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Abstract—Researchers in Al and Operations Research employ
the framework of Markov Decision Processes (MDPs) to formalize
problems of sequential decision making under uncertainty. A
common approach is to implement a simulator of the stochastic
dynamics of the MDP and a Monte Carlo optimization algorithm
that invokes this simulator to solve the MDP. The resulting
software system is often realized by integrating several systems
and functions that are collectively subject to failures of specifica-
tion, implementation, integration, and optimization. We present
these failures as queries for a computational steering visual
analytic system (MDPVis). MDPvVIs addresses three visualization
research gaps. First, the data acquisition gap is addressed through
a general simulator-visualization interface. Second, the data
analysis gap is addressed through a generalized MDP information
visualization. Finally, the cognition gap is addressed by exposing
model components to the user. MDPVIS generalizes a visualization
for wildfire management. We use that problem to illustrate
MDPVIS.

I. INTRODUCTION

Many challenging optimization problems in sustainability
[13], [11], game AI [33], and autonomous control [20] require
considering the long-term impacts of actions whose outcomes
are stochastic. For example, forest managers must decide
whether to suppress a wildfire whose results may prevent
wildfires from spreading over subsequent decades [13]. A
policy that accounts for these temporal and stochastic effects
is produced by an optimization system integrating several
components that are subject to failures of specification, im-
plementation, integration, and optimization. Since the sys-
tem stochastically expresses and hides these failures, Testing
and debugging these failures (referred to as “bugs”) requires
exploration. Visual analytics combined with computational
steering is well suited to this exploratory task. We introduce a
generalized visualization (see Figure 1), MDPVIS, to support
this task.

To address a broader class of optimization problems, we
target the common optimization formulation of a Markov
Decision Process (MDP). In an MDP, the state of the world
evolves stochastically from one state to another depending on
the action chosen at each time step. A scalar reward is received
at each time step depending on the system state and the chosen
action. An MDP is solved by learning a decision making rule
(policy) that maximizes the long-term sum of rewards.

Some MDPs are small enough to solve with exact al-
gorithms such as Policy Iteration and Value Iteration [5],

but most MDPs of practical interest require Monte Carlo
methods. In these cases, the standard approach is to implement
a software simulation of the MDP and then apply a Monte
Carlo optimizer, like policy gradient search [29], [10] to find
a near-optimal policy.

Andrew Ng relays an example [19] of a soccer playing
agent whose MDP optimizer learns a policy that maximizes
expected reward by exploiting a bug. The soccer agent received
a reward for touching the ball under the theory that possession
time is associated with scoring goals. Instead of using ball
possession to advance down the field, the agent stood by the
ball and began to “vibrate” to produce the maximum number
of ball touches. This bug can be viewed as a problem in
specification (the agent should not be rewarded for touching
the ball), implementation (the agent should not be able to
vibrate next to the ball), integration (the frequency of reward
granted by the transition function for ball touches is too high),
and optimization (a more difficult to discover policy may
actually be optimal).

The multitude of possible MDP bugs and fixes give rise
to a highly iterative development process. During our design
process for MDPVIS we conducted a series of semi-structured
interviews [28] with MDP researchers to elicit current practices
for MDP development. We found a variety of ad hoc testing
systems in support of an “informed trial and error” [27]
process whereby MDP practitioners iteratively explore the
parameter space. MDP practitioners generally first write an
interactive client to manually execute transitions, followed
by a visualization of state development as a policy rule is
followed. None of the researchers we interviewed use a generic
tool supporting this process. We hypothesize this is because
researchers have heretofore not had access to a visualization
they can easily connect to their MDP simulator and MDP
optimizer.

MDPvVIS makes three contributions. First, it introduces a
domain-independent protocol by which the visualization sys-
tem can interact with the MDP optimizer and MDP simulator.
Second, it provides a visual interface that supports the data
analysis tasks that MDP programmers, decision makers, and
stakeholders need to perform. Third, it provides an interface
by which the users can interact with the MDP simulator and
optimizer to test and compare different parameters and explore
their effects on the resulting behavior of the system.

These three contributions relate to the three challenges
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identified by Sedlmair et al. [27]: the data acquisition gap
(getting the data into the visualization tool), the data analysis
gap (helping the user visualize the data), and the cognition gap
(helping the user uncover important behavior embedded within
high-dimensional systems).

