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Chapter 1: Introduction

1.1 Background and Motivation

Image classification is one of the fundamental topics in computer vision. The problem

has drawn considerable research attention. Over the last decade with the advance of

machine learning techniques, significant progress in this area has greatly improved state-

of-art performance on challenging benchmark datasets such as scene-15 [76], Caltech-

101 [25], Caltech-256 [36] and the Pascal Visual Object Classes dataset [23]. All of

those datasets are of generic object classes with gross differences. While this addresses

important fundamental questions in computer vision, it does not solve any pressing

application problem. In real applications such as biomonitoring, identifying much finer

distinctions between classes is desired. Such fine-grained object classification presents

new challenges to the computer vision community. The small intra-class differences and

large inter-class differences among fine-grained object categories are so subtle that even

human experts cannot categorize them easily.

This thesis focuses on the design, evaluation and analysis of learning algorithms for

fine-grained object classification. First, we introduce two databases of high-resolution im-

ages of arthropod specimens. Over the past eight years, we have collected, photographed

and manually labeled over fifty taxa (species or genus) of fresh water arthropod speci-

mens to produce two image databases: STONEFLY9 and EPT54. Those two datasets

cover common fresh water stream macroinvertebrates in the Pacific Northwest. These

organisms are a robust indicator of stream health and water quality. The system we

developed based on these databases offers a practical solution that largely automates

the tedious work of classifying those specimens for the purpose of biomonitoring. In the

broader view, we hope the publication of our databases will promote further development

of highly-accurate fine-grained recognition methods in computer vision.

From the machine learning point of view, the object categorization problem can be

formulated in a weakly supervised setting, where the only supervised information in

training is the object class label associated with an entire image. The goal of object
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categorization is to predict the object class that is present in the image. The general

approach to this problem is to transform an original image into a bag of region descriptor

vectors. This reduces the object classification problem to a multiple-instance classifica-

tion problem. Various learning algorithms have been proposed in the computer vision

community. Among them, the bag-of-words (BOW) model [15] is the most popular one,

and it has achieved satisfying performance on various benchmark datasets.

In our previous work [47], we applied the standard bag-of-words approach to our

databases. On STONEFLY9, it achieves an error rate of 16.1% , which is not accurate

enough for our application. To achieve better performance, we developed a novel algo-

rithm called stacked evidence trees [59] that achieves high performance on both datasets.

Recently, there have been great developments in improving the standard bag-of-words

approach. In this thesis, we will show that of some of these state-of-art approaches also

provide outstanding results on our databases. We give a literature review of the develop-

ment of Bag-of-words (BOW) approaches to object classification and present the stacked

evidence tree approach we developed for the fine-grained classification task. We draw

connections and analyze differences between those two genres of approaches. We believe

that this analysis leads to a better understanding of object classification approaches.

Finally, in the experiment chapter, benchmark results are presented on our two

datasets. We further analyze the influence of two important variables on the performance

of fine-grained classification. The experiments corroborate two hypotheses, namely that

a) high resolution images and b) more aggressive information extraction, such as finer

descriptor encoding with large dictionaries or classifiers based on raw descriptors, is

required to achieve good performance in fine-grained categorization.

1.2 Datasets

Stoneflies inhabit freshwater streams and are known to be a sensitive and robust indicator

of stream health and water quality. While it is easy to collect specimens, a high degree

of expertise and a large amount of time are required to manually classify specimens to

the level of species or genus.

The STONEFLY9 database we created consists of 3826 images obtained by imaging

773 stonefly larvae specimens. The dataset contains 9 taxa (species or genera) of stone-

flies. Each taxon is common in streams in the Pacific Northwest. The specimens range
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in size from 0.1 to 10mm.

In order to provide a better benchmark for computer vision research and deliver

a more practical system for biomonitoring, we collected a larger and more general

EPT54 database. The EPTs: Ephemeroptera (Mayflies), Plecoptera (Stoneflies), and

Trichoptera (Caddisflies) are the most commonly-used groups of organisms for biomon-

itoring of freshwater streams. Species-rich EPT assemblages are a robust indication of

clean water. The EPT54 dataset consists of 10,173 images of 3394 specimens belonging

to 54 taxa of EPTs.

Each specimen was photographed multiple times using a semi-automated apparatus

under fixed lighting, focus, and exposure conditions. The images are captured at high

resolution (2560 x 1920 pixels) in RAW format. For each database, descriptors have been

extracted and can be downloaded from our website in addition to the images themselves.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In chapter 2, we give a literature review on

the development of Bag-of-words (BOW) approaches to object classification and present

the alternative stacked evidence tree approach. Then we draw connections and analyze

differences between these two approaches and propose two hypotheses that explain what

is needed to achieve acceptable performance in fine-grained categorization.

In chapter 3, we present benchmark results on both datasets. We further analyze the

influence of two important variables — the image resolution and the dictionary size —

on the performance of the methods. The experiments corroborate our hypotheses that

a) high resolution images and b) more aggressive information extraction are required to

achieve good performance of fine-grained categorization.

Chapter 4 concludes the thesis with additional discussion and future directions.
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Chapter 2: Literature Review of Bag-of-Words Approaches

2.1 Overview

The Bag-of-words (BOW) methods have enjoyed great popularity in image classification.

In this chapter, we present a broad survey of recent approaches under the Bag-of-words

framework.

First we describe the general pipeline of the Bag-of-words framework. We then

instantiate the pipeline to define a standard configuration for the BOW approach.

Based on this baseline, we describe various alternatives in four major dimensions

of the design space, specifically dictionary construction, descriptor encoding, feature

pooling, and classifier design. We analyze the strengths and weaknesses of different

approaches and conclude general guidelines for the design of Bag-of-words image classi-

fication systems.

Inspired by text classification [40], and first introduced in [15] [81], the bag-of-words

model dominates modern approaches to image classification. The bag-of-words model

treats an image as a set of visual features extracted from local image patches, encodes

each of them using a dictionary of visual words, and then aggregates them to form a

compact histogram representation of the image. Following the BOW framework, the

pipeline of most state-of-the-art image classification systems consists of the following

steps as shown in figure 2.1.

(i) Local image patches are extracted by interest point detectors or densely sampled

on a regular grid.

(ii) Each patch is described by a descriptor that is invariant to local transformation

and illumination, such as SIFT [54] or HOG [16].

(iii) A visual dictionary is built based on the descriptors in the training images.

(iv) All descriptors are encoded into “codebook space” using the visual dictionary.

(v) A fixed-length feature vector representing the entire image is constructed by pooling

the bag-of-descriptors in the codebook space.
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(vi) The feature vectors are used as input to a classifier, which makes the final prediction

of the image class label.

Figure 2.1: The pipeline of Bag-of-Words framework for image classification

The BOW framework in the image domain bears some similarity to the document

domain. As in text classification, the goal of the BOW representation is to represent

each document as a fixed-length feature vector that can be used to train a classifier in

step (vi). The BOW representation of the image is a compact representation of the

semantics of the image, and it is robust to variations prevailing in natural images, such

as transformations (in-plane rotation, translation, scale), occlusions, and background
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clutter. It also shares the same shortcomings. One major criticism is that the BOW

representation discards all the spatial relationships among the local patches; therefore it

fails to model the spatial relations among image patches.

However there are many differences from text analysis as well. One of the key dif-

ference is that unlike the document domain, there is no natural definition of discrete

codewords in the image domain. Because of that, we need to explicitly design local de-

tectors and descriptors to extract informative patches from an image in steps (i) and (ii).

Local descriptors usually lie in a continuous high dimensional space. However an image

category often “lives” in a much lower-dimensional manifold that can be described as a

set of tight clusters of distinctive features in this feature space. Therefore in step (iii),

a visual dictionary is constructed in the hope of discovering and describing those mean-

ingful clusters. Given a dictionary, in step (iv) the encoding process maps descriptor

vectors in continuous space to the discrete codebook space. This can be more sophis-

ticated than the typical one-to-one word matching in the document domain. Different

coding methods have be explored. Likewise, since the feature encodings are not limited

to binary indicator vectors, the pooling process in step (v) can be more complicated than

computing a histogram of word counts.

As pointed out by [64], a large number of local patches is essential to good perfor-

mance. Experience has shown that interest point detectors such as [17], [60], [42] often

fail to extract enough discriminative patches over all images. Consequently, the research

community has reached a consensus that using densely-sampled local patches instead

of an interest point detector in step (i) is better, because it is more robust, repeatable,

and doesn’t miss important patches . Various descriptors can be used to describe local

patches. In any case, after step (ii), the image is represented as a bag-of-descriptors.

In this chapter, we survey a wide range of information processing approaches that

transform the bag-of-descriptor representation into a single feature vector representation

of the whole image and the subsequent classifier design step. We divide the various

dimensions of the design space into four major steps (iii)∼(vi), namely dictionary con-

struction, descriptor encoding, feature pooling, and classifier design. We first give a

standard configuration of the bag-of-words method as our baseline. Then for each of

the above four aspects, we describe the alternatives that have been explored by different

research groups and give an analysis of their strengths and weaknesses.
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2.2 Notation

Table 2.1 defines the notation used in the chapter.

Definition Symbol/Notation

Number of images N

Number of codewords in the dictionary K

Number of local descriptors per image M

Dimension of a local descriptor d

Number of spatial bins for pyramid representation S

Dimension of the image-level feature vector H

Local descriptor vector x ∈ Rd

Individual visual codeword w

Local patch location s ∈ R2

Image as bag-of-descriptors I = {(xj , sj)}Mj=1

Image as bag-of-descriptors in matrix form X = [x1,x2, ...,xM ] ∈ Rd×M

Training set for feature construction {(Ii, Yi)}Ni=1

Training pool of bag-of-descriptors X = {X1,X2, ...,XN}
Class label for training images Y = {Y1, Y2, ..., YN}
Visual Dictionary D = [d1,d2, ...,dK ] ∈ Rd×K

Image as encoded bag-of-descriptors C = [c1, c2, ..., cM ] ∈ RK×M

Image as encoded feature vector h ∈ RH

Training set for classification {(hi, Yi)}Ni=1

Table 2.1: Symbol and Notation Used in the Paper

After local descriptor extraction, an image can be represented by a bag-of-descriptors

I = {(xj , sj)}Mj=1.

