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Abstract

The boosting algorithm ApABOOST, de-
veloped by Freund and Schapire, has ex-
hibited outstanding performance on sev-
eral benchmark problems when using C4.5
as the “weak” algorithm to be “boosted.”
Like other ensemble learning approaches,
ADABOOST constructs a composite hy-
pothesis by voting many individual hy-
potheses. In practice, the large amount of
memory required to store these hypotheses
can make ensemble methods hard to deploy
in applications. This paper shows that by
selecting a subset of the hypotheses, it is
possible to obtain nearly the same levels of
performance as the entire set. The results
also provide some insight into the behavior
of ADABOOST.

1 Introduction

The adaptive boosting algorithm ApABoosT (Fre-
und & Schapire, 1995) in combination with the
decision-tree algorithm C4.5 (Quinlan, 1993) has
been shown to be a very accurate learning procedure
(Freund & Schapire, 1996; Quinlan, 1996; Breiman,
1996b). Like all ensemble methods, ADABOOST
works by generating a set of classifiers and then vot-
ing them to classify test examples. In the case of
ADABOOST, the various classifiers are constructed
sequentially by focusing the underlying learning al-
gorithm (e.g., C4.5) on those training examples that
have been misclassified by previous classifiers.

The effectiveness of such methods depends on con-
structing a diverse, yet accurate, collection of classi-
fiers. If each classifier is accurate and yet the various
classifiers disagree with each other, then the uncor-
related errors of the different classifiers will be re-
moved by the voting process. ADABOOST appears
to be especially effective at generating such collec-
tions of classifiers. We should expect, however, that
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there is an accuracy/diversity tradeoff. The more
accurate two classifiers become, the less they can
disagree with each other.

A drawback of ensemble methods is that deploying
them in a real application requires a large amount of
memory to store all of the classifiers. For example,
in the Frey-Slate letter recognition task, it is possi-
ble to achieve very good generalization accuracy by
voting 200 trees. However, each tree requires 295
Kbytes of memory, so an ensemble of 200 trees re-
quires 59 Mbytes. Similarly, in an application of
error-correcting output coding to the NETtalk task
(Bakiri, 1991), an ensemble based on 127 decision
trees requires 1.3 Mbytes while storing the 20,003-
word dictionary itself requires only 590Kbytes, so
the ensemble is much bigger than the data set from
which it was constructed. This makes it very difficult
to convince customers that they should use ensem-
ble methods in place of simple dictionary lookup,
especially compared to classifiers based on nearest-
neighbor methods, which can also perform very well.

This paper addresses the question of whether all of
the decision trees constructed by ADABOOST are es-
sential for its performance. Can we discard some
of those trees and still obtain the same high level
of performance? We call this “pruning the ensem-
ble.” We introduce five different pruning algorithms
and compare their performance on a collection of ten
domains. The results show that in the majority of
domains, the ensemble of decision trees produced
by ADABOOST can be pruned quite substantially
without seriously decreasing performance. In sev-
eral cases, pruning even improves the performance
of the ensemble. This suggests that pruning should
be considered in any application of ADABOOST.

The remainder of this paper is organized as follows.
First, we describe the ADABOOST algorithm. Then
we introduce our five pruning algorithms and the
experiments we performed with them. The paper
concludes with a discussion of the results of the ex-
periments.



Table 1: The ADAB0o0sST.M1 algorithm. The for-
mula [E] is 1 if E is true and 0 otherwise.

Input: a set S, of m labeled examples:
S =< (mlayl)al = 1727"'7m >,
labels y; € Y ={1,...,k}
WeakLearn (a weak learner)

a constant 7.