We adapt computational steering from the high perfor-
mance scientific visualization community [22] to achieve our
three primary contributions. Whereas computational steering
traditionally refers to modifying a computer process during
its execution [17], we treat optimization as an open-ended
process whose parameters are repeatedly changed for testing,
debugging, and building system comprehension.

Software testing is a subfield of software engineering that
includes more precise definitions of testing, bugs, and debug-
ging. In this paper, we take a high-level view of testing and
debugging. In particular, we define testing as the “...execution
of a program with the intent to produce some problems -
especially a failure.” These failures are generally called “bugs,”
whose debugging is defined as “Relating a failure or an
infection to a defect (via an infection chain) and subsequent
fixing of the defect” [34].

In other words, developers test software for bugs by
comparing the results of execution to the expected results.
Debugging is the exploratory process carried out in order to
attribute a bug to the incorrect program code (and ultimately fix
it). It is clear, from this definition, that testing and debugging
requires that the developer have the ability to 1) clearly
associate program output with program input in order to
create test cases by executing the code under specific input
conditions and 2) compare actual outputs to expected outputs.
Our visualization tool supports these two tasks within the
context of MDPs.

MDPVIS’ target users are researchers interested in steering
the optimization itself, simulator developers who are interested
in ensuring the policies optimized for the problem domain are
well founded, or domain policy experts primarily interested in
the outcomes produced by the optimized policy. In real-world
settings these roles can be filled by a single person, or each
role could be performed by a large team of developers and
domain experts. As a secondary contribution, this paper lists
testing questions for MDPs from these target users that inform
the design of MDPVISs.

Our design process for MDPVIS followed Munzner’s
nested model [18], which includes steps for characterizing the
problem domain and designing visual encodings. In the fol-
lowing sections we formally introduce MDPs with their Data
and Task Abstraction, review the optimization visualization
literature in section III, give our visual encoding for MDPs
in section IV, and present the visualization’s prototype for the
Wildfire Suppression domain in section V.

II. DATA AND TASK ABSTRACTION

While several different MDP formulations are used in the
literature, there is a de facto standard formulation from which
other formulations are viewed as specializations. We formally
state the MDP as the standard infinite horizon discounted
Markov Decision Process (MDP) with a designated start state
distribution [4], [24] .# = (S,A,P,R,Y,R). S is a finite set

of states of the world; A is a finite set of possible actions
that can be taken in each state; P: SxA X S~ [0,1] is
the conditional probability of entering state s’ when action
a is executed in state s; R(s,a) is the reward received after
performing action a in state s; v € (0,1) is the discount factor,
and Py is the distribution over starting states. Generally the
goal for optimizing an MDP is to find a policy, 7, that selects
actions maximizing the discounted expected value of the MDP.
For convenience we also define B, to be the distribution of
states at time n when following policy 7.

Fig. 2. A set of three rollouts generated starting at states drawn from the
initial state distribution (Py) and transitioned according to the current policy
(7(s)) until a rollout depth of 2. The initial state and all subsequent states are
defined on a set of quantitative and categorical variables. Each state transitions
to resulting states by evaluating the transition function until reaching the time
horizon or terminating state. The transition function draws the resulting states
from a distribution that is a function of the current state and the action selected
by the policy function. We annotated the set of rollouts above with two dotted
green lines to highlight a set of states drawn from the distribution of states at
a particular time horizon under policy 7.

This formulation specifies a model that generates data in
the form of “Monte Carlo rollouts” detailed in figure 2. These
rollouts are the output of the system under test, but since the
distribution of these rollouts is defined by applying a policy
in many successive states, the rollouts are tightly coupled with
the parameter space of the MDP’s component functions.

Sedlmair et al. [27] label techniques for understanding the
relationship between input parameters and outputs as Parame-
ter Space Analysis (PSA), “...the systematic variation of model
input parameters, generating outputs for each combination of
parameters, and investigating the relation between parameter
settings and corresponding outputs.” This is a suitable defi-
nition for the MDP testing and debugging processes. Finding
MDP bugs requires exploring the rollouts to test for bugs. Sim-
ilarly, establishing bug causality (debugging) requires varying
the model parameters and examining the resulting rollouts.