The dictionary construction, descriptor encoding and feature pooling steps can be

viewed as a feature construction process that transforms the bag-of-descriptors repre-

sentation into a fixed-length feature vector representation of the whole image used in

classifier design. We define the process and input and output of all four steps formally

using the notation defined in table 2.1.

Dictionary Construction. Given a set of training images {(Ii, Yi)}Ni=1, we denote
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the pool of bag-of-descriptors as X = {X1,X2, ...,XN} and the class label set as Y =

{Y1, Y2, ..., YN}. The goal of dictionary construction is to learn a set of visual codewords

D = [d1,d2, ...,dK ] ∈ Rd×K .

Dictionary construction can be formulated in both supervised and unsupervised ways.

In the unsupervised setting, we seek to construct a general dictionary that provides

a good representation of the local image patches in the domain:

X −→ D.

In the supervised setting, the image label is also available, so the goal is to construct a

dictionary that encodes only the information needed to perform the classification task:

(X ,Y) −→ D.

Descriptor Encoding. Given the visual dictionary D for each image, the descriptor

encoding step encodes the bag-of-descriptors in the codebook space.

Xi
D−−→ Ci,

where Ci = [c1, c2, ..., cMi ] ∈ RK×Mi is the encoded bag-of-descriptors in the codebook

space.

Note that, more often than not, dictionary construction and descriptor encoding are

intertwined. Many methods obtain them simultaneously by minimizing D and C over a

joint objective function. But different methods have different focuses. We classify them

by which step they primarily optimize.

Image Pooling. A feature vector representing the entire image is constructed by

pooling the encoded bag-of-descriptors. We define a pooling function g:

Ci
g−→ hi, where h ∈ RH

During testing, given a testing image Ii and its bag-of-descriptors representation after

step (ii), since the dictionary has already learned, only descriptor encoding and feature

pooling are needed to map the bag-of-descriptors Xi to hi. We denote the combined
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process of those two steps as the feature construction function φ:

hi = φ(Xi,D)

Classifier Design. After the above feature construction steps, every image can be

represented as an encoded fixed-length feature vector h.

We denote the training examples for the classifier as {(hi, Yi)}Ni=1. A classifier T is

trained on the set of training examples:

{(hi, Yi)}Ni=1 −→ T.

In testing, after applying the feature construction function φ, the test feature vector

hi is fed to the classifier which outputs a predicted label Ytest:

hi
T−→ Ytest.

2.3 A Baseline Bag-of-Words Approach

In this section, we instantiate the bag-of-words pipeline to define a baseline approach.

The baseline configuration of the bag-of-words approach was first proposed by [15]. It

is a simple adaptation from the text domain. The major differences are the dictionary

learning and vector quantization steps.

After local patch extraction, a visual dictionary is constructed using k-means cluster-

ing on patch descriptors. The objective function minimizing the within-cluster scatter

is defined as

min
µk,cj

J =

M∑
j=1

K∑
k=1

cjk‖xj − µk‖22.

The algorithm iteratively reassigns points to their nearest cluster centers and updates

of the cluster centers, until the iteration converges to a local minimum.

k-means clustering results in a partitioning of the high dimensional descriptor space

into Voronoi cells. This naturally leads to a hard vector quantization in the descriptor

encoding step.

In hard vector quantization, each descriptor is mapped to the nearest codeword in
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the dictionary. This outputs a 1-of-K of binary indicator vector cj ∈ {0, 1}K for each

descriptor. The hard vector quantization is defined as

cj ∈ {0, 1}K , cjk = 1 iff k = argmin
1≤k≤K

‖xj − µk‖22,

This binary indicator vector is exactly the same representation as in the text domain.

Therefore, an average pooling is adopted. A histogram h is generated by taking the vector

sum of the bag of binary codes and normalizing by the number of local descriptors the

image:

h =
1

M

M∑
j=1

cj .

So the image-level feature vector is a normalized histogram of individual codewords

that appear in the image.

Finally, a linear support vector machine (SVM) classifier is trained over the image-

level feature vectors to make predictions.

Although this baseline configuration gives satisfying results, there are several draw-

backs as well:

(a) In dictionary construction, the k-means clustering algorithm only converges to a

local minimum and does not guarantee to find the most representative codewords.

In addition, the dictionary size K is chosen empirically. When a large dictionary is

needed, the speed of the k-means algorithm becomes a major concern.

(b) In descriptor encoding, the hard vector quantization loses a lot of information. For

example, a 128 dimensional SIFT descriptor when mapped to a dictionary of 3000

codewords retains at most 12 bits of information from the original SIFT descriptor.

(c) In feature pooling, the simple average pooling over the entire image completely

neglects spatial information.

(d) The above feature construction steps are completely unsupervised, while the classi-

fier is trained with supervision. Those two steps employ different objectives. In this

sense, such feature representation is likely to be suboptimal for the image classifica-

tion task.

(e) In classifier design, different classifiers can be considered. For example, a kernel

SVM could give better performance. Other popular classifiers might do well on the
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BOW representation as well.

A large amount of research effort has been put into improving the baseline model

to overcome or explore the aforementioned shortcomings. In the following sections, we

summarize the advances in the literature along four dimensions of the design space.

2.4 Dictionary Construction

The construction of a good dictionary that discovers informative visual codewords to

capture image content is critical to the subsequent encoding and classification steps.

In the baseline, k-means clustering is used. Numerous studies have been devoted to

learning a better visual dictionary. We categorize different approaches into two classes:

unsupervised dictionary learning and supervised dictionary learning.

2.4.1 Unsupervised Dictionary

In the unsupervised setting, we seek to construct a general dictionary that is well rep-

resentative of local patches in the training images. The objectives of unsupervised

approaches vary. In general, the unsupervised dictionary learning approaches aim to

improve over k-means clustering in two main aspects: (a) a more robust and uniform

coverage of the local descriptors in the high dimension descriptor space, and (b) a more

efficient algorithm for generating dictionaries of large size.

Robust and Uniform Clustering

Jurie and Triggs [41] analyse the distribution of densely-sampled local descriptors

in the high dimension descriptor space. They show that the distribution is highly non-

uniform due to the extremely unbalanced occurrence of visual patterns in natural images.

For classification, the most informative local patches those of intermediate frequency,

because the most frequent patches are typically generic image structures such as edges

or corners with low discriminative value, while rare patches do not generalize well.

From the above analysis, they argue that k-means clustering is suboptimal, because

it tends to over-partition the dense regions while under-partitioning the sparse ones due

to the updating of the cluster centers to denser regions in the M step of the iterative

algorithm. Also k-means is not robust to outliers (points far from any cluster centers).

To overcome those drawbacks, they propose a radius-based clustering algorithm. It
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sequentially finds a high density region by applying the mean-shift mode estimator [32].

All descriptor vectors that are within a fixed radius r of the cluster center are assigned

to the cluster. Those assigned vectors are eliminated from the dictionary training set.

The process is repeated until the desired number of clusters has been found. The radius

r determines the similarity threshold between visual words.

Leibe et al. [51] adopt an agglomerative clustering approach to creating efficient

codebook. Agglomerative clustering is suitable for non-uniform data distributions and is

robust to outliers. The number of clusters can be determined meaningfully by specifying

a similarity threshold. However, the complete bottom-up agglomerative clustering is

very inefficient for large datesets in dictionary learning. Their solution is a combined

partitional-agglomerative method. k-means clustering is first used to coarsely partition

the decriptor vector space. Agglomerative clustering is applied within each partition to

produce sets of cluster centers. A final agglomerative clustering step is applied again

on all cluster centers. A ball tree data structure can be easily computed from the

agglomerative clustering structure for fast matching.

Tree Structured Clustering

Dictionaries of large size are favored based on the reasoning that a fine partition

of the descriptor space provides more discriminative information for classification. In

general, the vocabulary size should be large enough to distinguish relevant differences in

objects, but not so large as to distinguish irrelevant variations such as noise.

When the dictionary size K is huge, both the dictionary construction and the nearest

neighbor based vector encoding of k-means become inefficient. Some approximate nearest

neighbor search algorithm such as locality sensitive hashing [34] can be used in encoding

[43]. However, the O(NKd) computational complexity of k-means makes the algorithm

inefficient for constructing the dictionary when k is large.

Tree structured space partitioning is more efficient in both construction and en-

coding. Nevertheless for high dimensional descriptor vectors in Rd, the widely used

space-partitioning k-d tree suffers from the curse of dimensionality. In order to reduce

the cell radius by half, d levels of a k-d tree should be built, which requires 2d data points.

Therefore, the clustering-based method is generally preferred over space partitioning.

Tuytelaars et al. [87] observe that due to the highly non-uniform distribution of the

descriptor space [41], most of the bins in the k-d tree partition will be empty. They pro-

pose a uniform partition of the descriptor space and use hashing techniques to store only
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non-empty bins. Although, this significantly reduces the number of bins, the absolute

vector length still remains huge (typically 107).

Nister et al. [63] propose a hierarchical k-means clustering approach. It builds

a vocabulary tree. At each level of the tree, a k-means clustering with k equal to a

branching factor B (B � K) is performed. Every subtree is built recursively within each

cluster, until the desired dictionary size is reached. The tree structure offers logarithmic-

time encoding. And the dictionary construction complexity is O(NB logBKd).

Moosmann et al. [61] propose randomized clustering forests. The approach combines

random forests [13, 33] and clustering trees [6, 53]. A sufficiently diversified ensemble

of random trees is able to explore different partitions of the high dimensional descriptor

space. The time complexity of building a random clustering forest is O(N log k
√
d|T |),

where |T | is the number of trees. Supervision can be easily incorporated in the construc-

tion of the trees as shown in the following section.

