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Abstract

Theoretical and experimental analyses of
bagging indicate that it is primarily a vari-
ance reduction technique. This suggests that
bagging should be applied to learning algo-
rithms tuned to minimize bias, even at the
cost of some increase in variance. We test this
idea with Support Vector Machines (SVMs)
by employing out-of-bag estimates of bias
and variance to tune the SVMs. Experiments
indicate that bagging of low-bias SVMs (the
“lobag” algorithm) never hurts generaliza-
tion performance and often improves it com-
pared with well-tuned single SVMs and to
bags of individually well-tuned SVMs.

1. Introduction

Bias–variance theory provides a way to analyze the
behavior of learning algorithms and to explain the
properties of ensembles of classifiers (Friedman, 1997;
Domingos, 2000; James, 2003). Some ensemble meth-
ods increase expressive power of learning algorithms,
thereby reducing bias (Freund & Schapire, 1996).
Other ensemble methods, such as methods based on
random selection of input examples and input fea-
tures (Breiman, 2001; Buhlmann & Yu, 2002) reduce
mainly the variance component of the error. The de-
composition of the error into bias and variance can
guide the design of ensemble methods by relating mea-
surable properties of algorithms to the expected per-
formance of ensembles (Valentini & Dietterich, 2002).
In particular, bias–variance theory can tell us how to
tune the individual classifiers in an ensemble so as to
optimize the overall performance of the ensemble.

In this paper, we apply bias–variance analysis to di-
rect the tuning of SVMs to optimize the performance
of bagged ensembles. Specifically, since bagging is
primarily a variance-reduction method, and since the
overall error is (to a first approximation) the sum of

bias and variance, this suggests that SVMs should be
tuned to minimize bias before being combined by bag-
ging. We propose a variant of bagging, that we call
Lobag (Low bias bagging), that estimates the bias of
the SVM classifiers, selects low-bias classifiers, and
then combines them by bootstrap aggregating.

Previous work with other classifiers is consistent with
this approach. For example, several studies have
reported that bagged ensembles of decision trees
often give better results when the trees are not
pruned (Bauer & Kohavi, 1999; Dietterich, 2000). Un-
pruned trees have low bias and high variance. Simi-
larly, studies with neural networks have found that
they should be trained with lower weight decay and/or
larger numbers of epochs before bagging to maximize
accuracy of the bagged ensemble (Andersen et al.,
2001).

Unlike most learning algorithms, support vector ma-
chines have a built-in mechanism for variance reduc-
tion: from among all possible linear separators, they
seek the maximum margin classifier. Hence, one might
expect that bagging would not be very effective with
SVMs. Previous work has produced varying results.
On several real-world problems, bagged SVM ensem-
bles are reported to give improvements over single
SVMs (Kim et al., 2002). But for face detection, Buciu
et al. (2001) report negative results for bagged SVMs.

A few other authors have explored methods for tuning
SVMs in ensembles. Collobert et al. (2002) proposed
solving very large scale classification problems by us-
ing meta-learning techniques combined with bagging.
Derbeko et al. (2002) applied an optimization tech-
nique from mathematical finance to reduce the vari-
ance of SVMs.

The paper is structured as follows. In the following
section we discuss differences and commonalities be-
tween Lobag and bagging, then we describe how to
compute the bias–variance decomposition of the error.
In Sect. 4, we outline the main results of an extended



analysis we performed on bias–variance decomposition
of the error in random aggregated and bagged ensem-
bles of SVMs, showing the effect of base learner ag-
gregation on bias and variance. Then we present the
Lobag algorithm and some numerical experiments to
compare lobag ensembles of SVMs versus single SVMs
and bagged ensembles of SVMs. An outline of future
developments of this work concludes the paper.

2. Random aggregating, Bagging and
Lobag

Let D be a set of m points drawn identically and inde-
pendently from U according to P , where U is a popula-
tion of labeled training data points (xj , tj), and P (x, t)
is the joint distribution of the data points in U , with
x ∈ R

d.