Table I gives a series of testing questions derived from
experience optimizing for a wildfire suppression policy domain
and from interviewing MDP algorithm researchers not involved
in the wildfire policy project. The table labels these questions
according to Sedlmair et al.’s [27] tasks for visual parameter
space analysis: optimization, partitioning, fitting, outliers, un-
certainty, and sensitivity. We use these tasks to highlight a few
potential bugs below.

Fitting: In many applications the MDP simulator is meant



to simulate real world phenomena to optimize a policy. While
we typically do not have access to real-world validated data
across the entirety of the state and action space, we do often
have state transition data for a subset of the parameter space.
Further, while the MDP practitioner may not have access to
ground truth data for their system, they can often identify
when the system is producing unrealistic outcomes. See testing
questions 1 through 5 of Table L.

Outliers: In Markov Decision Processes, rewards and
penalties are given by a function whose inputs are the current
state and the selected action. Even carefully crafted reward
functions can result in the algorithm exploiting unforeseen
interactions between the MDP’s constituent parts. The capacity
for a policy to earn rewards from unlikely events mean outliers
influence the resulting policy even when they are rare events.
See testing questions 10 and 11 from Table L.

Partition: For the partitioning task we expand Sedlmair
et al’s definition which focuses on segmenting the input
parameters into groups of similar outcomes. For testing MDPs,
we are also interested in discovering which parameters produce
different distributions of outcomes when they should be the
same and conversely, which sets of parameters produce the
same distribution of outcomes when they should be different.
When these expectations are violated the MDP likely has a
bug. See testing questions 12 through 16.

Optimization: Virtually all MDP optimization algorithms
work by iteratively improving the policy until convergence.
Convergence occurs when the optimization algorithm decides
it can’t improve the current policy. The converged policy
may be globally optimal, but large state and action spaces
often mean the optimization algorithm can only guarantee
the policy is a local optimum. For local search optimization
algorithms, visualizing several local optima gives perspective
on the tradeoffs the optimized policies are implicitly making
to maximize elements of the reward function. For example, a
policy gradient optimization algorithm [29], [3], [21] for the
wildfire domain may find a policy minimizing fire suppression
costs if the initial policy suppresses all fires, whereas it may
find a policy maximizing ecological value if the initial policy
allows all wildfires to burn. In such cases, the rewards, policies,
and optimization algorithm are tightly coupled. To test whether
an optimized policy has found an acceptable optimum, the
MDP practitioner can apply updates to the policy and re-
optimize. See testing questions 6 through 9.

Uncertainty: Optimization algorithms produce policies
that select actions regardless of how certain they are of the
best possible action. States where the optimization algorithm
is most uncertain about which action to select require test-
ing for inadequate state representation or insufficient training
examples. See testing questions 23 and 24.

Sensitivity: Changing the parameters of the reward func-
tion allows for exploring why a learned policy is deemed
near-optimal. If a learned policy is not stable within its
neighborhood of similar reward functions, it is likely that the
policy is not one that should be relied on in the real world.
See testing questions 17 through 22.

III. RELATED WORK

Many problems have been formulated as Markov Decision
Processes, including domains as diverse as RC car control [1],
[9], invasive species management [11], and real time strategy
games [33]. While no general large MDP visualization has
heretofore been proposed covering all these domains, there
are numerous works that could be viewed as visualization for
more restricted classes of MDPs.

Several works present systems for exploring decisions at
a single time step. Broeksema et al. [8] give a decision
analysis tool to examine recommendations made by an expert
system. Decisions are plotted as Voronoi diagrams by means of
Multiple Correspondence Analysis (MCA), which is a version
of Multidimensional Scaling (MDS). The Voronoi diagrams
lack a comprehensible coordinate system in two dimensions,
but adjacency of attributes plotted over the diagram show how
the decision variable changes as other attributes vary.

MDP policies are often specified via learned classifiers.
Effectively debugging classifiers is an active area of research,
but published research does not address debugging classifiers
for MDPs. Groce et al. [12] explore methods for prioritizing
classified data points for user inspection. Once a datapoint is
selected the end user can decide whether they agree with its
classification. The user debugs the classifier by correcting data
labels, which leads to an update of the model. This debugging
strategy assumes that the only form of error was an incorrect
data label. In MDPs, however, there are no labels on the data,
and the central testing question is whether the simulator and
policy are generating the right data to begin with.

