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Abstract
In the Superset Label Learning (SLL) problem,
weak supervision is provided in the form of a su-
perset of labels that contains the true label. If
the classifier predicts a label outside of the su-
perset, it commits a superset error. Most exist-
ing SLL algorithms learn a multiclass classifier
by minimizing the superset error. However, only
limited theoretical analysis has been dedicated to
this approach. In this paper, we analyze Empiri-
cal Risk Minimizing learners that use the super-
set error as the empirical risk measure. SLL data
can arise either in the form of independent in-
stances or as multiple-instance bags. For both
scenarios, we give the conditions for ERM learn-
ability and sample complexity for the realizable
case.

1. Introduction
In multiclass supervised learning, the task is to learn a
classifier that maps an object to one of several candidate
classes. When each training example is labeled with one la-
bel, many successful multiclass learning methods can solve
this problem (Aly, 2005; Mukherjee and Schapire, 2013).
In some applications, however, we cannot obtain training
examples of this kind. Instead, for each instance we are
given a set of possible labels. The set is guaranteed to con-
tain the true label as well as one or more distractor labels.

Despite these distractor labels, we still wish learn a multi-
class classifier that has low error when measured accord-
ing to the traditional 0/1 misclassification loss. This learn-
ing problem has been given several names, including the
“multiple label problem”, the “partial label problem” and
the “superset label learning problem” (Jin & Ghahramani,
2002; Nguyen & Caruana, 2008; Cour et al., 2011; Liu &
Dietterich, 2012). In this paper, we adopt the last of these.

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

Several learning algorithms for the superset label learning
problem have shown good experimental results. These al-
gorithms generally seek an hypothesis that minimizes su-
perset errors on the training instances (possibly including
a regularization penalty). In this paper, we define the su-
perset error as the empirical risk in the SLL problem, and
we analyze the performance of learners that minimize the
empirical risk (ERM learners). We only investigate the re-
alizable case where the true multiclass classifier is in the
hypothesis space.

The key to SLL learnability is that any hypothesis with non-
zero classification error must have a significant chance of
making superset errors. This in turn depends on the size
and distribution of the label supersets. Small supersets, for
example, are more informative than large ones. Precisely
speaking, a sufficient condition for learnability is that the
classification error can be bounded by the superset error.

The SLL problem arises in two settings. In the first set-
ting, which we call SSL-I, instances are independent of
each other, and the superset is selected independently for
each instance. The second setting, which we call SLL-B,
arises from the multi-instance multi-label learning (MIML)
problem (Zhou & Zhang, 2006; Zhou et al., 2012), where
the training data are given in the form of MIML bags.

For SLL-I, Cour, Sapp, and Taskar (2011) proposed the
concept of ambiguity degree. This bounds the probabil-
ity that a specific distractor label appears in the superset of
a given instance. When the ambiguity degree is less than
1, Cour, et alġive a relationship between the classification
error and the superset error. With the same condition, we
show that the sample complexity of SLL-I with ambiguity
degree zero matches the complexity of multiclass classifi-
cation.

For SLL-B, the training data have the form of independent
MIML bags. Each MIML bag consists of a bag of instances
and a set of labels (the “bag label”). Each instance has
exactly one (unknown) label, and the bag label is exactly
the union of the labels of all of the instances. (See Zhou
et al. (2012) for discussion of other ways in which MIML
bags can be generated.) The learner only observes the bag
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label and not the labels of the individual instances.

It is interesting to note that several previous papers test their
algorithms on synthetic data corresponding to the SSL-I
scenario, but then apply them to a real application corre-
sponding to the SSL-B setting.

To show learnability, we convert the SLL-B problem to
a binary classification problem with the general condition
that the classification error can be bounded by the super-
set error times a multiplicative constant. We then provide a
concrete condition for learnability: for any pair of class la-
bels, they must not always co-occur on a bag label. That is,
there must be non-zero probability of observing a bag that
contains an instance of only one of the two labels. Given
enough training data, we can verify with high confidence
whether this condition holds.

The success of weakly supervised learning depends on the
degree of correlation between the supervision information
and the classification error. We show that superset learning
exhibits a strong correlation between these because a su-
perset error is always caused by a classification error. Our
study of the SLL problem can be seen as a first step toward
the analysis of more general weakly-supervised learning
problems.