Let L be a learning algorithm, and define fD = L(D)
to be the predictor produced when L is applied to
training set D. fD produces a prediction fD(x) = y.

2.1. Random Aggregating

Suppose that a sequence of learning sets {Dk} is given,
each drawn i.i.d. from the same underlying distribu-
tion P . According to (Breiman, 1996), we can ag-
gregate the fD trained with different samples drawn
from U to get a better predictor fA(x, P ). For re-
gression problems tj ∈ R and fA(x, P ) = ED[fD(x)],
where ED[·] indicates the expected value with respect
to the distribution of D. In classification problems,
tj ∈ C ⊂ N and fA(x, P ) = argmaxj |{k|fDk

(x) = j}|
is the plurality vote of the individual predictors. Be-
cause the training sets D are randomly drawn from U ,
we call the procedure for building fA random aggre-
gating.

If T and X are random variables having distribution
P , the expected squared loss EL for the single predic-
tor fD(X) is EL = ED[ET,X[(T − fD(X))2]] while the
expected squared loss ELA for the aggregated predic-
tor is ELA = ET,X[(T − fA(X))2]]. Developing the
square it is easy to see that

EL = ET [T 2] + EX[ED[f2
D(X)]] − 2ET [T ]EX[fA(X)]

(1)
ELA = ET [T 2]+EX[(ED[fD(X)])2]−2ET [T ]EX[fA(X)]

and hence ELA ≤ EL as

EX[(ED[fD(X)])2] ≤ EX[ED[f2
D(X)]]. (2)

The reduction of the error depends on the instability
of the prediction (Breiman, 1998), that is, on how un-
equal the two sides of eq. 2 are. This in turn is related

to the variance V (X) of the base predictor:

V (X) = ED[(fD(X) − ED[fD(X)])2]
= ED[f2

D(X)] − ED[fD(X)]2 ≥ 0 (3)

The degree to which eq. 3 is greater than 0 depends
on how unequal the two sides of eq. 2 are. For classifi-
cation problems with unstable predictors, random ag-
gregating can lower the expected error, but with poor
predictors, unlike regression, aggregation can worsen
the accuracy (Breiman, 1996).

2.2. Bagging: Bootstrap Aggregating

Base learners of bagged ensembles fB are trained on
repeated bootstrap samples {Db} from D. Hence Bag-
ging is an approximation of random aggregating, for at
least two reasons. First, bootstrap samples are not in-
dependent data samples: they are drawn from a data
set D that is in turn a sample from the population U .
Second, bootstrap samples are drawn from D accord-
ing to the uniform probability distribution, which is
only an approximation of the unknown true distribu-
tion P . For these reasons, there is no guarantee that
bagging provides a good enough approximation to fA

to produce variance reduction.

Random aggregating removes all variance, leaving only
bias and noise. Hence, if bagging is a good approxi-
mation to random aggregating, it will also remove all
of the variance. Therefore, to minimize the overall er-
ror, bagging should be applied to base learners with
minimum bias.

2.3. Lobag

We propose to tune SVMs to minimize the bias and
then apply bagging to reduce (if not eliminate) vari-
ance, resulting in an ensemble with very low error. The
key challenge, then, is to find a reasonable way of tun-
ing SVMs to minimize their bias. The bias of SVMs
is typically controlled by two parameters. First, re-
call that the objective function for (soft margin) SVMs
has the form: ‖w‖2 + C

∑
i ξi, where w is the vector

of weights computed by the SVM and the ξi are the
margin slacks, which are non-zero for data points that
are not sufficiently separated by the decision bound-
ary. The parameter C controls the tradeoff between
fitting the data (achieved by driving the ξi’s to zero)
and maximizing the margin (achieved by driving ‖w‖
to zero). Setting C large should tend to minimize bias.

The second parameter that controls bias arises only
in SVMs that employ parameterized kernels such as
the polynomial kernel (where the parameter is the de-
gree d of the polynomial) and RBF kernels (where the



parameter is the width σ of the gaussian kernel). In
previous work we showed that in gaussian and poly-
nomial SVMs, bias depends critically on these param-
eters (Valentini & Dietterich, 2002).