[1] initialize w; (i) = 1/m Vi

2] fort =1to T do
3 pe(i) = we(i)/ (32, we (i) Vi ;
4 hi := WeakLearn(p;);
5 e = 2, pe(i)[he () # yil;
7 ife; > 1/2 then
restart with uniform weights
8 we(i) =1/m Vi
9 goto [3]
10 Br=e/(1—e);

[11] w1 (1) = wt(i)ﬁtl_[[hi(wi)#yi]] Vi

T
1

Output: hy(z) = argmax <log —) [he(z) = y]
VEY o P

2 The AdaBoost algorithm

Table 1 shows the ADAB0O0ST.M1 algorithm. The
algorithm maintains a probability distribution w
over the training examples. This distribution is ini-
tially uniform. The algorithm proceeds in a series of
T trials. In each trial, a sample of size m (the size
of the training set) is drawn with replacement ac-
cording to the current probability distribution. This
sample is then given to the inner (weak) learning
algorithm (in this case C4.5 Release 8 with prun-
ing). The resulting classifier is applied to classify
each example in the training set, and the training
set probabilities are updated to reduce the proba-
bility for correctly-classified examples and increase
the probability for misclassified examples. A classi-
fier weight (3 is computed (for each trial), which is
used in the final weighted vote. As recommended
by Breiman (1996a), if a classifier has an error rate
greater than 1/2 in a trial, then we reset the training
set weights to the uniform distribution and continue
drawing samples.

3 Pruning methods for ADABOOST

We define a pruning method as a procedure that
takes as input a training set, the ADABOOST algo-
rithm (including a weak learner), and a maximum
memory size for the learned ensemble of classifiers.
The goal of each pruning method will be to con-
struct the best possible ensemble that uses no more

than this maximum permitted amount of memory.
In practice, we will specify the amount of memory
in terms of the maximum number, M, of classifiers
permitted in the ensemble. We have developed and
implemented five methods for pruning ADABOOST
ensembles. We describe them in order of increasing
complexity. In any case where we compute the voted
result of a subset of the classifiers produced by AD-
ABo0OST, we always take a weighted vote using the
weights computed by ADABOOST.

3.1 Early Stopping

The most obvious approach is to use the first M
classifiers constructed by ADABOOST. It may be,
however, that classifiers produced later in the AD-
ABOOST process are more useful for voting. Hence,
the performance of early stopping will be a measure
of the extent to which ADAB0OST always finds the
best next classifier to add to its ensemble at each
step.

3.2 KL-divergence Pruning

A second strategy is to assume that all of the clas-
sifiers have similar accuracy and to focus on choos-
ing diverse classifiers. A simple way of trying to
find diverse classifiers is to focus on classifiers that
were trained on very different probability distribu-
tions over the training data.

A natural measure of the distance between two prob-
ability distributions is the Kullback-Leibler Diver-
gence (KL-distance; Cover & Thomas, 1991). The
KL distance between two probability distributions p
and q is

D(pllg) = > p()log plz)

reX q(a:)

For each pair of classifiers h; and h;, we can compute
the KL-distance between the corresponding proba-
bility distributions p; and p; computed in line 3 of
ADABOOST (Table 1).

Ideally, we would find the set U of M classifiers
whose total summed pairwise KL-distance is max-
imized:

JU)= Y D(pillp)

1,j€U;i<j

Because of the computational cost, we use a greedy
algorithm to approximate this. The greedy algo-
rithm begins with a set containing the first classifier
constructed by ADAB0OOST: U = {h1}. It then iter-
atively adds to U the classifier h; that would most
increase J(U). This is repeated until U contains M
classifiers.



3.3 Kappa Pruning

Another way of choosing diverse classifiers is to
measure how much their classification decisions dif-
fer. Statisticians have developed several measures
of agreement (or disagreement) between classifiers.
The most widely used measure is the Kappa statis-
tic, k (Cohen, 1960; Agresti, 1990; Bishop, Fienberg,
& Holland, 1975). It is defined as follows.

Given two classifiers h, and h; and a data set con-
taining m examples, we can construct a contingency
table where cell C;; contains the number of exam-
ples x for which h,(z) =i and hy(z) = j. If hy and
hy are identical on the data set, then all non-zero
counts will appear along the diagonal. If h, and
hy are very different, then there should be a large
number of counts off the diagonal. Define

_ Z{;l Cii

m

0,

to be the probability that the two classifiers agree
(this is just the sum of the diagonal elements divided
by m).