2. Related Work
Different superset label learning algorithms have been pro-
posed by Jin and Ghahramani (2002); Nguyen and Caruana
(2008); Cour, Sapp, and Taskar (2011); and Liu and Diet-
terich (2012). All these algorithms employ some loss to
minimize superset errors on the training set. Cour, Sapp,
and Taskar (2011) conducted some theoretical analysis of
the problem. They proposed the concept of “ambiguity de-
gree” and established a relationship between superset error
and classification errors. They also gave a generalization
bound for their algorithm. In their analysis, they assume
instances are independent of each other.

Sample complexity analysis of multiclass learning provides
the basis of our analysis of SLL problem with independent
instances. The Natarajan dimension (Natarajan, 1989) is
an important instrument for characterizing the capacity of
multiclass hypothesis spaces. Ben-David et al. (1995) and
(Daniely et al., 2011) give sample complexity bounds in
terms of this dimension.

The MIML framework was proposed by Zhou & Zhang
(2006), and the instance annotation problem is raised by
Briggs et al. (2012). Though the Briggs, et alȧlgorithm
explicitly uses bag information, it is still covered by our
analysis of the SLL-B problem. There is some theoretical
analysis of multi-instance learning (Blum & Kalai, 1998;
Long & Tan, 1998; Sabato & Tishby, 2009), but we only

know of one paper on the learnability of the MIML prob-
lem (Wang & Zhou, 2012). In that work, no assumption is
made for the distribution of instances within a bag, but the
labels on a bag must satisfy some correlation conditions.
In our setting, we assume the distribution of the labels of
instances in a bag is arbitrary, but that these instances are
independent of each other given their labels.

3. Superset Label Learning Problem with
Independent Instances (SLL-I)

Let X be the instance space and Y = {1, 2, . . . , L} be the
finite label space. The superset space S is the powerset
of Y without the empty set: S = 2Y − {∅}. A “com-
plete” instance (x, y, s) ∈ X × Y × S is composed of its
features x, its true label y, and the label superset s. We
decompose D into the standard multiclass distribution Dxy
defined on X × Y and the label set conditional distribu-
tion Ds(x, y) defined over S given (x, y). We assume that
Prs∼Ds(x,y)(y ∈ s) = 1, that is, the true label is always in
the label superset. Other labels in the superset will be called
distractor labels. Let µ(·) denote the probability measure
of a set; its subscript indicates the distribution. Denote a
sample of instances by z =

{
(xi, yi, si)

}n
i=1

, where each
instance is sampled from D independently. The size of the
sample is always n. Although the true label is included
in the training set in our notation, it is not visible to the
learner. Let I(·) denote the indicator function, which has
the value 1 when its argument is true and 0 otherwise.

The hypothesis space is denoted by H, and each h ∈ H :
X → Y is a multiclass classifier. The expected classifica-
tion error of h is defined as

ErrD(h) = E(x,y,s)∼DI(h(x) 6= y). (1)

We use Hε to denote the set of hypotheses with error at
least ε, Hε = {h ∈ H : ErrD(h) ≥ ε}. The superset error
is defined as the event that the predicted label is not in the
superset: h(x) /∈ s. The expected superset error and the
average superset error on set z are defined as

ErrsD(h) = E(x,y,s)∼DI(h(x) /∈ s) (2)

Errsz(h) =
1

n

n∑
i=1

I(h(xi) /∈ si) (3)

It is easy to see that the expected superset error is always
no greater than the expected classification error.

For conciseness we often omit the word “expected” or “av-
erage” when referring these errors defined above. The
meaning should be clear from how the error is calculated.

An Empirical Risk Minimizing (ERM) learner A for H is
a function,A : ∪∞n=0(X ×S)n 7→ H. We define the empir-
ical risk as the average superset error on the training set.



Learnability of Superset Label Learning Problem

The ERM learner for hypothesis spaceH always returns an
hypothesis h ∈ Hwith minimum superset error for training
set z.

A(z) = argmin
h∈H

Errsz(h)

Since the learning algorithmA can only observe the super-
set label, this definition of ERM is different from that of
multiclass classification. In the realizable case, there exists
h0 ∈ H such that ErrD(h0) = 0.