The basic idea of Lobag is to perform a systematic
search of values of C and either d or σ and experimen-
tally estimate the bias of the resulting SVMs to find
the parameter values to minimize the estimated bias.
These parameter settings are then employed to create
a bagged SVM ensemble.

3. Computation of the bias–variance
decomposition of the error

3.1. Bias and Variance for Classification

We employ the definitions of bias and variance for gen-
eral loss functions developed by Domingos (2000). Let
L(t, y) be the loss received when the true label is t
and the hypothesis predicts y. Then the optimal pre-
diction, y∗, for point x is defined to be the value of y
that minimizes Et[L(t, y)] :

y∗(x) = argmin
y

Et[L(t, y)]

For the usual 0/1 loss function, y∗ = t. The main
prediction ym at point x is defined as the class label
that would give the minimum expected loss over all
training sets D:

ym = arg min
y′ ED[L(fD(x), y′)].

It expresses the “central tendency” of a learner.

The bias B(x) of the learning algorithm at point x is
the loss of the main prediction relative to the optimal
prediction: L(y∗, ym). For 0/1 loss, this will either
be zero if the main prediction is correct or one if the
main prediction is wrong. Hence, for a given learning
algorithm L and any point x, the bias will either be 0
or 1. We will refer to the points x where the bias is
zero as the “unbiased points”. We will call the other
points the “biased points”.

The variance V (x) is the expected loss of the in-
dividual predictions relative to the main prediction:
V (x) = ED[L(fD(x), ym)].

These definitions of bias and variance do not give an
additive decomposition of the error. Instead, for bi-
ased points, the expected 0/1 loss can be written as
B(x)−V (x), whereas for unbiased points, the expected
0/1 loss can be written as B(x) + V (x). The intuition
here is that if the learning algorithm is biased at point
x, then increased variation (away from the main pre-
diction) will increase the chance of classifying x cor-
rectly. But if the learning algorithm is unbiased at x,

then increased variation (away from ym) will increase
the probability of misclassifying x.

We can aggregate the bias and variance over a test
data set D of m points as follows. The average bias B
is

B =
1
m

m∑

i=1

B(xi).

The unbiased variance, Vu is the average variance of
the unbiased points,

Vu =
1

mu

∑

{i|B(xi)=0}
V (xi),

where mu denotes the number of unbiased points. The
biased variance Vb is the average variance of the biased
points:

Vb =
1

mb

∑

{i|B(xi)=1}
V (xi),

where mb = m − mu is the number of biased points.
Define the net variance Vn = Vu −Vb. Then we obtain
the overall decomposition that the expected 0/1 error
on the test data set as B + Vn.

3.2. Measuring Bias and Variance

We propose to apply out-of-bag procedures (Breiman,
2001) to estimate the bias and variance of SVMs
trained with various parameter settings. The proce-
dure works as follows. First, we construct B boot-
strap replicates of the available training data set D (e.
g., B = 200): D1, . . . , DB. Then we apply a learning
algorithm L to each replicate Db to obtain an hypoth-
esis fb = L(Db). For each bootstrap replicate Db, let
Tb = D\Db be the (“out-of-bag”) data points that do
not appear in Db. We apply hypothesis fb to the ex-
amples in Tb and collect the results.

Consider a particular training example (x, t). On the
average, this point will be in 63.2% of the bootstrap
replicates Db and hence in about 36.8% of the out-of-
bag sets Tb. Let K be the number of times that (x, t)
was out-of-bag; K will be approximately 0.368B. The
optimal prediction at x is just t. The main prediction
ym is the class that is most frequently predicted among
the K predictions for x. Hence, the bias is 0 if ym = t
and 1 otherwise. The variance V (x) is the fraction of
times that fb(x) �= ym. Once the bias and variance
have been computed for each individual point x, they
can be aggregated to give B, Vu, Vb, and Vn for the
entire data set D.
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Figure 1. Comparison of bias-variance decomposition between single SVMs (lines labeled with crosses) and random ag-
gregated SVM ensembles (lines labeled with triangles). (a) Gaussian kernels, varying σ with C = 100, Letter-Two data
set (b) Polynomial kernels, varying the degree with C = 100, P2 data set.

