
A Family of Large Margin Linear Classifiers and Its

Application in Dynamic Environments

Jianqiang Shen, Thomas G. Dietterich

1148 Kelley Engineering Center, School of EECS

Oregon State University, Corvallis, OR 97331, U.S.A.

{shenj,tgd}@eecs.oregonstate.edu

Abstract

Real-time problems, in which the learning must be fast and

the importance of the features might be changing, pose a

challenge to machine learning algorithms. To learn robust

classifiers in such nonstationary environments, it is essential

not to assign too much weight to any single feature. We solve

the problems by combining regularization mechanisms with

online large margin learning algorithms. We prove bounds

on their error and show that removing features with small

weights has little influence on the accuracy, suggesting that

these methods exhibit feature selection ability. We show that

such regularized learning algorithms automatically decrease

the influence of the old training instances and focus on the

more recent ones. This makes them especially attractive in

the dynamic environments. We present experimental results

on real datasets to show the merit of our algorithms.

Keywords: Classification, online learning, feature selec-

tion, real-time problems, adaptive algorithms.

1 Introduction

In many real-time problems, learning algorithms receive

one instance in each iteration. They make a prediction

and then receive a feedback regarding the prediction. The

efficiency is critical and the computation must be finished

within a limited time. Designed for such scenario, online

learning algorithms update their hypothesis based on the

received feedback. They have limited requirements for CPU

time and memory. Their efficiency has made them popular

for large-scale learning problems, such as natural language

processing. When constructing classifiers over such high-

dimensional datasets, we usually face the potential problem

of over-fitting. A common strategy for addressing this issue

is to first run a feature selection step. However, online

learning algorithms often must handle nonstationary data,

so standard feature selection methods are not appropriate.

Small changes in the data can result in dramatic changes in

the optimal feature set, and failure to detect this can severely

hurt prediction accuracy.

In this paper, we design efficient large margin learning

algorithms by combining regularization mechanisms with

online updates. Regularization has been shown to be effec-

tive for the batch learning algorithms in learning from the

data with many irrelevant features [18, 10]. The regulariza-

tion penalty shrinks the feature weights towards zero and has

the effect of controlling the variance of the learned model.

Appropriate regularization can generally reduce over-fitting

by trading off a small increase in bias for a large reduction

in variance. Compared with feature selection, regularization

is a continuous process that shrinks the influence of some

features and is more stable, hence is more suitable for non-

stationary data. Unlike other weight-shrinking online learn-

ing algorithms [11, 12], our algorithms penalize the model

complexity without compromising the margin of training in-

stances. This paper investigates both L1 and L2 regulariza-

tion for online updates. We thoroughly analyze the charac-

teristics of the regularization mechanism in online learning

settings.

The regularization penalty drives the weights of many

features towards zero. The theoretical analysis shows that

ignoring features with small weights has little influence

on the prediction accuracy. This feature selection effect

can also explain why regularized online learning is usually

more accurate, as also shown in the experiments. For real-

world online learning problems, the distribution generating

the data is usually changing as the time passes. A very

discriminative feature can rapidly become less useful or

even useless. By avoiding over-weighting a feature, our

regularized methods can converge to the right model more

quickly when the data changes. We also show that the L2

regularized learning method has another property fitting the

dynamic environment – it automatically shrinks the influence

of older training instances and pays more attention to the

more recent ones.

We begin with an introduction to online learning and a

discussion of our motivation. We then derive our regularized

large margin algorithms and present their theoretical analy-

sis. We show experimental results on real datasets to illus-



trate the performance of our algorithms. We conclude the

paper with a discussion of future work.

2 Online Algorithms and Dynamic Environments

Online learning algorithms typically work on instances in

sequence. In iteration t, the algorithm receives instance

xt ∈ R
n and makes a prediction with function ft. Then

it receives yt, the correct label of xt, and computes the

update condition C. If C is true, it updates ft+1 so that a

requirement set R is satisfied. Our goal here is to minimize

the prediction error of a single pass over all instances [1].

Some online learning algorithms have been proposed based

on the different design of C and R [16, 13, 8, 14, 12, 4, 3].

We focus on the binary class problem where yt ∈ {+1,−1}
and the linear classifier ft = wt · xt. The results can be

easily generalized to multiple-class problems.

