrement of the net–variance. The rapid decrement of the error with σ is due
to the rapid decrement of the bias, after which the bias stabilizes and the fur-
ther decrement of the error with σ is determined by the net–variance reduction
(Fig. 4c, 5).

(b) Semi-wave-shaped net–variance. In other cases the net–variance curve with
σ is not so clearly wave-shaped: the descending part is very reduced (Fig. 5 e,
f). In particular in the musk data set we have a continuous increment of the
net–variance (due to the continuous growing of the unbiased variance with σ),
and no wave-shaped curve is observed (at least for C > 10, Fig. 11 d).

In both cases the increment of net–variance is slower than the increment in bias: as a
result, the average error decreases.

3. Stabilized region. This region is characterized by small or no variations in bias
and net–variance. For high values of σ both bias and net–variance stabilize and the
average error is constant (Fig. 4, 5). In other data sets the error increases with σ,
because of the increment of the bias (Fig. 11 a,b) or the unbiased variance (Fig. 11
c,d).

In the first region, bias rules SVM behavior: in most cases the bias is constant and
close to 0.5, showing that we have a sort of random guessing, without effective learning.
It appears that the area of influence of each support vector is too small (Fig. 7), and the
learning machine overfits the data. This is confirmed by the fact that in this region the
training error is about 0 and almost all the training points are support vectors.

In the transition region, the SVM starts to learn, adapting itself to the data character-
istics. Bias rapidly goes down (at the expenses of a growing net–variance), but for higher
values of σ (in the second part of the transition region), sometimes net–variance also goes
down, working to lower the error (Fig. 5).

Even if the third region is characterized by no variations in bias and variance, sometimes
for low values of C, the error increases with σ (Fig. 10 a, 12 a), as a result of the bias
increment; on the whole RBF-SVMs are sensitive to low values of C: if C is too low, then
bias can grow quickly. High values of C lower the bias(Fig. 12 c, d).
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Figure 24: Behaviour of polynomial SVM with respect of the bias–variance decomposition
of the error.

6.2 Polynomial and dot-product kernels

For polynomial and dot–product SVMs, we have also characterized the behavior of SVMs
in terms of average error, bias, net–variance, unbiased and biased variance, even if we are
not able to distinguish between different regions clearly defined.

However, common patterns of the error curves with respect to the polynomial degree,
considering bias, net–variance and unbiased and biased variance can be noticed.

The average loss curve shows in general a U shape with respect to the polynomial degree,
and this shape may depend on both bias and unbiased variance or in some cases mostly on
the unbiased variance according to the characteristics of the data set. From these general
observations we can schematically distinguish two main global pictures of the behaviour of
polynomial SVM with respect to the bias–variance decomposition of the error:

1. Error curve shape bias–variance dependent.
In this case the shape of the error curve is dependent both on the unbiased variance
and the bias. The trend of bias and net–variance can be symmetric or they can also
have non coincident paraboloid shape, depending on C parameter values (Fig. 14 c, d
and 15). Note that bias and net variance show often opposite trends (Fig. 15).

2. Error curve shape unbiased variance dependent.
In this case the shape of the error curve is mainly dependent on the unbiased variance.
The bias (and the biased variance) tend to be degree independent, especially for high
values of C (Fig. 14 a, b) .
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Figure 25: Behaviour of the dot–product SVM with respect of the bias–variance decompo-
sition of the error.

Fig. 24 schematically summarizes the main characteristics of the bias–variance decomposi-
tion of error in polynomial SVM. Note however that the error curve depends for the most
part on both variance and bias: the prevalence of the unbiased variance (Fig. 14 a, b) or
the bias seems to depend mostly on the distribution of the data.