4. Bias–variance decomposition of the
error in single SVMs, random
aggregated and bagged ensembles of
SVMs

Before presenting our experimental tests of Lobag, we
first summarize the main results of an extensive ex-
perimental analysis of the bias and variance of ran-
dom aggregated and bagged ensembles of SVMs. The
experiments involved the training and testing of more
than 10 million SVMs. We employed several two-class
data sets, both synthetic and “real”. Most of them
are from the UCI repository (Merz & Murphy, 1998).
In all cases, we used relatively small data sets (100
examples) bootstrapped from a relatively large data
set and reasonably large test sets to perform a reliable
evaluation of bias and variance.

Fig. 1 shows results typical of those found in our exper-
iments. The first surprise was that SVMs have high
bias when the RBF width σ is set very small. This
is counter-intuitive, since one would expect very low
bias in these cases. In order to understand how the
parameter settings affect the bias, we analyzed the re-
lationships between σ, generalization error, training
error, bias and the ratio of support vectors with re-
spect to the total number of input examples (Fig. 2).
For very small values of σ, overfitting problems arise:
the training error is very small (about 0), while the
number of support vectors is very high, and the er-
ror and bias are also high (Fig. 2). Indeed with very
small σ values, the discriminant function learned by
the SVMs is essentially flat everywhere except in the
immediate neighborhood of each of the training data
points (Fig. 3 a). Hence, the learned decision surface is
very inflexible, and this gives high bias. By enlarging

σ, we obtain a wider response on the input domain.
The discriminant function computed by the SVM be-
comes smoother (Fig. 3 b), as the “bumps” around
the support vectors become wider. This permits SVM
to make better predictions on new examples. At the
same time, the number of support vectors decreases,
as do the bias and the generalization error (Fig. 2). Al-
though σ is the parameter that most affects the RBF-
SVMs, the regularization parameter C also plays an
important role: it can counter-balance the increased
bias due to large values of σ (Fig. 2). However, if its
value is too small, the bias can increase independently
of the other learning parameters.

Another important observation is that for single
SVMs, the minimum of the error and the minimum of
the bias are often achieved for different values of the
tuning parameters C, d, and σ. This is what spurred
us to consider the Lobag approach, which seeks the
latter rather than the former.

The main purpose of the experiments was to analyze
the effect of random aggregation (the theoretical ideal)
and bagging. We found that random aggregation of
SVMs gives relative error reductions of between 10 and
70% (depending on the data set). This reduction is
slightly larger for high values of the C parameter and
is due primarily to the reduction of the unbiased vari-
ance. Indeed in all data sets, the relative reduction
of the unbiased variance amounts to about 90%, while
bias remains substantially unchanged (Fig. 1). Note
that the error of the ensemble is reduced to the bias of
the single SVM, while net and unbiased variance are
almost entirely eliminated.

Fig. 4 shows typical results of our experiments with
bagging. In this case we also observed a reduction of
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Figure 2. Estimated generalization error, training error, bias and support vector ratio while varying the σ parameter and
for C = 1 (a) and C = 1000 (b) in the P2 data set.