The term yt(wt · xt) is generally referred to as the

margin. Enforcing a large margin can often improve the

prediction accuracy. In this paper, we focus on the case

that we do a Passive-Aggressive (PA) update [3] when the

classifier makes an error. The PA update modifies the

learned model subject to two constraints: the correct label

should have an appropriate score by a given margin, and the

change to the weights should be minimal in order to reduce

fluctuations. The PA update sets the new weight vector wt+1

to be the solution to the following constrained optimization

problem, wt+1 = arg minw∈Rn
1
2 ‖w − wt‖2

2 s.t. yt(w ·
xt) ≥ 1.

Typical online learning algorithms have no limitation

on the feature weights. Some features can get quite large

weights. This makes the classifier less reliable, especially in

dynamic environments where certain features may become

uninformative later. For example, let’s consider the senti-

ment problem which predicts whether a product review is

positive. When the product iLearn first appears in the mar-

ket, it gets many positive reviews because of its novelty.

Hence, the word iLearn is a good indicator of positive in-

stances and gets a large weight. As customers get used to

the new functions and other competitive products appear,

the number of iLearn’s negative reviews becomes close to

the number of its positive reviews. Consequently, the word

iLearn is no longer predictive for sentiment. However, since

it received a large weight during the early phases, learning al-

gorithms will keep predicting reviews with the word iLearn

as positive, and they will have difficulty in recovering from

such mistakes. To avoid this, it is essential not to assign too

much weight to any single feature.

When constructing classifiers over high-dimensional

datasets, we usually face the potential problem of over-

fitting. A common strategy for addressing this issue is to

first run a feature selection step. Standard feature selection

methods [19] adopt the batch approach and thus are unappro-

priate for the nonstationary problems faced by online learn-

ing. Some feature selection methods have been designed for

online scenario [9, 6]. There are two issues with those ap-

proaches. First, they assume an adversarial environment and

take a worse-case approach. Thus the performance is usually

suboptimal in the normal case. Second, they usually have to

solve some optimization problems and thus are not feasible

for time-critical online problems. In this paper, we solve the

over-fitting problem by applying regularization. We show

our algorithms have the feature selection ability and can im-

prove over the non-regularized algorithms.

We usually say that an instance is active if it triggers an

update. Online learning algorithms typically set the initial

weight vector to be the zero vector and do updates of the

form wt+1 = wt + τtytxt where τt is the learning rate

determined by the learning algorithm. Thus, wt is a linear

combination of the active instances, and the newer active

instances play the same role as the older active instances. We

show that for certain kinds of regularized online learning,

the updates have the form wt+1 = 1
Zt

wt + τtytxt, where

Zt ≥ 1. Thus, the coefficients of those active instances

appearing in the earlier phase shrink and have less influence

as additional instances are received.

3 Regularized Online Learning of Linear Classifiers

We investigate two kinds of regularization. The first one has

an L2 norm penalty in the objective function, and the second

one has an explicit norm requirement in the constraint.

3.1 Online Learning with Regularized Objective Let α
be a constant controlling the shrinkage rate, we can shrink

the norm of the weight vector towards zero by adding a

penalty in the objective function:

wt+1 =arg min
w∈Rn

1

2
‖w − wt‖2

2 +
α

2
‖w‖2

2(3.1)

s.t. yt(w · xt) ≥ 1,

We denote the hinge loss [10] at iteration t as ℓt. This

gives us a simple closed-form update:

LEMMA 3.1. Problem 3.1 has the closed-form solution

wt+1 = 1
1+α

(wt + τtytxt), where τt = ℓt+α

‖xt‖
2
2

.

Proof. The Lagrangian of the optimization problem in Prob-

lem 3.1 is

L(w, τ) =
1

2
‖w − wt‖2

2 +
α

2
‖w‖2

2 + τ(1 − yt(w · xt)),

(3.2)

where τ ≥ 0 is the Lagrange multiplier. Differentiating this

Lagrangian with respect to the elements of w and setting the

partial derivatives to zero gives

w =
1

1 + α
wt +

τ

1 + α
ytxt.(3.3)



Replacing w in Eq 3.2 with Eq 3.3, the Lagrangian becomes

L(τ) =
1

2

∥

∥

∥

∥

τ

1 + α
ytxt −

α

1 + α
wt

∥

∥

∥

∥

2

2

+

α

2

∥

∥

∥

∥

τ

1 + α
ytxt +

1

1 + α
wt

∥

∥

∥

∥

2

2

+ τ(1 −
yt(w · xt)

1 + α
−

τ ‖xt‖
2

2

1 + α
).