2.4.2 Supervision at the Descriptor Level

In the supervised setting, the image label is used in dictionary learning with the goal

of learning a discriminative dictionary optimized for the classification task. An ideal

discriminative dictionary will distribute its reconstruction power according to the dis-

criminative information in the descriptor space. Highly-discriminative patches will be re-

constructed with high fidelity while uninformative generic or background clutter patches

will be coarsely reconstructed with fewer bits to suppress the noise in the signal.

In dictionary learning with descriptor level supervision, the image class label is as-

signed to each descriptor in the bag-of-descriptors. The discriminative dictionary is then

constructed either by growing the quantizer discriminatively or by merging codewords in

the unsupervised clustering dictionary to optimize the mutual information between class

label and codewords. Note, however, that such an objective is not necessarily consistent

with the goal of maximizing image-level classification performance, and therefore might

lead to a suboptimal solution.

For tree-structured models, node splitting can be easily adapted to maximize infor-

mation gain and partition the descriptor space discriminatively. Randomized clustering

forests [61] and texton forests [79] both train an ensemble of trees with bootstrap re-

samlping of the training data and selection of random subsets of node-splitting tests as
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in random forests[13]. The random forests are treated as a discriminative quantizer, and

(interal or leaf) nodes of the trees are considered as dictionary codewords. A histogram

is constructed by dropping descriptors from an image through the trees and keeping

track of which nodes that are visited.

Another possible method for supervised dictionary learning is to merge or adapt the

unsupervised clustering dictionary with respect to mutual information criteria [49, 94,

29]. All those methods are based on the information bottleneck [85] framework.

Yang et al. [99] perform mutual information-based feature selection on visual words.

The results show that the percentage of uninformative codewords in images is much lower

than in documents. That is to say almost every visual codeword has discriminative power

contributing to the classification. Therefore, clustering over codewords is preferred rather

than feature selection.

The Information Bottleneck method is a general theoretical framework for cluster-

ing. It aims to find a compressed representation X̃ of the data X under the constraint

that enough mutual information between X̃ and another relevant random variable Y is

preserved. The objective function is of the form:

max
X̃

I(X̃;Y )− βI(X̃;X),

In our case, Y is the image class label. The objective is to maximize the mutual

information I(X̃;Y ) under the constraint of minimizing I(X̃;X). This information the-

oretical clustering method was first used in the text analysis domain to cluster words into

word clusters. This produces a more compact representation of documents and achieves

better classification accuracy [84, 4].

Winn et al. [94] and Fulkerson et al. [29] both tried to optimize a compact dictionary

by merging an initially large dictionary. In [94] the goal is to maximize the mutual

information I(h;Y ) between image-level histogram h and the class label Y . In order

to estimate I(h;Y ) between Y and h, a strong generative assumption is made that

histograms h are distributed according to a mixture of Gaussians. Fulkerson et al.

[29] optimize over the mutual information I(w;Y ) between the individual codeword w

and the class label Y . They use agglomerative information bottleneck [83], which is a

bottom up hard version of the information bottleneck method. The initial dictionary is

generated by hierarchical k-means [63]. Together with their fast implementation of the
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agglomerative information bottleneck algorithm, their approach is efficient and can scale

to large dictionaries.

Lazebnik et al. [49] present a supervised quantizer learning algorithm that works di-

rectly in the continuous descriptor space with no need for an initial dictionary. The result

shows that initialized by k-means clustering, the algorithm can optimize the Voronoi par-

tition of the feature space to minimize the information loss. However, due to complexity

issues, the algorithm is limited to small dictionaries.

2.4.3 Supervision at the Image Level

One drawback of the aforementioned supervised dictionary learning approaches is that

they are trying to optimize visual words independently at the descriptor level, while the

true objective is to learn a discriminative image level representation for better classifi-

cation.

One naive approach to image level supervision is to learn a class-specific dictionary

for each category and concatenate them together into a single dictionary [90]. However,

the size of the dictionary is C ×K, which scales with the number of classes C making it

impractical for a large number of classes.

In addition, different classes share a large proportion of generic descriptors of low

discriminative power, which must be repeatedly modeled in the different class-specific

dictionaries. Perronnin et al. [68] combine universal and class-specific dictionaries. A

universal dictionary is first learned using a Gaussian mixture model on all training data.

A class-specific dictionary is adapted from the universal dictionary by MAP estimation

to class-specific data with the parameters of the universal GMM model as a prior. In

classification, a one-versus-all classifier for each class is trained. Each feature vector is

a two-part histogram obtained by merging the class-specific and universal dictionaries.

This reduces the feature length from C × K to 2K. The universal dictionary models

the generic visual features across classes, while the class-specific dictionary models the

discriminative visual patches of each particular class.

Recent work tries to directly optimize the visual dictionary by minimizing the image

level classification loss [103, 100, 45, 52, 98, 10].

Zhang et al. [103] adopt a boosted dictionary approach. They wrap the entire BOW

pipeline in a boosting framework. In each iteration, a dictionary is built to capture
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non-redundant discriminative information missed by the preceding dictionaries and clas-

sifiers. A weighted k -means clustering using Adaboost weights is employed as the weak

dictionary learner.

Yang et al. [100] adopt a similar unified framework. In their work, a visual bit— a

linear function that maps the local descriptors to a binary bit—is used as the building

block for a visual dictionary. Each descriptor vectors is encoded by a sequence of visual

bits that are optimized iteratively based on the classification loss of the preceding visual

bits.

Krapac et al. [45] extends the tree-structured quantizers [61] with image-level super-

vision. Instead of growing the tree using information-gain at the descriptor level, they

incrementally grow the trees to quantize the descriptor space by greedily selecting the

best split with a criterion that directly evaluates image-level classification performance.

Another method for image-level supervised dictionary learning is to formulate a joint

optimization problem over the dictionary and the classification model [52, 98, 10]. Since

the objective function is not jointly convex, a coordinate descent algorithm is adopted to

alternate between updating the dictionary and learning the parameters of the classifier.

Since the dictionary construction step in their work is based on sparse coding, we will

discuss it in detail when sparse coding is presented.

2.5 Descriptor Encoding

In descriptor encoding, continuous local descriptors are mapped to the discrete codebook

space. Standard hard vector quantization maps each descriptor to the nearest codeword

in the dictionary. Such hard vector quantization outputs a 1-of-K binary indicator vector

for each descriptor:

cj ∈ {0, 1}K , cjk = 1 iff k = argmin
1≤k≤K

‖xj − µk‖22.

This hard assignment is problematic and leads to large reconstruction error and

information loss. When the dictionary becomes large, the volume of each Voronoi cell

is so small that it makes such nearest neighbor assignments unstable. This hurts the

generalization performance of the classifier.

To overcome this drawback, soft assignment has been studied by various researchers.



17

Moosmann et al. [61] build an ensemble of random clustering trees. Each descriptor

drops through all trees and turns on multiple leaf nodes, which are defined as codewords

in the dictionary. Jiang et al. [39] and Tuytelaars et al. [87] assign a descriptor to

the k nearest visual words in the descriptor space. More generally, a probabilistic soft

weighting scheme has been used [1, 70, 68, 24]. A probabilistic mixture model is fitted

to the distribution of descriptors in descriptor space. For a new descriptor, the weight of

each codeword is assigned as the posterior mixture component membership probabilities

given the descriptor.

2.5.1 Visual Word Ambiguity

Gemert et al. [89, 88] provide a systematic analysis of visual word ambiguity in the bag-

of-words representation of an image. They model two types of ambiguity in hard vector

quantization: visual word uncertainty and visual word plausibility. Uncertainty refers to

selecting the nearest codeword from several close neighboring candidates, while plausibil-

ity means lack of suitable candidates in the dictionary, in that even the nearest codeword

is far away from the descriptor vector. It is essentially a measure of quantization error.

Their analysis is performed in the kernel codebook framework. Recall in the baseline,

with hard vector quantization and average pooling, the image-level representation is a

histogram estimate of the distribution of codewords in the image. The proposed kernel

codebook adopts the technique of kernel density estimation to provide a robust and

smooth alternative to the histogram estimator.

The traditional vector quantization histogram is defined as

VQ(c) =
1

M

M∑
j=1

1 if ck = argminc∈C ||c− xj ||2
0 otherwise

By replacing the histogram with a kernel density estimator, the kernel codebook is

defined as

KCB(c) =
1

M

M∑
j=1

Kσ(c,xj).

The kernel codebook takes both visual word uncertainty and visual word plausibility into

account. In the experiment, a Gaussian kernel with fixed kernel width is selected. In this
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case, the kernel density estimator is equivalent to Gaussian mixture model with identical

Gaussian components placed at each codeword. The kernel codebook representation is

the descriptor density distribution at each codeword.

In order to analyze the individual effect of the two ambiguity types, they propose to

model each of those separately.

Codeword uncertainty is defined as

UNC(c) =
1

M

M∑
j=1

Kσ(c,xj)∑K
k=1Kσ(ck,xj).

This is equivalent to the soft weighting scheme in parametric mixture model using pos-

terior membership probabilities.

Codeword plausibility is defined as

PLA(c) =
1

M

Kσ(ck,xj) if ck = argminc∈C ||c− xj ||2
0 otherwise.

This is a weighted version of hard vector quantization, where each descriptor is

weighted by its distance to the nearest codeword.

Their extensive experiments show that the codeword uncertainty consistently outper-

forms all other types of ambiguity modelling, while codeword plausibility is even worse

than hard vector quantization. This suggests that explicit codeword plausibility mod-

elling will hurt the classification performance. A possible explanation is that codeword

plausibility suppresses the weight of faraway descriptors leaving them unrepresented,

which leads to severe information loss.