The increment of the values of C tends to flatten the U shape of the error curve: in
particular for large C values bias becomes independent with respect to the degree (Fig. 17).
Moreover the C parameter plays also a regularization role (Fig. 18)

Dot–product SVM are characterized by opposite trends of bias and net–variance: bias
decrements, while net–variance grows with respect to C; then, for higher values of C both
stabilize. The combined effect of these symmetric curves produces a minimum of the error
for low values of C, as the initial decrement of bias with C is larger than the initial increment
of net–variance. Then the error slightly increases and stabilizes with C (Fig. 19). The shape
of the net–variance curve is determined mainly by the unbiased variance: it increases and
then stabilizes with respect to C. On the other hand the biased variance curve is flat,
remaining small for all values of C. A schematic picture of this behaviour is given in Fig.
25.
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7. Two directions for developing ensembles of SVMs

In addition to providing insights into the behavior of SVMs, the analysis of the bias–
variance decomposition of the error can identify the situations in which ensemble methods
might improve SVM performance.

On several real-world problems, SVM ensembles are reported to give improvements over
single SVMs (Kim et al., 2002, Valentini et al., 2003), but few works showed also negative
experimental results about ensembles of SVMs (Buciu et al., 2001, Evgeniou et al., 2000).
In particular Evgeniou et al. (2000) experimentally found that leave-one-out error bounds
for kernel machines ensembles are tighter that the equivalent ones for single machines, but
they showed that with accurate parameters tuning single SVMs and ensembles of SVMs
perform similarly.

In this section we propose to exploit bias–variance analysis in order to develop ensemble
methods well tuned to the bias–variance characteristics of the base learners. In particular
we present two possible ways of applying bias–variance analysis to develop SVM-based
ensemble methods.

7.1 Bagged Ensemble of Selected Low-Bias SVMs

From a general standpoint, considering different kernels and different parameters of the
kernel, we can observe that the minimum of the error, bias and net–variance (and in partic-
ular unbiased variance) do not match. For instance, considering RBF-SVM we see that we
achieve the minimum of the error, bias and net–variance for different values of σ (see, for
instance, Fig. 5). Similar considerations can also be applied to polynomial and dot–product
SVM. Often, modifying parameters of the kernel, if we gain in bias we lose in variance and
vice versa, even if this is not a rule.

Under the bootstrap assumption, bagging reduces only variance. From bias-variance
decomposition we know that unbiased variance reduces the error, while biased variance
increases the error. Hence bagging should be applied to low-biased classifiers, because the
biased variance will be small.

Summarizing, we can schematically consider the following observations:

• We know that bagging lowers net–variance (in particular unbiased variance) but not
bias (Breiman, 1996b).

• SVMs are strong, low-biased learners, but this property depends on the proper selec-
tion of the kernel and its parameters.

• If we can identify low-biased base learners with a relatively high unbiased variance,
bagging can lower the error.

• Bias–variance analysis can identify SVMs with low bias.

Hence a basic high–level algorithm for a general Bagged ensemble of selected low-bias
SVMs is the following:

1. Estimate bias-variance decomposition of the error for different SVM models

2. Select the SVM model with the lowest bias
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3. Perform bagging using as base learner the SVM with the estimated lowest bias.

This approach combines the low bias properties of SVMs with the low unbiased variance
properties of bagging and should produce ensembles with low overall error. We named this
approach Lobag, that stands for Low bias bagging. Using SVMs as base learners, depending
on the type of kernel and parameters considered, and on the way the bias is estimated for
the different SVM models, different algorithmic variants can be provided: For instance,
depending on the type of kernel and parameters considered, different implementations can
be given:

1. Selecting the RBF-SVM with the lowest bias with respect to the C and σ parameters.

2. Selecting the polynomial-SVM with the lowest bias with respect to the C and degree
parameters.

3. Selecting the dot–prod-SVM with the lowest bias with respect to the C parameter.

4. Selecting the SVM with the lowest bias with respect to the kernel.

Another issue is how to implement the estimation of the bias–variance decomposition
of the error for different SVM models. We could use cross-validation in conjunction with
bootstrap replicates, or out-of-bag estimates (especially if we have small training sets), or
hold-out techniques in conjunction with bootstrap replicates if we have sufficiently large
training sets.

A first implementation of this approach, using an out-of-bag estimate of the bias–
variance decomposition of the error, has been proposed, and quite encouraging results have
been achieved (Valentini and Dietterich, 2003).