We could use ©; as a measure of agreement. How-
ever, a difficulty with ©; is that in problems where
one class is much more common than the others, all
reasonable classifiers will tend to agree with one an-
other, simply by chance, so all pairs of classifiers will
obtain high values for ©®;. We would like our mea-
sure of agreement to be high only for classifiers that
agree with each other much more than we would ex-
pect from random agreements.

To correct for this, define

L

Oy =) ]2:

i=1

L
m X m
J:l

to be the probability that the two classifiers agree
by chance, given the observed counts in the table.

Then, the k statistic is defined as follows:
0, -0,
1-0y

k = 0 when the agreement of the two classifiers
equals that expected by chance, and k = 1 when the
two classifiers agree on every example. Negative val-
ues occur when agreement is weaker than expected
by chance, but this rarely happens.

Our Kappa pruning algorithm operates as follows.
For each pair of classifiers produced by ADABOOST,
we compute k on the training set. We then choose
pairs of classifiers starting with the pair that has the
lowest x and considering them in increasing order
of k until we have M classifiers. Ties are broken
arbitrarily.

3.4 Kappa-Error Convex Hull Pruning

The fourth pruning technique that we have devel-
oped attempts to take into account both the accu-
racy and the diversity of the classifiers constructed
by ADABoOOST. It is based on a plot that we call
the Kappa-Error Diagram. The left part of Figure 1
shows an example of a Kappa-Error diagram for ADp-
ABOOST on the Expf domain. The Kappa-Error di-
agram is a scatterplot where each point corresponds
to a pair of classifiers. The x coordinate of the pair
is the value of k for the two classifiers. The y coor-
dinate of the pair is the average of their error rates.
Both k and the error rates are measured on the train-
ing data set.

The Kappa-Error diagram allows us to visualize the
ensemble of classifiers produced by ADABOOST. In
the left part of Figure 1, we see that the pairs of
classifiers form a diagonal cloud that illustrates the
accuracy /diversity tradeoff. The classifiers at the
lower right are very accurate but also very similar to
one another. The classifiers at the upper left have
higher error rates, but they are also very different
from one another.

It is interesting to compare this diagram with a
Kappa-Error diagram for Breiman’s bagging pro-
cedure (also applied to C4.5; see the right part of
Figure 1). Bagging is similar to ADABOOST, ex-
cept that the weights on the training examples are
not modified in each iteration; they are always the
uniform distribution so that each training set is a
bootstrap replicate of the original training set. The
right part of Figure 1 shows that the classifiers
produced by bagging form a much tighter cluster
than they do with ADABOOST. This is to be ex-
pected, of course, because each classifier is trained
on a sample drawn from the same, uniform distri-
bution. This explains visually why ADABOOST typ-
ically out-performs bagging: ADABOOST produces
a more diverse set of classifiers. In most cases, the
lower accuracy of those classifiers is evidentally com-
pensated for by the improved diversity (and by the
lower weight given to low-accuracy hypotheses in the
weighted vote of ADABOOST).

How can we use the Kappa-Error diagram for prun-
ing? One idea is to construct the convex hull of
the points in the diagram. The convex hull can be
viewed as a “summary” of the entire diagram, and
it includes both the most accurate classifiers and the
most diverse pairs of classifiers. We form the set U of
classifiers by taking any classifier that appears in a
classifier-pair corresponding to a point on the convex
hull. The drawback of this approach is that we can-
not adjust the size of U to match the desired maxi-
mum memory target M. Nonetheless, this strategy
explicitly considers both accuracy and diversity in
choosing its classifiers.
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Figure 1: Kappa-Error diagrams for ADABoOST (left) and bagging (right) on the Expf domain.

3.5 Reduce-Error Pruning with Backfitting

The four methods we have discussed so far are each
able to operate using only the training set. How-
ever, the last method requires that we subdivide the
training set into a pruning set and a sub-training
set. We train ADABOOST on the sub-training set
and then use the pruning set to choose which M
classifiers to keep. Reduce-Error Pruning is inspired
by the decision-tree pruning algorithm of the same
name. Our goal is to choose the set of M classifiers
that give the best voted performance on the pruning
set.