Another interesting experiment shows that large dictionary size does not always

improve classification accuracy. When increasing the size of the dictionary, both soft

and hard encoding performance decrease after certain point. However, soft encoding is

more robust with only a slight decrease, while significant deterioration is observed for

hard encoding. This can be explained by the better generalization capability of soft

encoding.
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2.5.2 Sparse Coding

Sparse coding aims to represent signals with a sparse linear combination of bases or

codewords in a over-complete dictionary. The learned basis functions capture high-level

features in the data. The use of sparse coding to represent natural images was first

proposed by [65] to model the receptive fields of neurons in the visual cortex. It has

been successfully applied to numerous low-level image processing tasks [2, 22] and visual

categorization [95, 74, 96] as well. Sparse coding can be regarded as a soft encoding

method with an additional sparsity constraint. The sparse representation will have

fewer collisions during pooling, so less information will be lost.

Given a signal xj , sparse coding finds a sparse linear combination representation cj of

bases in an over-complete dictionary D = [d1,d2, ...,dK ] ∈ Rd×K . Let C = [c1, c2, ..., cM ]

denote the encoded representations of the input signals x1, ..., xM . We find D and C by

jointly minimizing the following objective function:

min
D∈Rd×K ,C∈RK×M

M∑
j=1

1

2
‖xj −Dcj‖22 + λ‖cj‖1,

s.t. ||di||22 ≤ 1, ∀i = 1, ..., k,

where λ is the regularization factor. The first term in the cost function is the error

of reconstructing the descriptor xj , and the second term is the L1 regularization to

encourage sparsity.

Other sparsity-inducing norms such as the L0 norm can also be used. However the

L0 regularization problem is NP-hard and is often approximated by a greedy algorithms

[58]. In practice, L1-regularized sparse coding is more stable and less sensitive to small

perturbations of the input signal than L0.

The L1-regularized optimization problem is not convex in D and C simultaneously,

but it is convex in D or C individually when the other is fixed. So it is usually approxi-

mated by coordinate descent between D and C. Given C, learning the dictionary D is a

least squares problem with quadratic constraints. Given D, learning the reconstruction

coefficients C is an L1-regularized least squares problem. Least angle regression [19] or

a more efficient feature-sign algorithm [50] can be used to efficiently solve the problem

at large scale.
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Traditionally, sparse coding is performed on either the entire image or on patches of

raw pixels. Yang et al. [96] first proposed applying sparse coding on SIFT descriptors.

Combined with spatial pyramid pooling and a linear SVM, their ScSPM system achieves

state-of-the-art performance on several benchmarks. This shows the power of sparse

coding with the Bag-of-Words representation.

Note that sparse coding includes both dictionary learning and descriptor encoding

phases. We present it in the encoding section, because the success of sparse coding in

image classification has been mainly attributed to the encoding step [14].

Given the dictionary D, the descriptor encoding step is defined as an L1-regularized

least squares problem:

cj = argmin
c

1

2
‖xj −Dc‖22 + λ‖c‖1

The descriptor encoding step of sparse coding can be viewed as a soft assignment

that better reconstructs the signal than hard vector quantization. Ng et al. [14] show

that sparse coding based on randomly-sampled dictionary basis vectors has classification

accuracy comparable to that of a learned dictionary. This suggests that soft encoding is

more important than dictionary learning.

In additional to soft encoding, the sparsity constraint is also important for reducing

the information lost during the pooling step in the Bag-of-words representation. That

may account for the improved performance of sparse coding over other soft encoding

methods. We will discuss this in detail in the next section.

There are several variants of sparse coding adapted for the classification task. We

will briefly introduce them in the following.

Supervised Sparse Coding. In standard sparse coding, the objective function is to

minimize the reconstruction error. This is suboptimal for discriminant analysis. Recent

work is interested in learning discriminative dictionaries for sparse coding. Mairal et

al. [56, 55] proposed to optimize the sparse coding jointly with a linear prediction

model such as logistic regression with the logistic loss function. Their approach only

works for standard single-instance supervised learning. Yang et al. [98] and Boureau et

al.[10] extend the discriminative dictionary learning to the bag-of-words representation

by taking the feature pooling step into account. The optimization problem is formulated

directly over the image-level representation h in a linear classification model:



21

min
w,D

N∑
i=1

L(yi, f(φ(Xi,D),w)) + λ‖w‖22,

where f(h,w) is the linear predictive model with parameter w and evaluated on

feature vector h; φ(Xi,D) is defined as the feature construction process (descriptor en-

coding + feature pooling). The complex feature construction process makes the gradient

computation with respect to D very inefficient. The algorithm usually converges to local

optima close to the point where it is initialized. The results reported on benchmarks do

not show signification improvement over unsupervised dictionaries [10].

Random Sampled Dictionary. Another line of research [74, 14] downplays the im-

portance of well trained dictionaries in sparse coding. They argue that encoding is more

important than dictionary learning as long as the dictionary provides a reasonable tiling

of the input space. In [74], they show that a dictionary learned from unlabelled randomly

retrieved data can provide an informative representation for discriminative classification

tasks. In [14], they demonstrate that a random sampled dictionary of sufficient size is

able to obtain performance as high as their sophisticated trained counterparts. Note

that they do not compare with supervised dictionaries.

Locality-Constrained Sparse Coding. In standard sparse coding, descriptors are

encoded independently. Since the L1 norm in sparse coding is not smooth, with a huge

over-completed dictionary, sparse codes might vary greatly for small perturbations in

the descriptor vectors. This hurts generalization. To overcome this drawback, a locality

constraint has been adopted to quantize descriptor vectors more robustly [30, 101, 93, 97].

Laplacian Sparse Coding (LSC)[30] adds a second similarity regularizer in the ob-

jective function using a Laplacian matrix that encourages similar descriptors to have

similar sparse encodings in the coding space.

Local Coordinate Coding (LCC) [101] has been proposed to approximate a general

nonlinear function by a global linear function with respect to local coordinate coding. It

shows theoretically that approximation quality is bounded by both the reconstruction

error and the locality of the coding, and thus locality is more essential than sparsity for

nonlinear function learning. Sparse coding is a special case of local coordinate coding

with no locality constraints. Based on the same reasoning of Lipschitz smooth function

approximation, Zhou et al. [104] extend hard vector quantization to a super-vector
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representation. Specifically, each binary bit is expanded to a d+ 1 vector [s, (x−dk)>]>

representing the residual between the input x to the cluster center dk.

Wang et al. [93] proposed Locality-constrained Linear Coding (LLC), which is a fast

approximation of LCC with L2 regularization:

cj = argmin
c

1

2
‖x−Dc‖22 + λ‖r>c‖22

s.t. 1T c = 1,

where r = exp(dist(x,D)
σ )) is a vector representing distance from descriptors x to each

basis in D.

The LLC optimization has a closed form solution. In practice, an even faster k

nearest neighbor approximation is adopted, and it achieves state-of-art performance.

Because of its efficiency and good performance, we choose LLC as a representative of

state-of-art BOW model and evaluate its performance on both of our datasets in chapter

4.

Yang et al. [97] proposed another approximation to LCC by a mixture sparse coding

model. It efficiently produces a huge dictionary with local constraints by preclustering

over the descriptor space. A different sparse coding is learned within each cluster. The

final feature representation is the concatenation of encoding the descriptor using each of

the sparse codes.

The advantage of locality-constrained sparse coding for the classification task can

also be explained by its effect of reducing overlap during the feature pooling process. We

will discuss this in the next section.

2.6 Feature Pooling

The feature pooling process is the final step in generating a single feature vector for the

entire image. In this step, the goal is to summarize the encoded bag-of-descriptors a

robust and discriminative fixed-length representation of the image.
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2.6.1 Basic Pooling Function

Traditionally, with a hard encoding scheme, a histogram representation of the image is

generated by average pooling.

Given a bag of encoded descriptors {c1, c2, ..., cM}, the average pooling function is

defined as

h =
1

M

M∑
j=1

cj ,

where C = [c1, c2, ..., cM ] ∈ RK×M is the matrix form of the encoded bag-of-descriptors

of an image. Each patch is now encoded by a column in C of length K.

The image level feature vector is a histogram of length K normalized by the number

of local patches i.e. the cardinality of the image. It simply counts the frequency of

individual visual codewords occurring in the image.

However, not all codewords are of equal importance. Some codewords that are ubiq-

uitous over all categories carry no discriminative information. Term frequency-inverse

document frequency (tf-idf) pooling [75] is proposed to reduce the impact of frequently-

occurring codewords. Originally introduced for text retrieval, tf-idf adopts an inverse

document frequency (idf) codeword weighting scheme that penalizes frequently-appearing

codewords. The tf-idf pooling improves the robustness of learning algorithms when the

distribution of codewords is significantly unbalanced as shown by [41]. The use of tf-idf

pooling in visual categorization [103, 99, 81] shows systematic improvement over the

plain histogram.

Although tf-idf reduces the effect of the unbalanced distribution of codewords across

examples, it does not take into account the unbalanced occurrence of visual features

within a single image. Jegou et al. [38] call this phenomenon the burstiness of the

visual elements. That means that a visual word is more likely to appear in an image

if it already appeared once in that image. This is because there are repetitive patterns

in natural images and man-made objects. This suggests that local descriptors do not

satisfy the assumption of statistical independence, and therefore the frequency-based

histogram over-counts these burst of descriptors. The diversity of descriptor vectors is

more important than the absolute number of such descriptors. For example, a pair of

images sharing ten descriptors of the same type (assigned to the same codeword) might

not be as similar as a pair of images that have five different types of descriptors of
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different types.

This hypothesis give rise to the presence/absence pooling scheme, which argues that

the presence or absence of a visual word is more discriminative than its frequency. Pres-

ence/absence pooling is defined as

hk =

1 ∃ ckj = 1 1 ≤ j ≤M

0 otherwise
, for k = 1, ...,K,

A binary feature vector h is generated, where hk is 1 if and only if there is at least one

descriptor vector mapped to the kth codeword. Superior performance has been reported

both in text domains [67] and image domains [99] using presence/absence pooling.