Kulesza et al. [14] includes a classifier debugging system
for email messages. The user provides model feedback and
correction through an interactive bar chart for a naive Bayes
model. Kulesza et al. selected naive Bayes for its interpretabil-
ity since many classifiers are too complex for end users to
understand.

Migut and Worring [16] compose several information vi-
sualizations into a visual analytic dashboard for exploring
a dichotomous choice as determined by a machine learning
classifier. The system does not examine multiple sequential
timesteps.

In ensemble visualization, the goal is to provide a compact
representation of many predictive models of a singular ground
truth [23]. Uncertainty in the predicted result is reduced by
viewing a visualization of model agreement. In contrast, the
uncertainty in MDP visualization arises from the stochastic
responses of the world as the agent acts upon it. Ensemble
visualization requires building consensus, but MDP visualiza-
tion requires exploring the complete set of the world’s potential
responses to a policy.

A noteworthy visualization for natural resource manage-
ment, Vismon [6], gives an interface for exploring tradeoffs
in a set of management choices for an Alaskan fishery.
Here the fishery manager filters 121 different management
choices derived from varying two management parameters.
The manager cannot view any management options that are
not pre-computed before selecting a policy.

Simulation steering is one branch of visualization that
attempts to bring the user into a optimization process by



H 1D ‘ Question Task Interaction ‘ R ’ P ‘ b4 ‘ M H
1 Is the reward function giving the expected rewards? fitting View the discounted or undiscounted rewards as a fan chart [ J [ J
and filter down the rollouts or regenerate rollouts with fixed
policies.
2 Do the rewards reflect the stakeholder’s preferences? fitting Look at the parameters of the reward function. [ J
3 Do simulated transitions result in realistic states? fitting Examine individual trajectories. [ J
4 Do simulated transitions result in realistic state distributions? fitting View the histograms of state variables at the horizon. [ J
5 Does the historical policy produce the historical results? fitting Add a variable for each variable with historical data that [ ]
gives the variable’s percentile. Display this derived variable
in a fan chart.
6 Can the user do better than the optimized policy by tweaking optimization Have the user tweak the parameters of the policy function [ J [ J
the parameters? and generate new Monte Carlo rollouts.
7 Is the policy converged to a local optimum? optimization Ask it to optimize from the current position. [ J [ J
8 Is the policy converged to an acceptable local optimum? optimization Change the starting policy to a completely different policy [ J [ J
and re-optimize.
9 Is the optimization algorithm making efficient use of computa- optimization Add variables to the output describing the learning process. [ J
tion?
10 | Are rollouts that complete different from rollouts that break? outliers Load the failing and completing rollouts as a comparison. [ J [ J [ J [ J
11 | Does the policy inappropriately exploit modeling choices? outliers Detecting this unforeseen problem requires exploration. [ J [ J [ J [ J
12 | What is the state of the world when the transition function | partition Select only the rollouts that don’t complete and explore | ® | @ | @ | @
breaks? them.
13 | Does one policy have a higher risk of catastrophic outcome partition Compare the rollouts from both. [ ] [ ]
despite having a better expected value?
14 | When faced with a specific situation, what does the policy partition Filter the histograms to a single state and see what action is [ J
select? selected.
15 | How does an optimized policy perform when compared to a | partition Compare the rollouts from both. [ J
hand-coded policy?
16 | What does a single outcome look like? partition Request the full state information. [ J
17 | Do small changes in the parameters produce vastly different sensitivity Change parameters then compare the two rollout sets. [ J [ ] [ ] [
outcomes
18 | Do small changes in the parameters produce different policies? sensitivity Change the parameters and reoptimize. [ J [ J [ J [ J
19 | Do different policies earn reward through maximizing different | sensitivity Compare rollout sets. e o o
components of the reward function?
20 | Does the policy respond properly to changes in the reward sensitivity Change the reward parameters and re-optimize. [ J [ J
function?
21 | What are the differences in outcomes produced by different sensitivity Load the two sets of rollouts as a comparison. [ J [ J
policies?
22 | What are the most important drivers of policy? sensitivity Filter variables in the histogram and watch how the propor- [ J
tion of selected actions update.
23 | What is the distribution of states at a particular horizon? uncertainty View the fan charts. [ J [ J
24 | How certain is the policy function about a specific choice? uncertainty View the shifting distribution of action selection while [ J
filtering/brushing the state variables.
TABLE L MDP TESTING QUESTIONS WITH THEIR SEDLMAIR ET AL. [27] TASKS, THEIR REALIZATION IN MDPVIS, AND THE COMPONENTS TESTED