3.1. Small ambiguity degree condition

On a training set with label supersets, an hypothesis will
not be rejected by an ERM learner as long as its predic-
tions are contained in the superset labels of the training
instances. If a distractor label always co-occurs with one
of the true labels under distribution Ds, there will be no
information to discriminate the true label from the distrac-
tor. On the contrary, if for any instance all labels except
the true label have non-zero probability of being missing
from the superset, then the learner always has some prob-
ability of rejecting an hypothesis if it predicts this instance
incorrectly. The ambiguity degree, proposed by Cour et al.
(2011), is defined as

γ = sup
(x,y)∈X×Y, `∈Y :
p(x,y)>0, ` 6=y

Prs∼Ds(x,y)(` ∈ s). (4)

This is the maximum probability that some particular dis-
tractor label ` co-occurs with the true label y. If γ = 0, then
with probability one there are no distractors. If γ = 1, then
there exists at least one pair y and ` that always co-occur.
If a problem exhibits ambiguity degree γ, then a classifi-
cation error made on any instance will be detected (i.e., lie
outside the bag label) with probability at least 1− γ:

Pr(h(x) /∈ s|h(x) 6= y, x, y) ≥ 1− γ.

If an SSL-I problem exhibits γ < 1, then we say that it sat-
isfies the small ambiguity degree condition. We prove that
this is sufficient for ERM learnability of the SSL-I problem.

Theorem 3.1 Suppose an SLL-I problem has ambiguity
degree γ, 0 ≤ γ < 1. Let θ = log 2

1+γ , and suppose the
Natarajan dimension of the hypothesis spaceH is dH. De-
fine

n0(H, ε, δ) =
4

θε

(
dH

(
log(4dH) + 2 logL+ log

1

θε

)
+ log

1

δ
+ 1

)
,

Then when n > n0(H, ε, δ), ErrD(A(z)) < ε with proba-
bility 1− δ.

We follow the method of proving learnability of binary
classification to prove this theorem (Anthony & Biggs,
1997). Let Rn,ε be the set of all n-samples for which there
exists an ε-bad hypothesis h with zero empirical risk:

Rn,ε = {z ∈ (X×Y×S)n : ∃h ∈ Hε, Err
s
z(h) = 0}.

Essentially we need to show that Pr(Rn,ε) ≤ δ.

The proof is composed of the following two lemmas.

Lemma 3.2 We introduce a testing set z′ of size n with
each instance drawn independently from distribution D,
and define the set Sn,ε to be the event that there exists a
hypothesis in Hε that makes no superset errors on training
set z but makes at least ε

2 classification errors on testing
set z′.

Sn,ε =
{
(z, z′) ∈ (X × Y × S)2n :

∃h ∈ Hε, Err
s
z(h) = 0, Errz′(h) ≥ ε

2

}
.

Then Pr
(
(z, z′) ∈ Sn,ε

)
≥ 1

2Pr(z ∈ Rn,ε) when n > 8
ε .

Proof This lemma is used in many learnability proofs.
Here we only give a proof sketch. Sn,ε is a subevent
of Rn,ε. We can apply the chain rule of probability to
write Pr

(
(z, z′) ∈ Sn,ε

)
= Pr

(
(z, z′) ∈ Sn,ε|z ∈

Rn,ε
)
Pr
(
z ∈ Rn,ε

)
. Let H(z) = {h ∈ H : Errsz(h) =

0} be the set of hypotheses with zero empirical risk on the
training sample. Then we have

Pr ((z, z′) ∈ Sn,ε|z ∈ Rn,ε)

= Pr
({
∃h ∈ Hε ∩H(z), Errz′(h) ≥ ε

2

}∣∣∣z ∈ Rn,ε)
≥ Pr

(
{h ∈ Hε ∩H(z), Errz′(h) ≥ ε

2
}
∣∣∣z ∈ Rn,ε)

In the last line, h is a particular hypothesis in the intersec-
tion. Since h has error at least ε, we can bound the prob-
ability via the Chernoff bound. When n > 8

ε , we obtain
Pr
(
(z, z′) ∈ Sn,εz ∈ Rn,ε

)
> 1

2 which completes the
proof.

With Lemma 3.2, we can bound the probability of Rn,ε by
bounding the probability of Sn,ε. We will do this using
the technique of swapping training/testing instance pairs,
which is used in various proofs of learnability.

In the following proof, the sets z and z′ are expanded to
(x,y, s) and (x′,y′, s′) respectively when necessary. Let
the training and testing instances form n training/testing
pairs by arbitrary pairing. The two instances in each pair
are respectively from the training set and the testing set,
and these two instances are both indexed by the pair in-
dex, which is indicated by a subscript. Define a group G



Learnability of Superset Label Learning Problem

of swaps with size |G| = 2n. A swap σ ∈ G has an index
set Jσ ⊆ {1, . . . , n}, and it swaps the training and testing
instances in the pairs indexed by Jσ . We write σ as a su-
perscript to indicate the result of applying σ to the training
and testing sets, that is, σ(z, z′) = (zσ, z′

σ
).