The above mentioned pooling schemes originated in text analysis, where each descrip-

tor is hard encoded as a 1-of-K codewords. A max pooling strategy has been developed

[96, 93, 12, 10] in the context of soft encoding, where the codes are in continuous K

dimensional space. The max pooling function is defined by

hk = max
1≤j≤M

|ckj |, for k = 1, ...,K,

For every codeword k, the max pooling function outputs hk as the maximum absolute

value over the corresponding coefficients in the bag of codes of the image.

Inspired by biophysical research on modelling the visual cortex (V1) [46], Yang et

al.[96] first adopt max spatial pooling over the sparse codewords and achieve excel-

lent performance using linear SVMs for classification. They suggests there is a special

compatibility between max pooling and linear SVMs with sparse coding. Max pooling

suppresses small coefficients in sparse coding and prevents smearing out of prominent

signals.

LeCun et al. [10] perform extensive experiments of different combinations of encod-

ing, pooling, and classification methods. One of their conclusions is that max pooling

almost always improves over average pooling regardless of the encoding approaches. Con-

trary to Yang’s results [96], linear SVMs does not outperform kernel SVMs with max

pooling. But max pooling does narrow the performance gap between linear and kernel

SVMs. For linear classification, the most significant performance boost is switching from

average to max pooling. With a linear classifier, even simple hard vector quantization
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with max pooling outperforms sparse coding paired with average pooling. Note that

max pooling over hard vector quantization generates binary feature vectors, which is

equivalent to presence/absence pooling.

Boureau et al. [12] give a theoretical analysis of different feature pooling methods.

They show that the max pooling strategy is well suited to sparse features that produce

fewer collisions during pooling.

2.6.2 Spatial Pooling

Up to this point in our review, all pooling is performed over the entire image, which gives

a completely orderless BOW representation, without taking the spatial layout of local

patches into consideration. Spatial pooling methods pool encoded patches corresponding

to local image regions. Koenderink et al.[44] first proposed the concept of locally orderless

images. Similar local spatial pooling processes have been adopted in the design of local

patch descriptors [54] [16], where gradient orientation histograms are computed in local

regions giving robustness to small transformations of local patches.

Lazebnik et al. [76] first introduce the spatial pyramid pooling method for BOW rep-

resentations. The original pyramid matching kernel [35] partitions the high-dimensional

descriptor space into bins, which allows efficient and precise matching of two unordered

feature sets. In contrast, Lazebnik et al. [76] partition in the two-dimensional image

coordinates into bins at multiple spatial resolutions. The image is partitioned into finer

spatial bins as the level in the pyramid increases. Average pooling is performed over

local features within each spatial bin, and the pooled vectors from multiple bins are

concatenated together to obtain a feature vector for the entire image. The pyramid

structure coarsely preserves the spatial information and achieves invariance (within each

bin) to local translations. A spatial pyramid matching kernel is employed to perform

classification. The formula of the spatial pyramid kernel is presented in the next section.

Recent work [96, 10, 93] also adopts spatial pooling. Local encoded descriptors are

max pooled within each spatial bin, and linear classification is performed afterwards. All

the experiments confirm the superiority of spatial pooling over an orderless representa-

tion.

In general, spatial pooling can be defined as
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hs = g(sj∈Rs)(C),

where g(C) is one of the basic pooling functions and Rs are local image regions in which

pooling is performed. The local regions sometimes overlap when a spatial pyramid

structure is applied. The final image representation h is the concatenation of all pooled

feature vectors hs.

2.6.3 Local Neighborhood Pooling

Boureau et al. [11] address the often neglected loss of information during the pooling pro-

cess. They argue that pooling of local descriptor vectors that are far apart in descriptor

space will smear out individual signals, so pooling should only be performed on patches

with similar descriptor vectors. While this condition is naturally satisfied by hard vector

quantization, it is not the case for sparse coding. In standard sparse coding, descriptor

vectors are encoded independently without a locality constraint. Sparse codes might

vary greatly for similar descriptor vectors, and each dictionary basis might contribute to

represent very different descriptor vectors. This overlap of encoded descriptors leads to

loss of information when pooling in the sparse signal space.

Therefore, Boureau et al. proposed a multi-way local pooling by partitioning the

2D image space and the high dimensional descriptor space jointly. The image space is

partitioned using a spatial pyramid structure, while descriptor space bins are produced

by unsupervised clustering of the descriptor vectors after encoding. Multi-way local

pooling can be formulated as

h(s,p) = g(sj∈Rs,cj∈Cp)(C),

where Rs is a local region in image coordinates (spatial bins in spatial pooling), Cp
stands for local regions in descriptor space (high dimensional Voronoi cells), and h(s,p)

is generated by pooling within each cell (s, p). The final image representation h is the

concatenation of all pooled feature vectors h(s,p). Multi-way local pooling can boost the

performance of the dictionary considerably, given a fine enough descriptor space partition

(P=64).

Yang et al. [97] proposed to the learn a huge over-complete dictionary. To make the
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learning process efficient, they perform a similar preclustering step. Local descriptors

belonging to different clusters are encoded with different sparse coding dictionaries. This

can be viewed as an approximation to local coordinate coding and inherently leads to

pooling that is more local.

2.7 Classifier Design

By pooling the bag-of-descriptors into a single feature vector, we transform the image

categorization problem into the standard multi-class classification problem. Then we can

use a set of images with class labels to train the classifier. After training, the classifier

can be applied to predict the visual categories of unlabelled images.

Different types of classifiers have been employed in image classification. As in general

machine learning problems, the classifiers can be categorized into two types: generative

models and discriminative models.

Note that there are other approaches based on different feature construction methods.

Several methods circumvent the construction of image level feature representation and

operate directly on the desciptors. Eichhorn et al. and Grauman et al. [21, 35] use

SVM-based similarity matching kernels on two sets of local descriptors, and Boiman [7]

adopts a nearest neighor classifier based on an image-to-class distance measure. Feifei

and Fergus [26, 28] propose probabilistic generative part-based models. In this survey

we restrict our discussion in classifiers built on bag-of-words features.

2.7.1 Generative models

In a generative model, the classifier learns a model of the joint probability P (X, Y ) of

input data and output target. Several generative model-based approaches have been

proposed [15, 27].

Naive Bayes. The Naive Bayes classifer is often used in text classification. Csurka

et al. [15] applied it to the image classification problem. It employs the naive assumption

that the encoded descriptors of local patches are independent given the class label. As

shown in figure 2.2, the generative process can be described as follows: (a) The image

class label y is drawn from a prior distribution. (b) Each encoded descriptor wj is then

chosen independently from a multinomial distribution p(wj |y) given the class label.
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The joint probability is defined as

p(w, y) = p(y)
M∏
j=1

p(wj |y)

The parameters of Naive Bayes can be learned by maximizing the log-likelihood

with Laplace smoothing. Inference is also straight forward by maximizing the posterior

probability p(y|w) ∝ p(w, y).

Figure 2.2: Naive Bayes model

Supervised LDA. Just as words in common phrases are conditionally dependent

of each other, in images there are shared causal factors (e.g., pose, appearance of an

object) that influence the correlations among patches. Hence, the assumption of inde-

pendent local patches is not valid. Topic models introduce an intermediate topic level

representation. Topics are soft clusters of visual words. An image can have multiple

topics, and each topic is defined as a distribution over the visual words. The standard

topic models are unsupervised and are learned using an algorithm called Latent Dirichlet

Allocation (LDA) [5]. Discriminative classifiers have been trained using the per-image

topic distribution as a feature vector [72, 82, 71, 48, 80].

Feifei et al. [27] introduce a supervised LDA model by adding a class label node y as

shown in figure 2.3 The Dirichlet prior distribution θ over topic probabilities is drawn

from a conditional distribution p(θ|y,α) given class label y.

The joint probability is defined as

p(w, z,θ, y|α,β,η) = p(y|η)p(θ|y,α)
N∏
j=1

p(zj |θ)p(wj |zj ,β).
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Figure 2.3: Supervised Latent Dirichlet Allocation model

Prediction is made by maximizing the posterior probability of the class label:

p(y|w,α,β,η) ∝ p(w|y,α,β)p(y|η) ∝ p(w|y,α,β)

Assuming a uniform class prior, this is proportional to maximizing the probability of

w given class label y:

ŷ = argmax
y

p(w|y,α,β) =

∫
p(θ|α, y)

N∏
j=1

∑
zj

p(zj |θ)p(wj |zj ,β).

This probability can be computed by approximate inference algorithms such as vari-

ational message passing.

In general, the performance of generative models is not as good as discriminative

models [76, 48]. However the generative topic model provides a compact and more

robust image representation and outperforms discriminative classifiers when the training

sample is very small [72, 62].

2.7.2 Discriminative models

In discriminative models, the classifier directly models the posterior target probability

P (Y |X) conditioned on the input data.

Because of the large variability in images and the use of very long feature vectors

in bag-of-words representations, there are three requirements for the classifier: a) good

generalization capacity to unseen examples; b) the ability to handle long feature vectors

without overfitting; and c) efficiency in both training and testing in order to deal with

very large datasets [18].
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The k-nearest-neighbor classifier (KNN) has suboptimal performance because

the standard distance measures (e.g. Euclidean distance) tend to lose their meaning for

high-dimensional descriptor space. It also suffers from high-variance caused by finite

training samples. Zhang et al. proposed SVM-KNN [102], a hybrid method of KNN

and SVM. It performs k-nearest-neighbor search globally and learns a more smooth

local boundary using SVM with a distance preserving kernel matrix on the collection of

neighbors.

The Support Vector Machine (SVM) is the most popular classifier for the bag-

of-words representation. It has been widely used in the literature [15, 96, 9, 76, 35].

The linear SVM was first applied to bag-of-words features by Csurka, et al. [15].