BY THE QUESTION, WHERE M IS THE OPTIMIZATION FUNCTION THAT PRODUCES POLICIES FOR THE MDP.

allowing the user to select actions at each timestep as the
simulator executes. Simulation steering for epidemic response
decisions in Afzal et al. [2] show individual outcomes through
time. The user can change decisions at various points along a
future trajectory to see how the mortality rate responds. This
visualization provides user-based optimization for a determin-
istic MDP.

Waser et al. [30] give another simulation steering visual-
ization, “World Lines,” that invites users to control emergency
response for flooding events. This visualization generates a
small set of alternative futures based on an action in the
present. Subsequent versions of to World Lines [32], [25],
[26], [31] support stochasticity through secondary simulation
controls (random levee breach locations) on the probabilistic
parameters of the model, but the visualization does not center
on machine learned policies.

Simulation steering is distinct from computational steering,
which is concerned with changing the parameters, resolution,
or representation of a computing process [22]. Computational
steering was largely developed by the high performance com-
puting world to steer computation during execution [17], but
we appropriate the term for producing policies and rollouts in

batches.

In contrast to the current approaches in the literature that
attempt to give the best visualization possible for a particular
problem domain, our approach defines the visualization in
terms of the formal properties of a class of problems.

IV. VISUAL ENCODING OF MDPs

Our visual encoding for MDPs in Figure 1 is shown in four
computational steering controls and three visualization panels.
The controls give the reward, model, and policy parameters
that are exposed by the MDP’s software. These panels are
cached in an exploration history that records the parameters
and rollouts computed by the MDP. Here we explain the visual
interface of MDPVIS, followed by implementation details in
section V. Each of the following subsections describe parts of
the example of Figure 1.

A. Steering Panels

Rewards Specification: R(s,a)

Policy optimization is highly sensitive to changes in the
parameters of the reward function. To explore these changes




we expose the set of real valued reward parameters specified
by the MDP as a list HTML input elements.

Whenever the reward function parameters change, elements
of MDPVISs related to optimality and expected value are no
longer valid. The user interface updates to offer buttons for
optimizing a new policy and generating rollouts.

Model Definition: P

The MDP’s simulator may expose model parameters to
tune the system, or eliminate complexity for debugging a
specific component. These can include modifiers of the tran-
sition function, the total number of transitions to simulate
(otherwise known as the horizon or sampling depth), the
number of potential futures to sample (otherwise known as
the sampling width), modifiers to the initial state distribution,
flags for deactivating parts of the model, and fidelity switches
for trading execution time for higher fidelity simulations.

A second purpose of the model parameters is to expose
elements of the MDP’s optimization algorithm to the user.
Many MDP optimization algorithms are highly sensitive to
parameters for learning rate, search depth, heuristics, con-
vergence tolerance, and optimality requirements. Selecting a
reasonable set of these parameters is often an iterative process.

When these parameters change, MDPVIS enables buttons
for optimizing a new policy and/or generating new rollouts.

Policy Definition: 7(s) — a

The policy controls give the current policy. If the user
chooses to optimize then they can explore the sensitivity of
the policy to changes in the model or rewards. Checking this
linkage between parameters and policy determines whether
the policy is stable for minor changes in the reward function
or whether the policies earn reward via different parts of the
reward function.

Just as was the case in the prior sections, it is appropriate
to present this control as a set of user-editable real numbers.
When the policy is represented by parameters that have no hu-
man interpretable meaning as is the case with neural networks
and sufficiently large decision trees, then this simplistic policy
representation is no longer appropriate. While the visualization
still answers many testing questions without rendering the
policy parameters, we believe the work of Broeksema et al. [8]
could be a good stand-in for this area when the user does not
need to modify the policy.