Another problem is the estimate of the noise in real data sets. A straightforward ap-
proach simply consists in disregarding it, but in this way we could overestimate the bias
(see Sect. 5.4). Some heuristics are proposed in James (2003), but the problem remains
substantially unresolved.

It is worth noting that this approach can be viewed as an alternative way for tuning
SVM parameters, using an ensemble instead of a single SVM. From this standpoint recent
works proposed to automatically choose multiple kernel parameters (Chapelle et al., 2002,
Grandvalet and Canu, 2003), setting, for instance different σ values for each input dimension
in gaussian kernels, by applying a minimax procedure to iteratively maximize the margin
of the SVM and to minimize an estimate of the generalization error over the set of kernel
parameters (Chapelle et al., 2002). This promising approach could be in principle extended
to minimize the bias, instead of the overall error. To this purpose we need to solve non trivial
problems such as providing an upper bound for the bias and the variance, or at least an
easy to compute their estimator having, if possible, an analytical expression. This approach
could represent a new interesting research line that could improve the performances and/or
reduce the computational burden of the Lobag method.

7.2 Heterogeneous Ensembles of SVM

The analysis of bias–variance decomposition of error in SVM shows that the minimum of
the overall error, bias, net–variance, unbiased and biased variance occur often in different
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SVM models. These different behaviors of different SVM models could be in principle
exploited to produce diversity in ensembles of SVMs. Although the diversity of base learner
itself does not assure the error of the ensemble will be reduced (Kuncheva et al., 2001b),
the combination of accuracy and diversity in most cases does (Dietterich, 2000a). As a
consequence, we could select different SVM models as base learners by evaluating their
accuracy and diversity through the bias-variance decomposition of the error.

Our results show that the “optimal region” (low average loss region) is quite large in
RBF-SVMs (Fig. 4). This means that C and σ do not need to be tuned extremely care-
fully. From this point of view, we can avoid time-consuming model selection by combining
RBF-SVMs trained with different σ values all chosen from within the “optimal region.”
For instance, if we know that the error curve looks like the one depicted in Fig. 23, we
could try to fit a sigmoid-like curve using only few values to estimate where the stabilized
region is located. Then we could train an heterogeneous ensemble of SVMs with different σ
parameters (located in the low bias region) and average them according to their estimated
accuracy.

A high-level algorithm for Heterogeneous Ensembles of SVMs could include the following
steps:

1. Individuate the ”optimal region” through bias–variance analysis of the error

2. Select the SVMs with parameters chosen from within the optimal region defined by
bias-variance analysis.

3. Combine the selected SVMs by majority or weighted voting according to their esti-
mated accuracy.

We could use different methods or heuristics to find the ”optimal region” (see Sect. 5.1.3)
and we have to define also the criterion used to select the SVM models inside the ”optimal
region” (for instance, improvement of the diversity). The combination could be performed
using also other approaches, such as minimum, maximum, average and OWA aggregating
operators (Kittler et al., 1998) or Behavior-Knowledge space method (Huang and C.Y.,
1995), Fuzzy aggregation rules (Wang et al., 1998), Decision templates (Kuncheva et al.,
2001a) or Meta-learning techniques (Prodromidis et al., 1999). Bagging and boosting (Fre-
und and Schapire, 1996) methods can also be combined with this approach to further
improve diversity and accuracy of the base learners.

7.3 Numerical experiments with Low bias bagged SVMs

In order to show that these research directions could be fruitful to follow further, we per-
formed numerical experiments on different data sets to test the Lobag ensemble method
using SVMs as base learners. We compared the results with single SVMs and classical
bagged SVM ensembles. We report here some preliminary results.More detailed results are
reported in Valentini and Dietterich (2003).

We employed the 7 different two-class data sets described in Sect. 4.1, using small D
training sets and large test T sets in order to obtain a reliable estimate of the generalization
error: the number of examples for D was set to 100, while the size of T ranged from a few
thousands for the “real” data sets to ten thousands for synthetic data sets. Then we
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Table 4: Results of the experiments using pairs of train D and test T sets. Elobag, Ebag and
ESV M stand respectively for estimated error of lobag, bagged and single SVMs
on the test set T . The three last columns show the confidence level according to
the Mc Nemar test. L/B, L/S and B/S stand respectively for the comparison
Lobag/Bagging, Lobag/Single SVM and Bagging/Single SVM. If the confidence
level is equal to 1, no significant difference is registered.