People empirically found that particular types of non-linear kernel SVM can achieve

better performance [9, 76, 57].

Because the traditional bag-of-words representation is a histogram-based feature vec-

tor, the Euclidean distance based RBF kernel is not a suitable choice. Other kernels

specifically designed for comparing distributions, such as the intersection kernel, Earth

mover’s distance(EMD) kernel, and χ2 kernel have been broadly applied.

The histogram intersection kernel measures the similarity between two histograms

defined as

kHI(ha, hb) =
n∑
i=1

min(ha(i), hb(i)).

The χ2 distance is another measure of distance between histograms [9]. The χ2 kernel

is defined as

kχ2(ha, hb) = 1−
n∑
i=1

(ha(i)− hb(i))2
1
2(ha(i) + hb(i))

.

As discussed in section 2.6.2, a spatial pyramid matching kernel (SPM) is proposed

[76] to preserve spatial information. The original pyramid matching kernel [35] places a

set of increasingly coarser grids over the feature space and takes a weighted sum of the

number of matches that occur at each level of resolution. The formula is defined as

kL(ha, hb) = IL +
L−1∑
l=1

1

2L−l+1
(I l − I l+1), l = 0, ..., L,

where l is the level in the pyramid with L being the finest level; I l is the abbreviation
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of kHI(h
l
a, h

l
b), the histogram intersection kernel function of features at level l. Matches

at finer level have larger weights. The matches at level l include all matches at finer level

l + 1, so the new matches found at level l can be computed as kl − kl+1.

The spatial pyramid kernel [76] takes an orthogonal approach to perform pyramid

matching in the two-dimensional image space. Therefore, l is the level of grid resolution

in 2D image space and hl is the encoded image-level histogram in each level l.

The use of non-linear kernels produces good performance at the cost of complexity.

A non-linear SVM has training complexity O(N2d) and test complexity O(Nd). The

speed becomes a major concern when handling thousands of training images in large

scale datasets [18]. Maji et al. [57] propose a fast computation of the intersection kernel

that reduces the test complexity to O(d logN), but the training complexity remains high.

The linear SVM enjoys low complexity in both training and testing. The training

complexity is O(Nd), and the test complexity is O(d) . As a consequence, it has regained

popularity in recent work [96, 10] . Explicit feature embedding that directly maps the

feature vector into a new space in which the data is more linearly separable is adopted

by Perronnin et al. [69]. They show that the square-root of the bag-of-words histogram

is equivalent to the use of the Bhattacharyya kernel.

Other methods such as SVM-KNN [102] and Random Forests [8] are also more effi-

cient in training and prediction than kernel SVMs. A comparison of the time complexity

of different classifiers is shown in table 2.2.

Classifier Linear SVM Kernel SVM Random Forest SVM-KNN

Training Cost O(Nd) O(N2d) O(N(logN)2
√
d|T |) NA

Test Cost O(d) O(Nd) O(logN |T |) O(dN + dk2)

Table 2.2: The train and test time complexity comparison of different classifiers. N is

the number of images; d is the dimensionality of the feature vectors, T is the depth of

the decision trees, and k is the number of nearest neighbors.

Ensemble Classifiers. Tree ensemble methods such as random forests [13] and

boosted decision trees usually give performance comparable to SVMs. Those classifiers

have also been explored in image classification [103, 8, 37].

Widely used in objection detection [92, 66, 86], the boosted decision stump is not

suitable for BOW features. Boosted decision stumps perform feature selection over
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the large set of potential features hoping to find a small set of discriminative features.

However, in the bag-of-word representation, each visual word carries a small amount of

discriminative information [7], so to achieve high performance, it is necessary to combine

information from a large number of words.

The boosted decision tree is another choice. Zhang et al. [103] use the boosted

decision tree as the base classifier. In each iteration, the dictionary size K is usually

small, which means short feature vectors. However, for the large dictionaries adopted

in state-of-the-art systems, the training of boosted decision tree will be slow. Therefore,

the random forest classifier is preferred in such cases for its speed.

Bosch et al. [8] propose to use random forests over the spatial pyramid pooled

appearance [76] and shape features [9]. To combine the features, at each node, the test

feature is randomly selected from the types of features and levels of the pyramid. A linear

classifier with random weights is adopted as the node test. It achieves state-of-the-art

performance on the Caltech-101 [25] and Caltech-256 [36] datasets.

There are three advantages of random forests over SVMs: (a) compared with kernel

SVMs, the parameters in random forests, number of trees |T |, maximum tree depth D

and node test size R, are not very sensitive, which makes training easier. (b) Multiple

kinds of features can be fused easily by adding them at the node tests, whereas for

SVMs, complicated multiple kernel learning [3, 31, 91] is required to fuse multiple feature

types. (c) The random forest classifier is inherently a multi-way classifier and can handle

multiple classes with ease. When the number of image categories becomes large, the

complexity of multi-class SVM increases either linearly for the one-versus-all strategy,

or quadratically for the one-versus-one method.

2.8 Summary

A large volume of research in the bag-of-word representation for image classification has

been presented in this survey. Different approaches explore various design dimensions of

the system with diverse objectives and assumptions. A few general conclusions can be

reached.

The aforementioned research provides a unified view of encoding and pooling steps.

This sheds some light on the general design guidelines of the BOW representation. The

goal of designing a single image-level feature vector is to summarize and maintain the
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discriminative information of the local descriptors.

During the feature construction process, both encoding and pooling steps can lead

to information loss. Sparse coding improves over hard vector quantization by decreasing

the information loss in the encoding step. However, sparse codes can lead to the dilution

of the signal during the pooling step. Recent work addresses this problem by taking

into account locality in descriptor space. LLC [93] and LSC [30] both add locality

constraints during sparse coding that forces codes to be local and therefore preserve

neighorhood relationships, while multi-way pooling [11] performs a more selective local

pooling over the standard sparse codes. This can be viewed as a joint effort to minimize

the information loss in the pooling step.

In summary, the state-of-the-art BOW image representation favors a form of super-

vector representation [104] as shown in figure 2.4, where different clusters of visually

similar descriptors are mapped to separate local code blocks. Within each local code

block, descriptors are represented by a similar linear combination of codes, this gives a

rich and pooling-robust representation. Accordingly, 1-of-K hard vector quantization,

which shrinks each code block into a single binary feature, and sparse coding, which

overlaps different local code blocks, can both be viewed as special cases of this super-

vector representation.
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Figure 2.4: The illustration of super-vector representation. Different clusters of visually
similar descriptors are mapped to separate local code blocks. Within each local code
block, descriptors are represented by a similar linear combination of codes, this gives a
rich and pooling-robust representation.



35

Chapter 3: Stacked Evidence Trees

3.1 Overview

The stacked evidence trees approach is yet another tree structured model. But unlike

other models [61, 79] that treat the leaves of the trees as dictionary words, we view

the trees as a way of discriminatively structuring the information in the training set.

A random forest is trained as a first level classifier that predicts the class label for the

entire image based on individual descriptors. Each leaf of the trees then stores a class

distribution, a histogram of the number of training examples that reached that leaf. The

class distributions of individual descriptors are accumulated for each image, and a second

level stacked classifier is trained based on the aggregated image level features to make

the final category prediction.

This elegant method is dictionary-free. Therefore, it avoids hand-engineered decisions

about dictionary size as well as the loss of information when descriptors are encoded us-

ing a dictionary. It also employs descriptor level supervision information while training

the random forest, which gives it another advantage over unsupervised dictionary con-

struction in BOW model. Our experiments show that the stacked evidence trees gain a

big performance improvement over the baseline BOW model. On STONEFLY9, they

achieve 93.6% accuracy while the baseline BOW method scores 83.9%; on EPT54, they

attain 77.4% versus 48.5%.

3.2 Classification Architecture

Figure 3.1 shows the overall architecture of the system. The input to the system is a

set of different bags of detector/descriptor combinations extracted from the image. The

descriptors can be SIFT, HOG, edge descriptors, etc. We learn an individual random

forest for each bag of descriptors. The evidence histograms from different descriptors

are fused at the second-level stacked classifier.

In classification, a set of (detector, descriptor) pairs c = 1, ..., C are extracted from
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Figure 3.1: The overall classification architecture of stacked evidence trees. Descriptors
are directly drop through the random forests without computing a visual dictionary.
Each leaf node in the forest stores a histogram of class labels of the training examples.
The class histogram at all such leaves are accumulated to produce a single image level
class histogram which is then fed to a stacked classifier to make the final prediction.

the image. For each combination c, each descriptor xcj from the bag Xc = [xc1,x
c
2, ...,x

c
M ]

is dropped through each tree in the previously-learned random forest RF c until it reaches

a leaf l. That leaf l stores evidence as a class distribution histogram hcl collected from

the training examples. We then perform two-way of accumulation of the evidence. First

we sum over all trees in the RF c for every descriptor xcj to obtain hcj , then we sum over

all descriptors to obtain image-level histogram hc. Each hc is normalized to 1 and then

all C histograms are concatenated together to fuse information and form the second

level feature vector. This image-level vector is then processed by the stacked classifier

to produce the final prediction.

The learning process consists two steps: (a) learning the random forests and (b)

learning the stacked classifier.

Learning a random forest. A random forest is an ensemble of randomized decision

trees. This randomized ensemble structure captures the diversity and richness of high-

dimensional descriptors. Each tree is constructed in the usual top-down way as in C4.5

[73]. However, two kinds of randomness are applied to add diversity among trees. First,
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the training data for each tree is obtained by bootstrap resampling [20] of the training

set. Second, at each node, only a subset of the attributes are evaluated to find the most

discriminative combination of an attribute and a threshold. Specifically, at each node,

only a subset of size 1 + | logA| is chosen (where A is the number of attributes; 128 for

SIFT).