When the policy function is updated it is necessary to
regenerate the set of Monte Carlo rollouts that are visualized
in the areas below.

Exploration History

As the user repeatedly generates sets of rollouts under
different parameter settings they may want to return to a
prior parameter set to continue exploration from that point
or to compare the sets of rollouts experienced under the prior
parameter set. Here we add two buttons for every set of rollouts
that have been generated. One button will reload the prior set
of parameters and the rollouts that they generated into the
visualization. The other button will put the visualization into
“comparison mode”, which displays the difference between
two rollout sets in the visualization areas.

When in comparison mode the reward, model, and policy
parameters cannot be edited since they display the differences
in the parameter values between the current set of rollouts and
the one being applied as a comparator.

More information about the comparison mode is included
in the following visualization areas.

B. Visualization Panels
State Variable Distribution at Event: P,

Having specified all the computational steering parameters,
we can show the distribution of states at a particular timestep
as a histogram. The user can select a range of values in the
histogram via brushing, which is a visualization technique for
selecting a subset of data via an input device. Brushing causes
all histograms to update to reflect only those rollouts that
satisfy the selected range. This supports a global-to-local [27]
testing process where exploration starts with an overview over
all rollouts before drilling down into specific rollouts. When
the user drills down to specific rollouts the context of their
brushing is shown with an unfilled histogram bar.

When the visualization is in comparison mode the his-
tograms transform into a a bar chart showing the difference
in counts for the bins between the two sets of rollouts.

State Variable Evolution: P

An important question when debugging an MDP is “Do the
state distributions reflect the real world?” (questions 4 and 5
from Table I). In MDP problems, there can be many variables
that evolve over time to produce a distribution of outcomes at
timesteps. In this area we represent distributions as fan charts
giving the deciles of variables across rollout timesteps.

To produce the fan chart, we first plot a lightly colored
area whose top and bottom represent the largest and smallest
value of the variable in each time step. On top of this lightest
color we plot a series of colors increasing in darkness with
nearness to the rollout set’s median value for the timestep.

By giving the percentiles, we are able to show both the
diversity of outcomes and the probability of particular ranges
of values. If the number of rollouts is small enough to avoid
the visual clutter of many intersecting lines, we render the
rollouts as a line chart.

The user explores the conditional state distributions,
P(S|S, € F) by manipulating filters (F) on either the fan charts
or the histograms. When filtering the fan chart the filters in
the histogram area also updated, and vice versa. Changing the
timestep of the fan chart’s filter updates the histograms to the
newly selected timestep. By filtering out values the fan charts
show a conditional distribution of state variables.

When in comparison mode, the color extents are plotted
by subtracting a color’s maximum (minimum) extent from the
corresponding maximum (minimum) extent of the other fan
chart. Figure 4 shows two fan charts rendered in comparison
mode.

When the user filters the rollouts and clicks a particular
rollout, MDPVIS requests the state detail.
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A high level overview of the Markov Decision Process visualization prototype: MDPVIS. The top row has the three computational steering controls

for (A) the reward specification, (B) the model modifiers, and (C) the policy definition. A fourth panel gives the history of Monte Carlo rollout sets generated
under the parameters of panels (A) through (C). Changes to the parameters enable the optimization button found under the policy definition and the Monte
Carlo rollouts button found under the Exploration History section. The visualization has two buttons in the History panel for each set of Monte Carlo rollouts,
one for visualizing the associated Monte Carlo rollouts and another for comparing two sets of rollouts. Below the control panels are visualization areas for (E)
histograms of the initial state distribution, (F) fan charts for the distribution of variables over time, and (G) a series of individual states rendered by the simulator

as images. For a readable version of the visualization we invite users to load the visualization in their browser by visiting MDPvis.github.io.
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We considered but ultimately rejected rendering the de-
tails of individual rollouts with a scatterplot matrix, parallel
coordinates, Multi-Dimensional Scaling (MDS), or Multiple
Correspondence Analysis (MCA). However, we found all these
approaches would unnecessarily tie the MDP practitioner to
an inadequate representation. Instead, we allow the MDP
simulator to render a two dimensional array of images that
will be shown at the bottom of MDPVIS.