Kernel Elobag Ebag Esingle Confidence level
type L/B L/S B/S

Data set P2
Polyn. 0.1735 0.2008 0.2097 0.001 0.001 0.001
Gauss. 0.1375 0.1530 0.1703 0.001 0.001 0.001

Data set Waveform
Linear 0.0740 0.0726 0.0939 1 0.001 0.001
Polyn. 0.0693 0.0707 0.0724 1 0.1 0.1
Gauss. 0.0601 0.0652 0.0692 0.001 0.001 0.001

Data set Grey-Landsat
Linear 0.0540 0.0540 0.0650 1 0.001 0.001
Polyn. 0.0400 0.0440 0.0480 1 0.1 1
Gauss. 0.0435 0.0470 0.0475 0.1 0.1 1

Data set Letter-Two
Linear 0.0881 0.0929 0.1011 1 0.025 0.05
Polyn. 0.0701 0.0717 0.0831 1 0.05 0.1
Gauss. 0.0668 0.0717 0.0799 1 1 1

Data set Letter-Two with added noise
Linear 0.3535 0.3518 0.3747 1 1 0.1
Polyn. 0.3404 0.3715 0.3993 1 0.05 0.1
Gauss. 0.3338 0.3764 0.3829 0.05 0.025 1

Data set Spam
Linear 0.1408 0.1352 0.1760 0.05 0.001 0.001
Polyn. 0.0960 0.1034 0.1069 0.1 0.025 1
Gauss. 0.1130 0.1256 0.1282 0.005 0.001 1

Data set Musk
Linear 0.1291 0.1291 0.1458 1 0.001 0.001
Polyn. 0.1018 0.1157 0.1154 0.001 0.001 1
Gauss. 0.0985 0.1036 0.0936 0.05 1 0.05

applied the Lobag algorithm setting the number of samples bootstrapped from D to 100,
and performing an out-of-bag estimate of the bias–variance decomposition of the error. The
selected lobag, bagged and single SVMs were finally tested on the separated test set T .

Table 4 shows the results of the experiments. We measured 20 outcomes for each method:
7 data sets, and 3 kernels (gaussian, polynomial, and dot-product) applied to each data set
except P2 for which we did not apply the dot-product kernel (because it was obviously
inappropriate). For each pair of methods, we applied the McNemar test (Dietterich, 1998)
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to determine whether there was a significant difference in predictive accuracy on the test
set.

On nearly all the data sets, both bagging and Lobag outperform the single SVMs inde-
pendently of the kernel used. The null hypothesis that Lobag has the same error rate as
a single SVM is rejected at or below the 0.1 significance level in 17 of the 20 cases, while
the null hypothesis that bagging has the same error rate as a single SVM is rejected at or
below the 0.1 level in 13 of the 20 cases.

Most importantly, Lobag generally outperforms standard bagging. Lobag is statistically
significantly better than bagging in 9 of the 20 cases, and significantly inferior only once.

These preliminary results show the feasibility of our approach, as shown also by similar
experiments presented in Valentini and Dietterich (2003), but we need more experimental
studies and applications to real problems in order to better understand when and in which
conditions this approach could be fruitful.

8. Conclusion and Future Works

We applied bias–variance decomposition of the error as a tool to gain insights into SVM
learning algorithm. In particular we performed an analysis of bias and variance of SVMs,
considering gaussian, polynomial, and dot–product kernels. The relationships between pa-
rameters of the kernel and bias, net–variance, unbiased and biased variance have been
studied through an extensive experimentation involving training, testing, and bias–variance
analysis of more than half million of SVMs.