Lemma 3.3 If the hypothesis space H has Natarajan di-
mension dH and γ < 1, then

Pr(Sn,ε) ≤ (2n)dHL2dH exp

(
−nθε

2

)
Proof Since the swap does not change the measure of
(z, z′),

2nPr ((z, z′) ∈ Sn,ε)

=
∑
σ∈G

E [Pr ((z, z′) ∈ Sn,ε|x,y,x′,y′)]

=
∑
σ∈G

E [Pr (σ(z, z′) ∈ Sn,ε|x,y,x′,y′)]

= E

[∑
σ∈G

Pr (σ(z, z′) ∈ Sn,ε|x,y,x′,y′)

]
(5)

The expectations are taken with respect to (x,y,x′,y′).
The probability in the expectation comes from the random-
ness of (s, s′) given (x,y,x′,y′).

Let H|(x,x′) be the set of hypothesis making different
classifications for (x,x′). Define set Shn,ε for each hypoth-
esis h ∈ H as

Shn,ε =
{
(z, z′) : Errsz(h) = 0, Errz′(h) ≥ ε

2

}
By the union bound, we have∑

σ∈G
Pr (σ(z, z′) ∈ Sn,ε|x,y,x′,y′)

≤
∑

h∈H|(x,x′)

∑
σ∈G

Pr
(
σ(z, z′) ∈ Shn,ε

∣∣x,y,x′,y′) (6)

By Natarajan (1989),
∣∣H|(z, z′)∣∣ ≤ (2n)dHL2dH .

The only work left is to bound
∑
σ∈G Pr

(
σ(z, z′) ∈

Shn,ε|x,y,x′,y′
)
, and this part is our contribution.

Here is our strategy. We first fix (x,y,x′,y′) and σ and
bound Pr

(
σ(z, z′) ∈ Shn,ε | x,y,x′,y′

)
with the ambigu-

ity degree assumption. Then we find an upper bound of
the summation over σ. Start by expanding the condition in
Shn,ε,

Pr
(
σ(z, z′) ∈ Shn,ε | x,y,x′,y′

)
= I

(
Errz′σ (h) ≥ ε

2

)
·

Pr
(
h(xσi ) ∈ sσi , 1 ≤ i ≤ n|xσ,yσ

)
= I

(
Errz′σ (h) ≥ ε

2

) n∏
i=1

Pr
(
h(xσi ) ∈ sσi |xσi ,yσi

)
.

(xσ,yσ)

(x′
σ
,y′

σ
)

u u u e u e e e e eu u u u e u u e e e︸ ︷︷ ︸
u1

︸ ︷︷ ︸
u2

︸ ︷︷ ︸
u3

vσ = 1
���

Figure 1. A situation of (xσ,yσ,x′σ,y′σ). Black dots represent
instances misclassified by h and circles represent instances cor-
rectly classified by h.

For a pair of training/testing sets (x,y,x′,y′), let u1, u2
and u3 represent the number of pairs for which h classifies
both incorrectly, one incorrectly, and both correctly. Let
vσ , 0 ≤ vσ ≤ u2, be the number of wrongly-predicted
instances swapped into the training set (xσ,yσ). One such
situation is shown in Figure 1. There are u1 + u2 − vσ
wrongly-predicted instances in the testing set. The error
condition Errz′σ (h) ≥ ε

2 is equivalent to u1 + u2 − vσ ≥
ε
2n, which always indicates u1 + u2 ≥ ε

2n. So we have
I
(
Errz′σ (h) ≥ ε

2

)
≤ I
(
u1 + u2 ≥ ε

2n
)
.

There are u1+vσ wrongly-predicted instances in the train-
ing set. Since the true label is in the superset with prob-
ability one, while the wrong label appears in the super-
set with probability no greater than γ by (4), we have∏n
i=1 Pr

(
h(xσi ) ∈ sσi |xσi

)
≤ γu1+vσ .

Now for a single swap σ, we have the bound

Pr
(
σ(z, z′) ∈ Shn,ε | x,y,x′,y′

)
≤ I
(
u1 + u2 ≥

ε

2
n
)
γu1+vσ (7)

Let us sum up (7) over σ. Any swap σ can freely switch
instances in u1 + u3 without changing the bound in (7),
and choose from the u2 pairs vσ to switch. For each value
0 ≤ j ≤ u2, there are 2u1+u3

(
u2

j

)
swaps that have vσ = j.