     0.5
       0

    −0.5
      −1

0
2

4
6

8
X

2
4

6
8

10

Y

−1.5

−1

−0.5

0

0.5

1

Z

       1
     0.5
       0

    −0.5
      −1

0
2

4
6

8
X

2
4

6
8

10

Y

−1.5

−1

−0.5

0

0.5

1

1.5

Z

(a) (b)

Figure 3. The discriminant function computed by the SVM on the P2 data set: (a) σ = 0.02, C = 1, (b) σ = 1, C = 1
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Figure 4. Bias-variance decomposition of error in bias, net variance, unbiased and biased variance in bagged SVMs (Grey-
Landsat data set). (a) Gaussian kernel base learners, varying σ, C = 100 (b) Polynomial kernel base learners, varying
the degree, C = 0.1.

the error, but it was not as large as with random aggre-
gated ensembles. In particular, unlike random aggre-

gating, net and unbiased variance are not reduced to
0: in our experiments, we obtained a smaller reduction



of the average error (from 0 to 20%) due to a lower de-
crease of the net-variance (about 35% on the average
against a reduction of over 90% with random aggre-
gated ensembles), while bias remained unchanged or
increased slightly.

5. The lobag algorithm

The Lobag algorithm accepts the following inputs:
(a) a data set D = {(xi, yi)}n

i=1, with xi ∈ R and
yi ∈ {−1, 1}, (b) a learning algorithm L(·, α), with
tuning parameters α, and (c) a set A of possible set-
tings of the α parameters to try. Lobag estimates the
bias of each parameter setting α ∈ A, chooses the set-
ting α∗ that minimizes the estimated bias, and applies
the standard bagging algorithm to construct a bag of
classifiers using L(·, α∗). The remainder of this section
provides a high-level pseudo-code for Lobag.

5.1. The Bias–variance decomposition
procedure

This procedure estimates the bias–variance decompo-
sition of the error for a given learning algorithm L and
learning parameters α.

The learning algorithm L returns a hypothesis fα =
L(D, α) using a learning set D, and it is applied to mul-
tiple bootstrap replicates Db of the learning set D in
order to generate a set Fα = {f b

α}B
b=1 of hypotheses f b

α.
The procedure returns the models Fα and the estimate
of their loss and bias. For each set of learning param-
eters α ∈ A it calls Evaluate BV, a procedure that
provides an out-of-bag estimate of the bias–variance
decomposition.

Procedure [V,F ] BV decomposition (L,A,D, B)
Input:

- Learning algorithm L
- Set of algorithm parameters A
- Data set D
- Number of bootstrap samples B

Output:
- Set V of triplets (α, loss, bias), where loss and

bias are the estimated loss and bias of the model
trained through the learning algorithm L with algo-
rithm parameters α.

- Set of ensembles F = {Fα}α∈A with
Fα = {f b

α}B
b=1

begin procedure
V = ∅
F = ∅
for each α ∈ A
begin

Fα = ∅

Tα = ∅
for each b from 1 to B
begin

Db = Bootstrap replicate(D)
f b

α = L(Db, α)
Tb = D\Db

Fα = Fα ∪ f b
α

Tα = Tα ∪ Tb

end
F = F ∪ Fα

[loss, bias, variance] = Evaluate BV (Fα, Tα)
V = V ∪ (α, loss, bias)

end
end procedure.

5.2. The overall Lobag algorithm

Using the procedure BV decomposition, we can imple-
ment a version of the Lobag algorithm that exhaus-
tively explores a given set of learning parameters in
order to build a low bias bagged ensemble.

Algorithm Lobag exhaustive
Input:

- Learning algorithm L
- Set of algorithm parameters A
- Data set D
- Number of bootstrap samples B

Output:
- Selected Lobag ensemble : FLob = {f b

αB
}B

b=1

- Selected bagged ensemble : FBag = {f b
αL

}B
b=1

- OOB error of the Lobag ensemble : Bmin

- OOB error of the bagged ensemble : BLmin

- OOB error of the single model : Lmin

begin algorithm
V = ∅
F = ∅
[V,F ] = BV decomposition (L,A,D, B)
[αB , αL, Bmin, Lmin, BLmin ] = Select model (V )
FLob = {f b

αL
}B

b=1 = Select ensemble (F , αB)
FBag = {f b

αB
}B

b=1 = Select ensemble (F , αL)
end algorithm.