We discovered regular patterns in the behavior of the bias and variance, and we related
those patterns to the parameters and kernel functions of the SVMs. The characterization of
bias–variance decomposition of the error showed that in gaussian kernels we can individuate
at least three different regions with respect to the σ parameter, while in polynomial kernels
the U shape of the error can be determined by the combined effects of bias and unbiased
variance. The analysis revealed also that the expected trade-off between bias and variance
holds systematically for dot product kernels, while other kernels showed more complex
relationships.

The information supplied by bias-variance analysis suggests two promising approaches
for designing ensembles of SVMs. One approach is to employ low-bias SVMs as base learners
in a bagged ensemble. The other approach is to apply bias-variance analysis to construct
a heterogeneous, diverse set of accurate and low-bias classifiers. We are designing and
experimenting with both of these approaches.

An outgoing development of this work extends this analysis to bagged and boosted
ensemble of SVMs, in order to achieve more insights about the behavior of SVM ensembles
based on resampling methods.

In our experiments we did not explicitly consider the noise: analyzing the role of the
noise in the decomposition of the error (Sect. 5.4) could help to develop ensemble methods
specifically designed for noisy data.

Moreover in our experiments we did not explicitly consider the characteristics of the
data. Nonetheless, such as we could expect and as our experiments suggested, different
data characteristics influence bias–variance patterns in learning machines. To this purpose
we plan to explicitly analyze the relationships between bias–variance decomposition of the
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error and data characteristics, using data complexity measures based on geometrical and
topological characteristics of the data (Li and Vitanyi, 1993, Ho and Basu, 2002).
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Appendix A.

In this appendix we discuss the notions of systematic and variance effect introduced by James
(2003), showing that these quantities are reduced respectively to the bias and the net-
variance when the 0/1 loss is used and the noise is disregarded.

James (2003) provides definitions of bias and variance that are similar to those provided
by Domingos (2000c). Indeed bias and variance definitions are based on quantities that he
named the systematic part sy of the prediction y and the systematic part st of the target
t. These correspond respectively to the Domingos main prediction (eq.2) and optimal
prediction (eq.1). Moreover James distinguishes between bias and variance and systematic
and variance effects. Bias and variance satisfy respectively the notion of the difference
between the systematic parts of y and t, and the variability of the estimate y. Systematic
effect SE represents the change in error of predicting t when using sy instead of st and the
variance effect V E the change in prediction error when using y instead of sy in order to
predict t. Using Domingos notation (ym for sy, and y∗ for st) the variance effect is:

V E(y, t) = Ey,t[L(y, t)] − Et[L(t, ym)]

while the systematic effect corresponds to:

SE(y, t) = Et[L(t, ym)] − Et[L(t, y∗)]

In other words the systematic effect represents the change in prediction error caused by
bias, while the variance effect the change in prediction error caused by variance.

While for the squared loss the two sets of bias–variance definitions match, for general
loss functions the identity does not hold. In particular for the 0/1 loss James proposes the
following definitions for noise, variance and bias with 0/1 loss:

N(x) = P (t �= y∗)
V (x) = P (y �= ym)
B(x) = I(y∗ �= ym) (10)

where I(z) is 1 if z is true and 0 otherwise.
The variance effect for the 0/1 loss can be expressed in the following way:

V E(y, t) = Ey,t[L(y, t) − L(t, ym)] = Py,t(y �= t) − Pt(t �= ym) =
= 1 − Py,t(y = t) − (1 − Pt(t = ym)) = Pt(t = ym) − Py,t(y = t) (11)
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while the systematic effect is:

SE(y, t) = Et[L(t, ym)] − Et[L(t, y∗)] = Pt(t �= ym) − Pt(t �= y∗) =
= 1 − Pt(t = ym) − (1 − Pt(t = y∗)) = Pt(t = y∗) − Pt(t = ym) (12)

If we let N(x) = 0, considering eq. 7, 10 and eq. 11 the variance effect becomes:

V E(y, t) = Pt(t = ym) − Py,t(y = t) = P (y∗ = ym) − Py(y = y∗) =
= 1 − P (y∗ �= ym) − (1 − Py(y �= y∗)) = 1 − B(x) − (1 − EL(L,x)) =

EL(L,x) − B(x) = Vn(x) (13)

while from eq. 10 and eq. 12 the systematic effect becomes:

SE(y, t) = Pt(t = y∗) − Pt(t = ym) = 1 − Pt(t �= y∗) − (1 − Pt(t �= ym)) =
P (y∗ �= ym) = I(y∗ �= ym) = B(x) (14)

Hence if N(x) = 0, it follows that the variance effect is equal to the net-variance (eq. 13),
and the systematic effect is equal to the bias (eq. 14).