For example, in the wildfire domain the state of the world
is captured by four images of the landscape’s timber and fuel
values. Our co-authors in forestry were already rendering these
landscapes, as shown in Figure 1, so we integrated MDPVIS
with these standard visualizations. Non-spatial MDPs would
not render landscapes, but they could return a visualization
relevant to their practitioners.

V. MDPvVIS IMPLEMENTATION

We built MDPVIS as a data-driven web application. Build-
ing on the web application stack affords two primary benefits.
First, Brehmer and Munzner [7] identify sharing as an impor-
tant feature to implement and the ubiquity of web browsers
makes it an ideal platform for collaboration. Second, the web
stack emphasizes standard data interchange formats that ease
integration with MDP simulators and optimization algorithms.
We identified four HTTP requests (initialize, rollouts, optimize,
and state) that are answered by the MDP simulator. These
requests do not assume a particular domain or implementa-
tion language. In most cases the requests should be able to
interface with the MDP simulator and optimizer using the
same command-line client they would typically implement for
testing a domain.

MDPVIs issues the following HTTP requests to the MDP
simulator and optimizer:

1) /initialize — Ask for the steering parameters that should be
displayed to the user. The parameters are a list of tuples,
each containing the name, description, minimum value,
maximum value, and current value of a parameter. These
parameters are then rendered as HTML input elements
for the user to modify. Following initialization, MDPVIS
automatically requests rollouts for the initial parameters.

2) /rollouts?QUERY — Get rollouts for the parameters that
are currently defined in the user interface. The server
returns an array of arrays containing the state variables
that should be rendered for each time step.

3) /optimize? QUERY - Get a newly optimized policy. This
sends all the parameters defined in the user interface for
the MDP and the MDP’s optimization algorithm returns
a newly optimized policy.

4) /state?IDENTIFIER — Get the full state details and
images. This is required for high dimensional problems
in which the entire state cannot be returned to the client
for every state in a rollout

This is a minimal set of queries for integrating a visualiza-
tion with an MDP domain. All relevant languages have web
server libraries that can be integrated with the MDP’s code
base for serializing Monte Carlo rollouts. We integrated the
wildfire domain with the visualization by adding a serialization

library (one line of code) and modifying a dummy data file to
initialize the domain. The most challenging integration task
was parsing the HTTP parameters into the expected data types
for the simulation code and writing the loop to invoke the
simulator multiple times.

VI. USE-CASE STUDY: WILDFIRE SUPPRESSION
POLICIES

We arrived at our generalized visualization by following
Munzner’s nested model [18] for the problem domain of
Wildfire Suppression then generalized the results to all MDPs.
Since the Wildfire Domain has high-dimensional states, it is
representative of a particularly challenging group of MDPs.

We expressed the suppression policy as a smoothly dif-
ferentiable function with interpretable coefficients. Each co-
efficient resembles a weight that would be generated by a
logistic regression. Increasing a coefficient’s value makes it
more likely that a wildfire will be suppressed for increasing
values of the corresponding state variable. We use policy
gradient methods [29], [3], [21] to optimize new policies,
which have the advantage of being both fast and likely to
improve the policy from an uninformed policy for all sample
sizes.

Our wildfire suppression domain combines models for fire
spread, vegetative growth, weather, suppression effectiveness,
suppression cost, and harvest. One of the most difficult ques-
tions any landscape modeler faces is how much realism is
necessary to address the hypothesis at hand? More realism
means greater development, computer processing, and com-
puter memory requirements, while less realism can lead to
results that are nonsensical at best and misleading at worst.
The fact that the state space is so large makes it difficult to
comprehend how each assumption affects the final outcome.
MDPVIS allows us to explore ways in which the simulator is
failing, either through hard-to-find technical bugs or “garbage
in, garbage out” assumptions that are affecting the way we
value different outcomes.

We used MDPVIS in a use-case study to provide anecdotal
evidence of the utility of MDPVIS. This case study is based on
user sessions with our forestry economics collaborators who
formulated fire suppression policies as an MDP optimization
problem. Throughout the design and development process, we
worked closely with these domain experts, who are co-authors
on this paper, to identify their needs as developers of MDP
solutions. The analyses in this section were performed by
these experts during their first use of MDPVIS, in conjunction
with a PhD student from computer science who implemented
MDPvIs but did not contribute to the development of the
MDP.