We learn the random forest at the descriptor level. The image class label Y is

assigned to each descriptor xj computed from the image. A training example is created

for each descriptor: (xj , Y ). But the bootstrap samples are generated at the image level

by drawing images with replacement from the training set. We control the depth of the

trees by limiting the minimum number of training examples in each leaf node. In each

leaf, we store the class distribution histogram hl as the number of training examples

belonging to each class.

In our experiment, we set the minimum number of training examples per leaf node to

20 and trained a random forest containing 100 evidence trees for each detector/descriptor

combination.

Learning the stacked classifier. We first constructed a second-level training set

for the stacked image-level classifier. Since each tree in the random forest is grown on

a bootstrap sample, for each tree there exists a set of “out-of-bag” images that were

not used to grow that tree because they were not selected by the bootstrap resampling.

Then for each image I, we only use the subset of trees in the forest that regard I as an

“out-of-bag” image. The bag of descriptors of image I are dropped only through that

subset of trees. The leaf histograms are summed only over those trees to obtain hcj and

over all descriptors j to obtain hc. Each hc is normalized and concatenated to form

the image-level feature vector for the stacking example. The class label of image I is

assigned to the class label of this stacking example.

We employ a boosted decision tree ensemble as the stacked classifier. The number

of boosting iterations is set to 200. There are only three parameters in the system: (a)

the minimum number of training examples in each leaf node, (b) the number of trees in

each random forest, and (c) the number of boosting iterations for the stacked classifier.

Our experiments have shown that the results are insensitive to all of these parameters.
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3.3 Relationship to BOW Approaches

Although the stacked evidence trees are somewhat different from the BOW model, the

two types of approaches are closely related. Both methods start with bags of descriptors

from the image, and both try to predict a single class label from this information. Since

classifiers usually take a single fixed-length feature vector as input, pooling over the bag

of descriptors is applied in both approaches. Both methods try to process the information

in the bags of descriptors into a discriminative feature vector of moderate length, as the

proper input to standard classifiers. But they are different in the sequence of steps.

Figure 3.2: The comparison between the BOW model and the stacked evidence trees
model. For the BOW model, the pooling happens before classification, while the evidence
trees model first makes predictions on the individual descriptors and then pools the class
distributions before the second image level classification.

As shown in figure 3.2, while the BOW model first maps each descriptor to a visual

dictionary, pools the encoded bag-of-descriptors together, and then feeds the image-level

feature vector to the classifier, our stacked evidence tree model makes prediction directly

on each descriptor, pools the class distribution evidence from the individual descriptors

together, and then feeds the aggregated class distribution evidence to the final classifier.

Since the random forest is learned at the descriptor level, there is no need for a dictionary

mapping process.

Interestingly, for linear pooling and linear classifier combination, the pooling and
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classification steps are interchangeable for BOW models. Linear pooling can be defined

as the linear weighted combination of individual descriptors

h =
M∑
j=1

vixj ,

and the linear classifier can be defined as the linear weighted combination of the image-

level feature vector h:

f(h) = wTh.

Then the BOW model can be written as the combination of the linear pooling and the

linear classification:

f(h) = wTh =

M∑
j=1

viw
Txj =

M∑
j=1

vif(xj),

where the linear pooling and linear classifier can commute. When the order of linear

pooling and linear classification is reversed, the BOW model can be regarded as com-

puting a discriminant function on the individual descriptors first and then pooling the

discriminant function values together to reach the final decision. This resembles the

stacked evidence trees approach.

3.4 Hypotheses Concerning the Requirements for Successful Fine-

grained Categorization

The large intra-class variation and small inter-class differences make fine-grained cate-

gorization much more challenging than generic object categorization.

Is there any fundamental difference in designing systems to solve these two tasks?

What are the requirements that must be satisfied to obtain good performance in fine-

grained classification? We propose two hypotheses concerning fine grained categoriza-

tion: a) high resolution images are needed to capture more detailed information from

the objects; b) more aggressive information extraction, such as finer descriptor encod-

ing with large dictionaries or classifiers based on raw descriptors, is required to extract

more information from the bag-of-descriptors. We test both hypotheses in the following
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chapter.
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Chapter 4: Benchmarks and Experimental Tests of Our Hypotheses

In this chapter, we evaluate various fine-grained classification methods on the STONE-

FLY9 and the EPT54 datasets. To test our hypotheses, we analyze the effect of image

resolution and dictionary size on the performance of these fine-grained classification

methods.

Image capture and pre-processing. Images are captured using a semi-automated

apparatus as described in Section 1.2. The specimens are photographed against a blue

background. To segment each specimen from the background, we apply Bayesian matting

and morphological operations. This results in a binary mask covering the specimen. For

STONEFLY9, we apply three keypoint detectors: Hessian [60], Kadir-Brady [42], PCBR

[17] and points falling on a regular grid on the mask. For EPT54, since each of the

detectors fails on some of the species, we only compute descriptors using a regular grid.

For both datatsets, we employed a 3-fold cross validation process. Since each speci-

men is photographed multiple times, to ensure unbiased evaluation, all images of a single

specimen are kept together in the same fold. We report average image classification ac-

curacy and standard deviation over 3-fold cross validation.

4.1 Benchmarks

We first benchmarked the STONEFLY9 and EPT54 databases using three approaches:

the baseline Bag-of-Words model, the Locality-constrained Linear Coding (LLC) [93]

method, and the Stacked Evidence Trees model. For the baseline Bag-of-Words model,

the dictionary size was set to 3000; for the LLC method, the dictionary was set to 3000

as well and the k in number of nearest neighbors was set to 5. The dictionaries are

generated by a fast streaming k-means algorithm [78] based on the descriptors extracted

from one training fold. For the Stacked Evidence Trees, the three parameters of the

system were set as described in the previous chapter.
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Baseline Evidence Trees LLC

71.9± 1.0 86.7± 1.8 90.5± 1.2

83.9± 1.2 93.6± 1.8 96.2± 1.1

Table 4.1: Performance on the Stonefly9 dataset. The top row shows the results using

only SIFT descriptors on a regularly sampled grid, and the bottom rows shows the

results of combining SIFT descriptors applied to patches found by four different detectors.

The error bars are computed as one standard deviation of accuracy over 3-fold cross

validation.

Baseline Evidence Trees LLC

48.5± 2.6 77.4± 1.8 80.9± 2.3

Table 4.2: Performance on the EPT54 dataset. The error bars are computed as one

standard deviation of accuracy over 3-fold cross validation.

PCBR Regular Salient Hesaff All Detectors

Evidence Trees 88.6± 1.9 88.8± 1.8 88.9± 1.1 84.5± 2.8 93.6± 1.8

LLC 86.3± 1.7 90.1± 1.3 92.4± 1.1 84.0± 1.8 96.2± 1.1

Table 4.3: Classification accuracy of four Detector/descriptor combinations on STONE-

FLY9. The four detectors are the PCBR detector[17], the regular grid, the Kadir-Brady

salient region detector [42], and the Hessian affine detector [60], We also show the result

of combining all four detectors. The error bars are computed as one standard deviation

of accuracy over 3-fold cross validation.

As shown in table 4.1 and table 4.2, both Stacked Evidence Trees and LLC achieve

good performance on both datasets. Both methods beat the baseline by a large margin.

The LLC method has the best performance on both datasets. It achieves an outstanding

96.2% accuracy on STONEFLY9 using all four detector types and 80.5% on EPT54.

Stacked Evidence Trees achieve 93.6% accuracy on STONEFLY9 and 77.4% on EPT54.

Table 4.3 shows that combining the patches found by different detectors can improve

the performance of both approaches. For Stacked Evidence Trees, random forests are
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trained separately for the four detector/descriptor combinations, and the resulting class

label histograms are concatenated before feeding them to the final stacked classifier. For

LLC, one dictionary is generated for each of the four detector/desecriptor combinations,

and the pooled image-level feature vectors are concatenated to form the feature vector

for a linear SVM classifier.

4.2 Tests of the Image Resolution Hypothesis

In this section, we analyze how the resolution of images affects fine-grained classifica-

tion accuracy. For generic objection categorization tasks, the images are usually of low

resolution (300× 200 for Caltech 101, 500× 400 for PASCAL). However, our databases

contain images of high resolution (2560 × 1920). In order to simulate low resolution

images, we first build a scale pyramid using the original 2560 × 1920 images following

the standard cascade Gaussian blurring and downsampling procedure [77]. Each image

is downsampled to 50%, 25%, 12.5%, and 6.25% of the original size. At 12.5%, the size

of the image is 320× 240, which is about the same size as the images in popular generic

object categorization databases. In order to ensure that we extract patches at exactly

the same locations on the object at the different image resolutions, we then generate a

downsized regular sampled grid of patches for each scale. The patch diameter is also

shrunk accordingly. The SIFT descriptors are computed from the extracted patches.

There are two ways that image resolution could affect classification accuracy. First,

the SIFT descriptors computed from lower-resolution images could be degraded in some

way. Second, the classifier learned from those descriptors could be less accurate.

4.2.1 The Effect of Reduced Resolution on SIFT Descriptors

To explore the first issue, we evaluated the sensitivity of the SIFT descriptors to change

of image resolution. Specifically, we compute a city block distance between the SIFT

descriptors of the original images and the resolution-reduced images centered at the same

locations:

dist =
D∑
j=1

|x(j)− y(j)|.

We compute the block distance over all SIFT descriptors of STONEFLY9 and report
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the median distances.

Gaussian σ 0 2 4 8 16

Resolution 2560 1280 640 320 160

Median Block Distance 0 32 102 315 896

Table 4.4: A quantitative measure of the image downsizing effect on SIFT descriptors

on STONEFLY9. The median city block distance of the SIFT descriptors at the same

location in different scales is computed.

The SIFT sensitivity results are shown in table 4.4. The SIFT descriptor is quite

robust to resolution reduction. The median block distance between the original descrip-

tors and the 25% downsampled ones is only 102 for the 128 dimension descriptor vectors.