References

E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying
approach for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2000.

E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms:
Bagging, boosting and variants. Machine Learning, 36(1/2):525–536, 1999.

O. Bousquet and A. Elisseeff. Stability and Generalization. Journal of Machine Learning
Research, 2:499–526, 2002.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996a.

L. Breiman. Bias, variance and arcing classifiers. Technical Report TR 460, Statistics
Department, University of California, Berkeley, CA, 1996b.

L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

I. Buciu, C. Kotropoulos, and I. Pitas. Combining Support Vector Machines for Accurate
Face Detection. In Proc. of ICIP’01, volume 1, pages 1054–1057, 2001.

Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing
multiple parameters for support vector machines. Machine Learning, 46(1):131–159, 2002.

S. Cohen and N. Intrator. Automatic Model Selection in a Hybrid Perceptron/Radial
Network. In Multiple Classifier Systems. Second International Workshop, MCS 2001,
Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pages 349–358.
Springer-Verlag, 2001.

T.G. Dietterich. Approximate statistical test for comparing supervised classification learn-
ing algorithms. Neural Computation, (7):1895–1924, 1998.

48



Bias–variance analysis of SVMs

T.G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli, editors,
Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy,
volume 1857 of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, 2000a.

T.G. Dietterich. An experimental comparison of three methods for constructing ensembles
of decision trees: Bagging, boosting and randomization. Machine Learning, 40(2):139–
158, 2000b.

T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, (2):263–286, 1995.

P. Domingos. A unified bias–variance decomposition. Technical report, Department of
Computer Science and Engineering, University of Washington, Seattle, WA, 2000a.

P. Domingos. A Unified Bias-Variance Decomposition and its Applications. In Proceed-
ings of the Seventeenth International Conference on Machine Learning, pages 231–238,
Stanford, CA, 2000b. Morgan Kaufmann.

P. Domingos. A Unified Bias-Variance Decomposition for Zero-One and Squared Loss.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence, pages
564–569, Austin, TX, 2000c. AAAI Press.

T. Evgeniou, L. Perez-Breva, M. Pontil, and T. Poggio. Bounds on the Generalization
Performance of Kernel Machine Ensembles. In P. Langley, editor, Proc. of the Seventeenth
International Conference on Machine Learning (ICML 2000), pages 271–278. Morgan
Kaufmann, 2000.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In Proceed-
ings of the 13th International Conference on Machine Learning, pages 148–156. Morgan
Kauffman, 1996.

J.H. Friedman. On bias, variance, 0/1 loss and the curse of dimensionality. Data Mining
and Knowledge Discovery, 1:55–77, 1997.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias-variance dilemma.
Neural Computation, 4(1):1–58, 1992.

Y. Grandvalet and S. Canu. Adaptive Scaling for Feature Selection in SVMs. In S. Becker,
S. Thrun, and K. Obermayer, editors, NIPS 2002 Conference Proceedings, Advances in
Neural Information Processing Systems, volume 15, Cambridge, MA, 2003. MIT Press.

T. Heskes. Bias/Variance Decompostion for Likelihood-Based Estimators. Neural Compu-
tation, 10:1425–1433, 1998.

T.K. Ho and M. Basu. Complexity measures of supervised classification problems. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(3):289–300, 2002.

Y.S. Huang and Suen. C.Y. Combination of multiple experts for the recognition of uncon-
strained handwritten numerals. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 17:90–94, 1995.

49



Valentini and Dietterich

G. James. Variance and bias for general loss function. Machine Learning, (2):115–135, 2003.

T. Joachims. Making large scale SVM learning practical. In Smola A. Scholkopf B.,
Burges C., editor, Advances in Kernel Methods - Support Vector Learning, pages 169–184.
MIT Press, Cambridge, MA, 1999.