We detected bugs for most of the questions of Table I and
highlight interesting cases with their interactions under their
corresponding analysis tasks below.

Fitting: Several failures to simulate real conditions were
detected. Upon filtering the rollouts to the ones containing
the most extreme fires, we examined the state details and
found that the fires were not spreading east or south from
the ignition site (see Figure 3). We could only see this on
the larger fires because the rectangular timber harvests were
masking the unusual shape of the fire spread.



Fig. 3. Two sequential spatial snapshots of timber values for a state transition
that includes one of the largest fire loss events from 200 rollouts of 60 years.
The management area is visible in the center due to the rectangular timber
harvests. These rectangular harvests obscure the irregular boundary of small
fires. (A) shows a medium size fire obscured by a mixture of small fires and
timber harvests in (B). The straight edge of the largest fire introduced in (C)
clearly shows the fire is not spreading in all directions.
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Fig. 4. Fan charts for the suppression choice and the ignition date shown
in comparison mode for two rollout sets. We generated one rollout set under
a suppress-all policy and a second rollout set under a let-burn-all policy. We
confirmed that the proper action is being selected for each state by observing
the differences in suppression choices is always 1. However, there is an
unexpected difference in the dates, which should be consistent between the
two rollout sets.

Outliers: A common real-world wildfire suppression pol-
icy suppresses the vast majority of wildfires so it forms
a natural baseline for comparisons. To better illustrate the
outcomes of a suppress-all policy, we compared it to a let-burn-
all policy and found a surprising fact: the let-burn-all policy
dominates the suppress-all policy. This shows that either the
models do not balance the various rewards of fire suppression
properly, or a policy that is completely opposite from current
forestry practices produces better outcomes.

Partition: When comparing two different policies (see
Figure 4) under otherwise consistent parameters, we observed
a slight difference in the percentiles of the weather events.
Since these weather events are exogenously determined by a
random number generator, this difference indicates that the
random number generator is called differently depending on
the action that is selected. Without fixing this bug we cannot
compare a landscape’s response to different policies under the
same set of ignition events.

Optimization: Although the policies reported by our pol-
icy gradient algorithm improved upon our naive baselines,
we found it easy to improve upon the machine optimized
policies by tweaking the policy parameters. This shows that
the optimizer is failing to find a local optimum.

We were able to identify the most likely source of the
problem: when we optimized policies for increasing rollout
depths we found a runtime bug with our implementation of
importance sampling that produces a division by zero. We
hypothesize that this runtime fault is causing our optimization
function’s other anomalous results.

Uncertainty: Perhaps the greatest problem with fitting
the real world is the lack of uncertainty in the policies we
produced. Despite the attention paid to faithfully simulate
the real world, policies that always selected letting a wildfire
burn outperformed the policies with a more nuanced decision
criterion. A critical evaluation of the dynamics that result in a
complete reversal of real-world policies is necessary. We plan
to continue to use MDPVIS for this evaluation process after
addressing the other bugs we uncovered with MDPVIS.

Sensitivity: When viewing the timber harvest chart in
comparison mode, the lack of substantial differences in harvest
volumes for different policies indicates that the harvest volume
is not sensitive to the policy. This remains an open issue for
future research since this could potentially be caused by issues
with modeling or our motivating hypothesis that suppression
policies can meaningfully affect timber harvests in the long
run.

VII. CONCLUSION AND AVAILABILITY

This paper presented MDPVIS, a domain-independent tool
for supporting the testing and debugging of MDP simulation
and optimization software. MDPVIS employs a simple web
service protocol to interact with the MDP simulator and
optimizer, and supports many visual analysis tasks related
to MDP testing. MDPVIS supports viewing rollout distribu-
tions over time and temporal comparisons between policies
(either policies produced by the optimizer or policies designed
by the user). We presented a use-case study in which our
users immediately discovered several serious bugs. We also
discovered interesting behavior that is either a bug or an
indication that real-world policies diverge significantly from
the optimal policy. Our users report that MDPVIS is already
greatly accelerating their testing and debugging processes,
and they are looking forward to applying it to other MDP
simulators.

A live version of MDPVIS, the source code, and integration
instructions are available at MDPvis.github.io.
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