Recall that each dimension of the SIFT vector is an integer between 0 and 255. Hence, at

25% downsampling, the SIFT descriptor values have changed by less than 1 part in 255

on average. This measure confirms that the orientation histogram of a SIFT descriptor

is robust to scale changes. Occasionally (in less than 5% of the locations), we observe

substantial change in SIFT vectors when they are located on abrupt edges of objects.

4.2.2 The Effect of Reduced Image Resolution on Classification Ac-

curacy

To explore the second issue – inferior classifiers – we repeated the full classification

experiments on the low resolution versions of both databases using LLC and Stacked

Evidence Trees. The parameters and the evaluation metrics are the same as in the

previous section.

The classification accuracy results are shown in figure 4.1 and figure 4.2. On the

Stonefly9 dataset, we observe a dramatic drop of performance at extremely low resolution

160× 120 (6.25% of the original size). But from the original size down to the 320× 240

resolution (12.5%), we only observe mild performance degradation: from 90.5% to 89.6%

correct for LLC and from 86.7% to 85.7% correct for Stacked Evidence Trees. However,

on EPT54, there is a steady drop in accuracy as the resolution is reduced. This is

probably because of the larger number of categories and greater similarity of taxa in

EPT54.
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Figure 4.1: Performance under resolution reduction on STONEFLY9 dataset

Figure 4.2: Performance under resolution reduction on EPT54 dataset.

4.3 Tests of the Information Extraction Hypothesis

According to the information extraction hypothesis, fine-grained classification requires

extracting more information from the image than coarse-grained classification. For Bag-

of-Words methods, the amount of information extracted is determined by (a) the number

of image patches and (b) the size of the dictionary.

In our experiments, we held the number of patches constant and varied the size of

the dictionary. We also varied the difficulty of the classification problem from coarse

to fine by selecting pairs of arthropod taxa that have different “tree distance” in the
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phylogenetic tree of life. Of course poor methods for encoding and pooling can cause

loss of information, so we performed our experiments using LLC, which employs state-

of-the-art methods for these steps.

4.3.1 Varying the Size of Dictionaries

To test our second hypothesis, we ran experiments by varying the size of the dictionary

from 100 to 10,000 on both of our datasets and on a standard generic object categoriza-

tion dataset, Caltech-101 [25]. Caltech-101 contains 9144 images in 101 generic object

categories. Most images are centered on the object and have low resolution (300× 200).

For STONEFLY9 and EPT54, we follow the same 3-fold cross validation process and

report average image classification accuracy and standard deviation; for Caltech-101, we

followed the standard experiment setup: train on 30 images per category and test on

the rest. The evaluation metric is average over per-class classification accuracy and the

standard deviation is computed via 10-fold cross validation.

Figure 4.3: Performance of LLC under different dictionary sizes on the Caltech-101
dataset. The error bars are computed as one standard deviation of accuracy over 10-fold
cross validation.

Figure 4.3 shows the result on Caltech-101. The performance peaks with a dictionary

size of 2000 and then goes on decrease. This is likely the result of increased variance

that results from unstable nearest neighbor assignment during the encoding step and

overfitting of the classifier (due to very long pooled feature vectors) in the classification
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Figure 4.4: Performance of LLC under different dictionary sizes on (a) STONEFLY9
and (b) EPT54. The error bars are computed as one standard deviation of accuracy over
3-fold cross validation.

step.

Figure 4.4 shows the results on the STONEFLY9 and EPT54 datasets. Contrary to

the previous experiment, the accuracy continues increase as the dictionary size grows for

both datasets. This result supports our second hypothesis that larger dictionaries are

desired for fine-grained object classification.

4.3.2 Varying the Difficulty of Classification Problems

We designed an experiment in which we varied the difficulty of the classification task from

coarse-grained to fine-grained. In EPT54, the categories are divided into three Orders

(Ephemeroptera, Plecoptera, and Trichoptera) in the tree of life. Each Order in turn

is divided into Families, and each Family is divided into Genera. Each category in our

classification tasks is a Genus. We can measure the “tree of life” distance between two

categories in terms of the tree distance in the taxonomic tree. Two genera belonging to

the same family have a tree distance of 2. Two genera belonging to the same order have

a tree distance of 4. And two genera belonging to different orders have a tree distance

of 6. We repeated the dictionary size experiments using pairs of categories separated by

these different tree distances.

Visually, arthropods from different orders are very different and reflect the kinds of
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gross differences that are typical of Caltech-101 and other generic object recognition

databases, whereas arthropods from the same family can be very difficult to distin-

guish. According to our information extraction hypothesis, achieving high accuracy on

categories at tree distance 6 will require much smaller dictionaries than achieving high

accuracy on categories at tree distance 4, and those in turn will need smaller dictionaries

than are required for categories at tree distance 2.

To make a fair comparison, we control the number of training examples in each

class to be roughly around 250. Table 4.5 shows the exact number of training examples

for each class. We performed the same kind of experiment as before by varying the

dictionary size from 100 to 10,000 for all the selected taxonomic pairs. We report average

image classification accuracy (with one-standard-deviation error bars) over 3-fold cross

validation.

Code Order Family Genus Training Size

Calib Ephemeroptera Baetidae Callibaetis 299

Fallc Ephemeroptera Baetidae Fallceon 224

Amelt Ephemeroptera Ameletidae Ameletus 297

Isogn Plecoptera Perlodidae Isogenoides 231

Cerat Trichoptera Hydropsychidae Ceratopsyche 299

Prpsy Trichoptera Hydropsychidae Parapsyche elis 264

Micras Trichoptera Brachycentridae Micrasema 295

Hydro Trichoptera Hydropsychidae Hydropsyche 226

Table 4.5: The number of training examples for each class (at genus level) and its

taxonomic information in the pairwise difficulty controlled experiments.

Figures 4.5, 4.6, and 4.7 show the results of two pairs at each tree distance. As we can

see, the dictionary size required for top performance decreases along with the difficulty of

the classification tasks. For the genus-level tasks, a dictionary size of 10,000 has the best

performance; for the family-level tasks, only a moderate size of dictionary (2000-3000)

is required; and for the order-level tasks, a small dictionary size of 500 already gives

perfect results. This experiment further validates our second hypothesis that the harder

the classification task is, or the more subtle distinctions among object categories are, the
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Figure 4.5: Performance under different dictionary sizes at genus level with phylogenetic
tree distance of 2.

Figure 4.6: Performance under different dictionary sizes at family level with phylogenetic
tree distance of 4.

larger dictionary needs to be.
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Figure 4.7: Performance under different dictionary sizes at order level with phylogenetic
tree distance of 6.

4.4 Discussion

In this chapter, we tested both of our hypotheses on the requirements for successful

fine-grained categorization. The effect of low resolution images is less significant than

we expected. On STONEFLY9, the 12.5% resolution version of the original images only

decreases the accuracy by less than one percent. However, the resolution reduction has

much more effect on EPT54. We observe a steady drop in accuracy as the resolution

is reduced. This shows the importance of high resolution images for larger fine-grained

databases with greater similarity of taxa.

In the BOW model, the size of the dictionary is a critical parameter. Previous

work [89] has shown that as the size of the dictionary grows, the classification accuracy

first increases, then levels off, and finally decreases. This phenomenon suggests a bias-

variance tradeoff. A small dictionary would have high bias (because of information loss in

both the encoding and pooling steps) but good generalization. A large dictionary would

generate long feature vectors which leads to high variance and hence poor generalization.

Our second experiment further shows that the optimal dictionary size that achieves

the best performance is related to the difficulty of the classification task. A moderate-

sized dictionary can perform well on a coarse-grained categorization problem, while a
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much larger dictionary is required to achieve state-of-art accuracy on more difficult fine-

grained classification problems.

From the experiments, we can draw some general conclusions about the design of

fine-grained classification systems. The success of the system requires that a) the image

capture process collects relatively high resolution images and b) the entire feature con-

struction process extracts a large amount of information from the local descriptors while

keeping good generalization capability for classification.
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Chapter 5: Conclusions and Future Directions

This thesis studied the design, evaluation and analysis of learning algorithms for fine-

grained object classification. Two fine-grained image databases of arthropods were in-

troduced. A literature review on the development of Bag-of-words (BOW) approaches to

object classification and our stacked evidence tree approach was presented. Benchmark

results on both datasets were given, and further experiments were conducted to test our

two hypotheses that a) high resolution images and b) more aggressive information ex-

traction, such as finer descriptor encoding with larger dictionaries or classifiers based on

raw descriptors, is required to achieve good performance in fine-grained categorization.

There are several important issues yet to be explored. First, empirical study has

shown the tradeoff between dictionary size and generalization ability. However no sys-

tematical analysis in the bias-variance framework has been studied. Such an analysis

would provide an estimate of the optimal dictionary size for a particular categorization

problem.

Second, it has been shown that discriminative dictionaries outperform generic ones of

the same size. However, since no efficient large scale discriminative dictionary learning

approach has been developed, a randomly sampled dictionary of larger size can easily

outperform a learned discriminative dictionary in state-of-the-art systems.

Finally, our Stacked Evidence Trees model is another way to extract information

and construct features from the bag-of-descriptors. It provides an elegant dictionary-free

approach to the image classification problem. However, its performance is inferior to

the state-of-art Bag-of-Words methods. We can improve it in several ways: a) a more

sophisticated pooling process can be developed to aggregate descriptor-level predictions

into image-level feature vectors; b) an adaptive stopping criterion can be developed to

control the depth of the trees, i.e. the amount of information extracted from descriptors,

according to the difficulty of the classification problem.
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Figure 1: Visualization of confusion matrix of EPT54 dataset. The figure shows a
hierarchical clustering tree based on the class-wise distances. The distances are computed
as the reciprocal of the off-diagonal values of the confusion matrix. The table at left shows
the hierarchy of biological classification for each category in the dataset. The three orders
in the datasets are color coded: Ephemeroptera (Mayflies) in red, Plecoptera (Stoneflies)
in blue, and Trichoptera (Caddisflies) in green.