We could use a greedy algorithm to approximate
this, but we decided to use a more sophisticated
search method called backfitting (Friedman & Stuet-
zle, 1981). Backfitting proceeds as follows. Like a
simple greedy algorithm, it is a procedure for con-
structing a set U of classifiers by growing U one clas-
sifier at a time. The first two steps are identical to
the greedy algorithm. We initialize U to contain
the one classifier h; that has the lowest error on the
pruning set (this is usually hq, the first classifier pro-
duced by ADAB00ST). We then add the classifier
h; such that the voted combination of h; and h; has
the lowest pruning set error.

The differences between backfitting and the greedy
algorithm become clear on the third iteration. At
this point, backfitting adds to U the classifier hy
such that the voted combination of all classifiers in
U has the lowest pruning set error. However, it then
revisits each of its earlier decisions. First, it deletes
h; from U and replaces it with the classifier h; such
that the voted combination of h;, hj, and hy has
lowest pruning set error. It then does the same thing
with h;. And then with hj. This process of deleting
previously-chosen classifiers and replacing them with

the best classifier (chosen greedily) continues until
none of the classifiers changes or until a limit on the
number of iterations is reached. We employed a limit
of 100 iterations.

In general, then, backfitting proceeds by (a) taking
a greedy step to expand U, and (b) iteratively delet-
ing each element from U and taking a greedy step
to replace it until the elements of U converge. Then
it takes another greedy step to expand U. This con-
tinues until U contains M classifiers.

4 Experiments and Results

We tested these five pruning techniques on ten data
sets (see Table 2). Except for the Expf and XD6
data sets, all were drawn from the Irvine Repository
(Merz & Murphy, 1996). Expf is a synthetic data
set with only 2 features. Data points are drawn
uniformly from the rectangle € [-10,+10],y €
[-10,+410] and labeled according to the decision
boundaries shown in Figure 2. The XD6 dataset
contains examples generated from the propositional
formula (a1 Aas Aas)V (as Aas ANag) V(a7 Aag Aag).
A tenth attribute a1¢ takes on random boolean ran-
dom values. Examples are generated at random and
corrupted with 10% class noise.

We ran ADABOOST on each data set to generate
T = 50 classifiers, and evaluated each pruning tech-
nique with the target number of classifiers set to
10, 20, 30,40, and 50 (no pruning). This corresponds
to 80%, 60%, 40%, 20%, and 0% pruning. We also
ran C4.5 on each data set—in the figures, we plot
the resulting performance of C4.5 as 100% pruning.
Performance was evaluated either by 10-fold cross-
validation or by using a separate test set (as noted
in Table 2). Where a separate test set was used,



Table 2: Data sets studied in this paper. “l10-xval” in-
dicates that performance was assessed through 10-fold
cross-validation.

7# Training Test Eval.
Name Class Set Size Set Size Method
Auto 7 184 21 10-xval
Breast 2 629 70 10-xval
Chess 2 836 92 10-xval
Expf 12 1000 1000 test set
Glass 7 192 22 10-xval
Iris 3 135 15 10-xval
Letters 26 12000 4000 test set
Lymph 4 133 15 10-xval
Waveform 3 300 4700 test set
XD6 2 180 20 10-xval

10

x2

Figure 2: Decision boundaries for the Expf data set.

the experiment was repeated 10 times using 10 ran-
dom train/test splits and the results were averaged.
For Reduce-Error Pruning, we held out 15% of the
training set to serve as a pruning set.

To obtain overall performance figures, define the
Gain to be the difference in percentage points be-
tween the performance of full AbDABoosTed C4.5
and the performance of C4.5 alone. In all of our 10
domains, this Gain was always positive. For any al-
ternative method, we will define the relative perfor-
mance of the method to be the difference between its
performance and C4.5 divided by the Gain. Hence,
a relative performance of 1.0 indicates that the alter-
native method obtains the same gain as ADABOOST.
A relative performance of 0.0 indicates that the al-
ternative method obtains the same performance as
C4.5 alone.