Therefore, ∑
σ∈G

I
(
u1 + u2 ≥

ε

2
n
)
γu1+vσ

≤ I
(
u1 + u2 ≥

ε

2
n
)
2u1+u3

u2∑
j=0

(
u2
j

)
γu1+j

= I
(
u1 + u2 ≥

ε

2
n
)
2n−u2γu1(1 + γ)u2

= I
(
u1 + u2 ≥

ε

2
n
)
2nγu1

(
1 + γ

2

)u2

When (x,y,x′,y′) and h make u1 = 0 and u2 = ε
2n,

the right side reaches its maximum 2n
(
1+γ
2

)nε/2
, which is

2ne−nθε/2 with the definition of θ in Theorem 3.1. Apply-
ing this to (6) and (5), completes the proof.

tgd
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Proof of Theorem 3.1. By combining the re-
sults of the two lemmas, we have P (Rn,ε) ≤
2(dH+1)ndHL2dH exp(−nθε2 ). Bound this with δ on
a log scale to obtain

(dH+1) log 2+dH log n+2dH logL− θεn
2
≤ log δ

By bounding log n with (log( 4dHθε )− 1) + θε
4dH

n, we get a
linear form for n. Then we solve for n to obtain the result.

Remark Theorem 3.1 includes the multiclass problem as
a special case. When γ = 0 and θ = log 2, we get the same
sample complexity as the multiclass classification problem.
(See Theorem 6 in Daniely et al. (2011).)

The small ambiguity degree condition is strong. A good
aspect of our result is that we only require that H has fi-
nite Natarajan dimension to ensure that an ERM learning
finds a good hypothesis. However, the result is not gen-
eral enough. Here is an example where the small ambi-
guity degree condition is not satisfied but the problem is
still learnable. Consider a case where the true label is `1,
but the label superset always contains a distractor label `2;
otherwise the superset contains only the true label. Such
a distribution of superset labels certainly does not satisfy
the small ambiguity condition, but if no hypothesis in H
classifies `1 as `2, then the problem is still learnable by an
ERM learner. Though the example is not very realistic, it
suggests that there should be a more general condition for
ERM learnability.

3.2. A general condition for learnability of SLL-I

We can obtain a more general condition for ERM learn-
ability by constructing a binary classification task from the
superset label learning task. Two key points need special
attention in the construction: how to relate the classifica-
tion errors of the two tasks, and how to specify the hypoth-
esis space of the binary classification task and obtain its
VC-dimension.

We first construct a binary classification problem from the
SLL-I problem. Given an instance (x, s), the binary clas-
sifier needs to predict whether the label of x is outside of
s, that is, predict the value of I(yx /∈ s). If (x, s) is from
the distribution D, then “0” is always the correct predic-
tion. However, we exclude this trivial hypothesis of always
predicting 0 and require all binary classifiers to be induced
from multiclass classifiers. Let FH be the space of these
binary classifiers. FH is induced fromH as follows:

FH = {fh : fh(x, s) = I(h(x) /∈ s), h ∈ H}.

Though the inducing relation is a surjection fromH to FH ,
we assume the subscript h in the notation fh can be any

h ∈ H inducing fh. The binary classification error of fh is
the superset error of h in the SLL-I problem.

Denote the ERM learner of the binary classification prob-
lem by As. The learner As actually calls A, which returns
an hypothesis h? and then As returns the induced hypoth-
esis fh? . In the realizable case, both h? and fh? have zero
training error on their respective classification tasks.

A sufficient condition for learnability of an SLL-I problem
is that any hypothesis with non-zero classification error will
cause a superset error with relatively large probability Let
η be defined by

η = inf
h∈H:ErrD(h)>0

ErrsD(h)

ErrD(h)
. (8)

Define the tied error condition as η > 0. Then we can
bound the multiclass classification error by bounding the
superset error when this condition holds.

We need to find the VC-dimension of FH first. It can be
bounded by the Natarajan dimension ofH.