The procedure Select model selects the model with
the minimum bias and/or minimum loss and returns
the parameter values αB and αL that correspond re-
spectively to the model with minimum bias and mini-
mum loss. Then the Lobag and bagged ensembles are
chosen through the procedure Select ensemble: the
Lobag ensemble has base learners with the minimum
estimated bias, while the bagged ensemble has base
learners with the minimum estimated loss. In order
to speed up the computation, we could design variants
of the exhaustive Lobag algorithm. For example, we
could apply multidimensional search methods, such as



the Powell’s method, to select the tuning values that
minimize bias.

6. Numerical experiments

We performed numerical experiments on different data
sets to test the Lobag ensemble method using SVMs
as base learners. We compared the results with single
SVMs and classical bagged SVM ensembles.

Table 1. Results of the experiments using pairs of train D
and test T sets. Elobag, Ebag, and ESV M stand respectively
for estimated mean error of lobag, bagged, and single SVMs
on the test set T . The three last columns show the number
of wins-ties-losses according to the McNemar’s test, using
5 different training sets D. L/B, L/S, and B/S stand
respectively for the comparison Lobag/Bag, Lobag/Single
SVM, and Bag/Single SVM.

Kernel Elobag Ebag Esingle Win-tie-loss
type L/B L/S B/S

Data set P2
Polyn. 0.1687 0.1863 0.1892 4-1-0 4-1-0 1-4-0
Gauss. 0.1429 0.1534 0.1605 4-1-0 5-0-0 3-2-0

Data set Waveform
Linear 0.0811 0.0821 0.0955 2-3-0 5-0-0 5-0-0
Polyn. 0.0625 0.0677 0.0698 2-3-0 2-3-0 3-2-0
Gauss. 0.0574 0.0653 0.0666 4-1-0 4-1-0 2-3-0

Data set Grey-Landsat
Linear 0.0508 0.0510 0.0601 0-5-0 3-2-0 3-2-0
Polyn. 0.0432 0.0493 0.0535 1-4-0 2-3-0 1-4-0
Gauss. 0.0475 0.0486 0.0483 1-3-1 1-3-1 0-5-0

Data set Letter-Two
Linear 0.0832 0.0864 0.1011 0-5-0 4-1-0 4-1-0
Polyn. 0.0574 0.0584 0.0636 0-5-0 1-4-0 0-5-0
Gauss. 0.0668 0.0659 0.0701 0-5-0 0-5-0 0-5-0

Data set Letter-Two with added noise
Linear 0.3617 0.3662 0.3705 1-4-0 1-4-0 0-5-0
Polyn. 0.3587 0.3679 0.3812 0-5-0 2-3-0 0-5-0
Gauss. 0.3665 0.3813 0.3908 1-4-0 3-2-0 1-4-0

Data set Spam
Linear 0.1356 0.1340 0.1627 0-4-1 5-0-0 5-0-0
Polyn. 0.1309 0.1338 0.1388 1-4-0 2-3-0 2-2-1
Gauss. 0.1239 0.1349 0.1407 3-2-0 3-2-0 2-3-0

Data set Musk
Linear 0.1244 0.1247 0.1415 0-5-0 4-1-0 4-1-0
Polyn. 0.1039 0.1193 0.1192 4-1-0 4-0-1 2-2-1
Gauss. 0.0872 0.0972 0.0920 4-1-0 2-2-1 1-0-4

6.1. Experimental setup

We employed two synthetic data sets (P2 and a two-
class version of Waveform) and 5 “real” data sets
(Grey-Landsat, Letter (reduced to the two-class prob-
lem of discriminating between the difficult letters B
and R), Letter with 20% noise added, Spam, and
Musk). Most of them are from the UCI reposi-
tory (Merz & Murphy, 1998).

We employed small D training sets and large T test
sets in order to obtain a reliable estimate of the gen-
eralization error: the number of examples for D was
set to 100, while the size of T ranged from a few thou-
sand for the “real” data sets to tens of thousands for

synthetic data sets. Then we applied the Lobag al-
gorithm described in Sect. 5, setting the number of
samples bootstrapped from D to 100, and computing
an out-of-bag estimate of the bias–variance decompo-
sition of the error. The selected lobag, bagged, and
single SVMs were finally tested on the separated test
set T . The experiments were repeated 5 times using 5
different training sets randomly drawn from each data
set.