Figure 3 shows the mean normalized performance of
each pruning method averaged over the ten domains.
A performance greater than 1.0 indicates that the
pruned ADABOOST actually performed better than
ADABOOST.

From the figure, we can see that Reduce-Error Prun-
ing and Kappa pruning perform best at all levels
of pruning (at least on average). The Convex Hull
method is competitive with these at its fixed level
of pruning. The KL-divergence and Early Stopping
methods do not perform very well at all. This is true
of the analogous plots for each individual domain as
well (data not shown). The poor performance of
early stopping shows that ADAB0OOST does not con-
struct classifiers in decreasing order of quality. Prun-
ing is “skipping” some of the classifiers produced by
ADABOOST early in the process in favor of classifiers
produced later.

Figure 4 shows the normalized performance of
Reduce-Error Pruning on each of the ten domains.
Here we see that for the Chess, Glass, Expf, and
Auto data sets, pruning can improve performance
beyond the level achieved by ADAB0OOST. This sug-
gests that ADABOOST is exhibiting overfitting be-
havior in these domains. The figure also shows that
for Chess, Glass, Expf, Iris, and Waveform, pruning
as many as 80% of the classifiers still gives perfor-
mance comparable to ADAB0OOST. However, in the
Auto, Breast, Letter, Lympho, and XD6 domains,
heavy pruning results in substantial decreases in per-
formance. Even 20% pruning in the Breast domain
hurts performance badly.

Figure 5 shows the results for Kappa Pruning.
Pruning improves performance over ADABOOST for
Breast, Chess, Expf, Glass, Iris, Lympho, and Wave-
form. The only data set that shows very bad behav-
ior is Iris, which appears to be very unstable (as has
been noted by other authors). Five domains (Chess,
Expf, Glass, Iris, and Waveform) can all be pruned
to 60% and still achieve a relative performance of
0.80. Hence, in many cases, significant pruning does
not hurt performance very much.

Figure 6 shows the performance of Convex Hull
pruning. The performance is better than the other
pruning methods (at the corresponding level of prun-
ing) for the Auto, Breast, Glass, Waveform, and
XD6 and equal or worse for the other data sets.

5 Conclusions

From these experiments, we conclude that the en-
semble produced by ADABOOST can be radically
pruned (60-80%) in some domains. The best prun-
ing methods were Kappa Pruning and Reduce-Error
Pruning. The good performance of Reduce-Error
Pruning is surprising, given that only a small hold-
out set (15%) is used, and given that the training set
is smaller as well. On the other hand, Reduce-Error
Pruning takes the most direct approach to finding a
subset, of good classifiers. It does not rely on heuris-
tics concerning diversity or accuracy.
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The good performance of Kappa pruning is very
attractive, because it does not require any hold-
out set for pruning. It may be possible to improve
Kappa pruning further by applying backfitting as we
did with Reduce-Error Pruning. The Convex Hull
method also gives acceptable performance in several
domains, but it is less attractive because it does not
permit control over the amount of pruning.

The results show that ADABOOST may be over-
fitting; pruning by early stopping performs badly
on every data set except Auto. Hence, some form
of pruning should always be considered for AD-
ABoosT. This raises the question of how much
pruning should be performed in a new application.
An obvious strategy is to select the amount of prun-
ing through cross-validation. For most of the do-
mains we have tested, the behavior of pruning is
fairly smooth and stable, so cross-validation should
work reasonably well. For Iris, however, it was very
unstable, and it is doubtful that cross-validation
could find the right amount of pruning.

Reduce-Error Pruning may not require cross-
validation to determine the amount of pruning. In-
stead, it may also be possible to use the pruning
data set to determine this.

The paper also introduced the Kappa-Error diagram
as a way of visualizing the accuracy-diversity trade-
off for voting methods. We showed that—as many
people have suspected—Bagging produces classifiers

with much less diversity than ADABOOST.
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