Lemma 3.4 Denote the VC-dimension of FH as dF and
the Natarajan dimension ofH is dH, then

dF < 4 dH(log dH + 2 logL)

Proof There is a set of dF instances that can be shattered
by FH—that is, there are functions in FH that implement
each of the 2dF different ways of classifying these dF in-
stances. Any two different binary classifications must be
the result of two different label predictions for these dF in-
stances. According to Natarajan’s (1989) original result on
Natarajan dimension, there are at most ddHF L2dH different
multiclass classifications on these instances. Therefore,

2dF ≤ ddHF L2dH .

Taking the logarithm of both sides gives us

dF log 2 ≤ dH log dF + 2dH logL.

By bounding log dF above by log dH + dF
edH

, we get

dF log 2 ≤ dH log dH +
dF
e

+ 2dH logL.

By observing that (log 2 − e−1)−1 < 4, we obtain the re-
sult.

Now we can bound the multiclass classification error by
bounding the superset error.

Theorem 3.5 Assume η > 0 and assume H has a finite
Natarajan dimension dH, then A returns an hypothesis
with error less than ε with probability at least 1 − δ when

tgd
Inserted Text
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the training set has size n > n1(H, δ, ε), which is defined
as

n1(H, δ, ε) =
4

ηε

(
4dH(log dH + 2 logL) log

(
12

ηε

)
+ log

(
2

δ

))
.

Proof Learner A returns hypothesis h? ∈ H with
ErrsD(h?) = 0. The corresponding binary hypothesis
fh? ∈ FH makes no superset error on the training data.

By Lemma (3.4), n1(H, δ, ε) ≥ ns1(FH, δ, ηε), where

ns1(H, δ, ηε) =
4

ηε

(
dF log

(
12

ηε

)
+ log

(
2

δ

))
.

When n > n1(H, δ, ε) ≥ ns1(FH, δ, ηε), by Theorem 8.4.1
in Anthony & Biggs (1997), ErrsD(fh?) < ηε with proba-
bility at least 1 − δ. Therefore ErrD(h?) < ε with proba-
bility at least 1− δ.

The necessary condition for the learnability of the SLL
problem is that no hypothesis have non-zero multiclass
classification error but have zero superset error. Otherwise,
no training data can reject such an incorrect hypothesis.

Theorem 3.6 If there exists an hypothesis h ∈ H such that
ErrD(h) > 0 and ErrsD(h) = 0, then the SLL-I problem
is not learnable by an ERM learner.

The gap between the general sufficient condition and the
necessary condition is small.

Let’s go back and check the small ambiguity degree condi-
tion against the tied error condition. The condition γ < 1
indicates Pr(h(x) /∈ s|x, y) ≥ (1− γ)Pr(h(x) 6= y|x, y).
By taking the expectation of both sides, we obtain the tied
error condition η ≥ 1−γ > 0. This also shows that the tied
error condition is more general. The tied error condition is
less practical, but it can be used as a guideline to find more
sufficient conditions.

4. Superset Label Learning Problem with
Bagged Training Data (SLL-B)

The second type of superset label problem arises in multi-
instance multilabel learning (Zhou & Zhang, 2006). The
data are given in the form of i.i.d. bags. Each bag contains
multiple instances, which are generally not independent of
each other. The bag label set consists of the labels of these
instances. In this form of superset label learning problem,
the bag label set provides the label superset for each in-
stance in the bag. An ERM learning algorithm for SSL-I
can naturally be applied here regardless of the dependency
between instances. In this section, we will show learnabil-
ity of this SSI-B problem.

We assume each bag contains r instances, where r is fixed
as a constant. The space of labeled instances is still X ×Y .
The space of sets of bag labels is also S. The space of
bags is B = (X × Y)r × S . Denote a bag of instances
as B = (X,Y, S), where (X,Y ) ∈ (X × Y)r and S ∈ S.
Note that although (X,Y ) is written as a vector of instances
for notational convenience, the order of these instances is
not essential to any conclusion in this work. We assume
that each bag B = (X,Y, S) is sampled from the dis-
tribution DB . The label set S consists of labels in Y in
the MIML setting, but the following analysis still applies
when S contains extra labels. The learner can only observe
(X,S) during training, whereas the learned hypothesis is
tested on (X,Y ) during testing. The boldface B always
denotes a set with m independent bags drawn from the dis-
tribution DB .