H.C. Kim, S. Pang, H.M. Je, D. Kim, and S.Y. Bang. Pattern Classification Using Support
Vector Machine Ensemble. In Proc. of ICPR’02, volume 2, pages 20160–20163. IEEE,
2002.

J. Kittler, M. Hatef, R.P.W. Duin, and Matas J. On combining classifiers. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 20(3):226–239, 1998.

E.M. Kleinberg. A Mathematically Rigorous Foundation for Supervised Learning. In J. Kit-
tler and F. Roli, editors, Multiple Classifier Systems. First International Workshop, MCS
2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pages 67–76.
Springer-Verlag, 2000.

R. Kohavi and D.H. Wolpert. Bias plus variance decomposition for zero-one loss functions.
In Proc. of the Thirteenth International Conference on Machine Learning, The Seven-
teenth International Conference on Machine Learning, pages 275–283, Bari, Italy, 1996.
Morgan Kaufmann.

E. Kong and T.G. Dietterich. Error - correcting output coding correct bias and variance. In
The XII International Conference on Machine Learning, pages 313–321, San Francisco,
CA, 1995. Morgan Kauffman.

L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin. Decision templates for multiple classifier
fusion: an experimental comparison. Pattern Recognition, 34(2):299–314, 2001a.

L.I. Kuncheva, F. Roli, G.L. Marcialis, and C.A. Shipp. Complexity of Data Subsets Gen-
erated by the Random Subspace Method: An Experimental Investigation. In J. Kittler
and F. Roli, editors, Multiple Classifier Systems. Second International Workshop, MCS
2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pages 349–358.
Springer-Verlag, 2001b.

L.I. Kuncheva and C.J. Whitaker. Measures of diversity in classifier ensembles. Machine
Learning, 51:181–207, 2003.

M. Li and P Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, Berlin, 1993.

L. Mason, P. Bartlett, and J. Baxter. Improved generalization through explicit optimization
of margins. Machine Learning, 2000.

C.J. Merz and P.M. Murphy. UCI repository of machine learning databases, 1998.
www.ics.uci.edu/mlearn/MLRepository.html.

A. Prodromidis, P. Chan, and S. Stolfo. Meta-Learning in Distributed Data Mining Systems:
Issues and Approaches. In H. Kargupta and P. Chan, editors, Advances in Distributed
Data Mining, pages 81–113. AAAI Press, 1999.

50



Bias–variance analysis of SVMs

R.E. Schapire. A brief introduction to boosting. In Thomas Dean, editor, 16th International
Joint Conference on Artificial Intelligence, pages 1401–1406. Morgan Kauffman, 1999.

R.E. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation
for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686, 1998.

B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

R. Tibshirani. Bias, variance and prediction error for classification rules. Technical report,
Department of Preventive Medicine and Biostatistics and Department od Statistics, Uni-
versity of Toronto, Toronto, Canada, 1996.

G. Valentini and T.G. Dietterich. Low Bias Bagged Support Vector Machines. In T. Fawcett
and N. Mishra, editors, Machine Learning, Proceedings of the Twentieth International
Conference (ICML 2003), pages 752–759, Washington D.C., USA, 2003. AAAI Press.

G. Valentini and F. Masulli. NEURObjects: an object-oriented library for neural network
development. Neurocomputing, 48(1–4):623–646, 2002.

G. Valentini, M. Muselli, and F. Ruffino. Bagged Ensembles of SVMs for Gene Expression
Data Analysis. In IJCNN2003, The IEEE-INNS-ENNS International Joint Conference
on Neural Networks, pages 1844–49, Portland, USA, 2003. IEEE.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

D. Wang, J.M. Keller, C.A. Carson, K.K. McAdoo-Edwards, and C.W. Bailey. Use of fuzzy
logic inspired features to improve bacterial recognition through classifier fusion. IEEE
Transactions on Systems, Man and Cybernetics, 28B(4):583–591, 1998.

51