The C++ classes and applications we used to perform
all the experiments are included in the NEURObjects
library (Valentini & Masulli, 2002).

6.2. Results

Table 1 shows the results of the experiments. We com-
pared lobag, bagging, and single SVMs with respect to
20 classification tasks: 7 data sets and 3 kernels (gaus-
sian, polynomial, and dot-product) have been tested
considering all the possible combinations, except for
P2, for which we did not apply the dot-product kernel
(because it was obviously inappropriate). We repeated
each classification task 5 times, using randomly-drawn
training sets of size 100 for each data set, obtaining in
this way 100 (20 × 5) outcomes for each method. For
each pair of methods, we applied McNemar’s test (Di-
etterich, 1998) to determine whether there was a sig-
nificant difference in predictive accuracy on the test
set.

On nearly all the data sets, both bagging and Lobag
outperform the single SVMs independently of the ker-
nel used. The null hypothesis that Lobag has the same
error rate as a single SVM is rejected at or below the
0.05 significance level in 58 of the 100 cases. Similarly,
the null hypothesis that bagging has the same error
rate as a single SVM is rejected at or below the 0.05
level in 39 of the 100 cases. Most importantly, Lobag
generally outperforms standard bagging: it is signifi-
cantly better than bagging in 32 of the 100 cases, and
significantly inferior only twice (Tab. 2).

If we consider the win-tie-loss results per classifica-
tion task (that is a method wins if it achieves signif-
icant better results according to McNemar’s test in
the majority of the corresponding experiments), lobag
consistently outperforms single SVMs in 18 of the 20
tasks, and it never loses. Moreover, lobag wins with
respect to bagging in 12 cases, and it loses only once
(Tab. 2). While both lobag and bagging outperform
single SVMs with dot-product kernels, lobag shows sig-
nificantly better results than bagging with respect to
single SVMs if gaussian or polynomial kernels are used.
This is confirmed also by the direct comparison lobag
and bagging: we can observe a larger difference in fa-



Table 2. Summary of the wins-ties-losses between the 3
proposed methods according to the McNemar’s test, con-
sidering separately dot-product, polynomial, and gaus-
sian kernels. L/B, L/S, and B/S stand respectively
for the comparison Lobag/Bag, Lobag/Single SVM, and
Bag/Single SVM.

Win-tie-loss on the overall data sets
Kernel L/B L/S B/S

Linear 3-26-1 23-7-0 21-9-0
Polyn. 12-23-0 17-17-1 9-24-2
Gauss. 17-17-1 18-15-2 9-22-4
Total 32-66-2 58-39-3 39-55-6

Win-tie-loss per classification task
Kernel L/B L/S B/S

Linear 2-3-1 6-0-0 5-1-0
Polyn. 5-2-0 7-0-0 5-2-0
Gauss. 5-2-0 5-2-0 4-2-1
Total 12-7-1 18-2-0 14-5-1

vor of lobag especially with gaussian and polynomial
kernels (Tab. 2).

7. Conclusions and future work

This paper has shown that despite the ability of SVMs
to manage the bias–variance tradeoff, SVM perfor-
mance can generally be improved by bagging, at least
for small training sets. Furthermore, the best way to
tune the SVM parameters is to adjust them to mini-
mize bias and then allow bagging to reduce variance.

In future work, we plan to apply Lobag to DNA
microarray gene expression data which has very few
training examples, but each example has very high di-
mension.

In our experiments, we did not consider noise. As
a result, noise is folded into bias, and bias itself is
overestimated. Even if the evaluation of noise in real
data sets is an open problem (James, 2003), we plan
to evaluate the role of the noise in synthetic and real
data sets, in order to develop variants of Lobag specific
for noisy data.
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