The hypothesis space is still denoted by H. The expected
classification error of hypothesis h ∈ H on bagged data is
defined as

ErrDB (h) = EB∼DB
[1
r

r∑
i=1

I(h(Xi) 6= Yi)
]

(9)

The expected superset error and the average superset error
on the set B are defined as

ErrsDB (h) = EB∼DB
[1
r

r∑
i=1

I(h(Xi) /∈ Si)
]

(10)

ErrsB(h) =
1

mr

∑
B∈B

r∑
i=1

I(h(Xi) /∈ Si). (11)

The ERM learnerA for hypothesis spaceH returns the hy-
pothesis with minimum average superset error.

4.1. The general condition for learnability of SLL-B

Using a technique similar to that employed in the last sec-
tion, we convert the SLL-B problem into a binary classi-
fication problem over bags. By bounding the error on the
binary classification task, we can bound the multiclass clas-
sification error of the hypothesis returned by A. Let GH be
the hypothesis space for binary classification of bags. GH
is induced fromH as follows:

GH = {gh : gh(X,S) =

max
1≤i≤r

I(h(Xi) /∈ Si), h ∈ H}.

Every hypothesis gh ∈ GH is a binary classifier for bags
that predicts whether any instance in the bag has its label
outside of the bag label set. Since 0 is the correct classi-
fication for every bag from the distribution DB , we define
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the expected and empirical bag error of gh as

ErrBDB (gh) = EB∼DB max
1≤i≤r

I(h(Xi) /∈ Si) (12)

ErrBB(gh) =
1

m

∑
B∈B

max
1≤i≤r

I(h(Xi) /∈ Si). (13)

It is easy to check the following relation between
ErrBDB (gh) and ErrsDB (h).

ErrsDB (h) ≤ Err
B
DB (gh) ≤ rErr

s
DB (h). (14)

Denote by AB the ERM learner for this binary classifica-
tion problem. In the realizable case, if the hypothesis gh? is
returned by AB , then gh? has no binary classification error
on the training bags and h? makes no superset error on any
instance in training data.

To bound the error for the binary classification problem, we
need to bound the VC-dimension of GH.

Lemma 4.1 Denote the VC-dimension of GH by dG and
the Natarajan dimension ofH by dH, then

dG < 4 dH(log dH + log r + 2 logL).

The proof of this lemma is almost the same as Lemma
3.4. The only difference is that different classifications of
dG bags are caused by different classifications of rdG in-
stances.

The tied error condition for the SLL-B problem is λ > 0,

λ = inf
h∈H:ErrD(h)>0

ErrsDB (h)

ErrDB (h)
.

With the tied error condition, we can give the sample
complexity of learning a multiclass classifier with multi-
instance bags.

Theorem 4.2 Suppose the tied error condition holds, λ >
0, and assume H has finite Natarajan dimension dH, then
A(B) returns an hypothesis with error less than ε with
probability at least 1 − δ when the training set B has size
m and m > m0(H, δ, ε),

m0(H, δ, ε) =
4

λε

(
4dH log(dHrL

2) log

(
12

λε

)
+ log

(
2

δ

))
Proof With the relation in (14), we have ErrDB (h) ≤
1
λErr

B
DB (gh). The hypothesis h? returned by A has zero

superset error on the training bags, thus gh? has zero bag
error. When m > m0, we have ErrBDB (gh) < λε with
probability at least 1 − δ by Theorem 8.4.1 in Anthony &
Biggs (1997). Hence, we have ErrDB (h) < ε with proba-
bility at least 1− δ.

4.2. A condition for all hypothesis spaces

We now provide a more concrete sufficient condition for
learnability with a principle similar to the ambiguity de-
gree. It generally states that any two labels do not always
co-occur in bag label sets.

First we make an assumption about the data distribution.

Assumption 4.3 (Label correlation assumption)

Pr(X|Y ) =

r∏
i=1

Pr(Xi|Yi)

This assumption states that the covariates of an instance are
determined by its label only. With this assumption, a bag is
sampled in the following way. Instance labels Y of the bag
are first drawn from the marginal distribution D(Yi), then
for each Yi, 1 ≤ i ≤ r, Xi is sampled from distribution
Dx(Yi) independently.

Remark We can compare our assumption of bag distribu-
tion with assumptions in previous work. Blum & Kalai
(1998) assume that all instances in a bag are independently
sampled from the instance distribution. As stated by Sabato
& Tishby (2009), this assumption is too strict for many ap-
plications. In their work as well as in Wang & Zhou (2012),
the instances in a bag are assumed to be homogeneous-
dependent, and they point out that a further assumption
is needed to get a low error classifier. In our assump-
tion above, we also assume homogeneity and dependency
among instances in the same bag. The dependency only
comes from the instance labels. This assumption is roughly
consistent with human descriptions of the world. For exam-
ple, in the description “a tall person stands by a red vehi-
cle”, the two labels “person” and “vehicle” capture most of
the correlation, while the detailed descriptions of the per-
son and the vehicle are typically much less correlated.

The distribution DB of bags can be decomposed into DY
and Dx(`), ` ∈ Y . Here DY is a distribution over Yr. For
each class ` ∈ Y , Dx(`) is a distribution over the instance
space X . As a whole, the distribution of X is denoted as
DX(Y ).

With Assumption 4.3, we propose a sufficient condition in
the following theorem.

Theorem 4.4 Define

α = inf
(`,`′)∈I

E(X,Y,S)∼DB [I(` ∈ S)I(`′ /∈ S)]

where I is the index set {(`, `′) : `, `′ ∈ Y, ` 6= `′}. Sup-
pose Assumption 4.3 holds and α > 0, then

inf
h∈H: ErrDB (h)>0

ErrsDB (h)

ErrDB (h)
≥ α

r
.
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Proof Denote the confusion matrix of each hypothesis h ∈
H as Uh ∈ [0, 1]L×L.

Uh(`, `
′) = Prx∼Dx(`)(h(x) = `′), 1 ≤ `, `′ ≤ L

The entry (`, `′) of Uh means a random instance from class
` is classified as class `′ by h with probability Uh(`, `′).
Each row of Uh sums to 1. Denote k(Y, `) as the number
of occurrences of label ` in Y .

Then the error of h can be expressed as

ErrDB (h) =
1

r
EY

[ r∑
i=1

∑
`′ 6=Yi

Uh(Yi, `
′) | Y

]
=

1

r
EY

[ ∑
(`,`′)∈I

k(Y, `)Uh(`, `
′) | Y

]
≤ 1

r

∑
(`,`′)∈I

rUh(`, `
′)

=
∑

(`,`′)∈I

Uh(`, `
′).

The expected superset error of h can be computed as

ErrsDB (h)

=
1

r
EY

[ r∑
i=1

∑
`′ 6=Yi

I(`′ /∈ Si)Uh(Yi, `′) | Y
]

=
1

r
EY

[ ∑
(`,`′)∈I

k(Y, `)I(`′ /∈ Si)Uh(`, `′) | Y
]

≥ 1

r

∑
(`,`′)∈I

αUh(`, `
′).

These two inequalities hold for any h ∈ H, so the theorem
is proved.

With the condition that α > 0, the remaining learnabil-
ity requirement is that the hypothesis space H have finite
Natarajan dimension. A merit of the condition of Theorem
4.4 is that it can be checked on the training data with high
confidence. Suppose we have a training data B. Then the
empirical estimate of α is

αB =
1

m
min

(`,`′)∈I

∑
(X,Y,S)∈B

I(` ∈ S)I(`′ /∈ S),

If αB > 0, then by the Chernoff bound, we can obtain a
lower bound on α > 0 with high confidence. Conversely,
if αB = 0 for a large training set, then it is quite possible
that α is very small or even zero.

5. Conclusion and Future Work
In this paper, we analyzed the learnability of an ERM
learner on two superset label learning problems: SLL-I (for

independent instances) and SLL-B (for bagged instances).
Both problems can be learned by the same learner regard-
less the (in)dependency among the instances.

For both problems, the key to ERM learnability is that the
expected classification error of any hypothesis in the space
can be bounded by the superset error. If the tied error con-
dition holds, then we can construct a binary classification
problem from the SLL problem and bound the expected er-
ror in the binary classification problem. By constructing a
relationship between the VC-dimension and the Natarajan
dimension of the original problem, the sample complexities
can be given in terms of the Natarajan dimension.

For the SLL-I problem, the condition of small ambiguity
degree guarantees learnability for problems with hypothe-
sis spaces having finite Natarajan dimension. This condi-
tion leads to lower sample complexity bounds than those
obtained from the general tied error condition. The sam-
ple complexity analysis with this condition generalizes the
analysis of multiclass classification. For the SLL-B prob-
lem, we propose a reasonable assumption for the distribu-
tion of bags. With this assumption, we identify a practical
condition stating that no two labels always co-occur in bag
label sets.

There is more to explore in theoretical analysis of the su-
perset label learning problem. Analysis is needed for the
agnostic case. Another important issue is to allow noise in
the training data by removing the assumption that the true
label is always in the label superset.
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