By setting the derivative of this with respect to τ to zero, we

obtain

1 − τ

1 + α
‖xt‖2

2 −
yt(w · xt)

1 + α
= 0

⇒ τ =
1 − yt(w · xt) + α

‖xt‖2
2

.

Our algorithms try to minimize the penalized weight

fluctuations while ensuring a large margin. There have been

a few online learning algorithms trying to shrink weights

towards zero [11, 12]. The existing work attempts to find

a tradeoff between the fitting to the data and the simplicity

of the learned model. Their updates do not directly enforce

a large margin. Their shrinking mechanisms usually have to

sacrifice the fitting to the training data. Experimental results

show that our algorithms give much higher accuracy.

Let It be the active set at iteration t. An instance xi is in

It iff i < t and it triggers an update. Based on Lemma 3.1,

the learned decision function at time t can be rewritten as

ft(x) = sign

(

∑

i∈It

τiyi

(1 + α)|It−Ii|
xi · x

)

(3.4)

We can employ the kernel trick by replacing the stan-

dard scalar product with a function K(·, ·) which satisfies

the Mercer conditions. This form is interestingly similar to

the Forgetron algorithm [5], an online kernel-based learning

algorithm. It does the standard percetron update but controls

the number of support vectors by removing the oldest sup-

port vector when the size of the support vector set is too

large. Since removing a support vector may significantly

change the hypothesis, it tries to “shrink” the weight of old

support vectors. It multiplies the weights by φt ∈ (0, 1] in

each iteration. Our objective-regularized online learning al-

gorithm automatically shrinks the weights of those support

vectors and, hence, “forgets” the old support vectors.

Since we are handling nonstationary problems, the best

hypothesis at each iteration might be changing. An optimal

algorithm does the minimal number of updates and does

not update its hypothesis unless our algorithm updates the

hypothesis. Given a vector sequence u0, ..,uT ∈ R
n where

ut is the hypothesis of the optimal algorithm at iteration t,
we let ℓ∗t denote the loss of ut at iteration t. Our regularized

algorithm is competitive with the optimal algorithm, as long

as the change between two contiguous optimal hypotheses

is not extremely dramatic. To see this, we assume that the

norm is bounded for each instance xt, i.e., ‖xt‖2 ≤ R. The

following theorem provides an error bound of our algorithm.

THEOREM 3.1. Assume that there exists an optimal se-

quence of vectors u0, ...,uT ∈ R
n such that ‖ut‖2 = D,

ℓ∗t = 0 for all t, ‖ut − ut+1‖2 ≤ µ and µ satisfies g =
1−α2

R2 − 2(1 + α)µβ − αD2

2+α
> 0. Given maxt ‖wt‖2 = β,

the number of prediction mistakes made by the objective-

regularized algorithm is bounded by m ≤ D2

g
.

Proof. Let ∆t = ‖wt − ut‖2
2 − ‖wt+1 − ut+1‖2

2. We can

prove the bound by lower and upper bounding
∑

t ∆t. Since

w0 is a zero vector and the norm is non-negative,
∑

t ∆t =

‖w0 − u0‖2
2 − ‖wT − uT ‖2

2 ≤ ‖w0 − u0‖2
2 = D2.

Obviously, only if t ∈ IT , ∆t 6= 0. We will only

consider this case here. Let w
′
t = wt + τtytxt, wt+1 =

1
1+α

w
′
t. ∆t can be rewritten as

(‖wt − ut‖2
2 − ‖w′

t − ut‖2
2)

+(‖w′
t − ut‖2

2 − ‖w′
t − ut+1‖2

2)

+(‖w′
t − ut+1‖2

2 − ‖wt+1 − ut+1‖2
2) = δt + ψt + ǫt.

We will lower bound δt, ψt and ǫt.
For δt, we have

δt = − 2τtytxt · (wt − ut) − ‖τtytxt‖2
2

≥2τtℓt − τ2
t ‖xt‖2

2

Plugging the definition of τt and considering ℓt ≥ 1 get

δt ≥
2ℓ2t + 2ℓtα

‖xt‖2
2

− ℓ2t + 2ℓtα+ α2

‖xt‖2
2

≥ 1 − α2

R2
(3.5)

For ψt, we have

ψt = − 2w′
t · (ut − ut+1)

≥− 2 ‖w′
t‖2 ‖ut − ut+1‖2 ≥ −2(1 + α)µβ(3.6)

For ǫt, we have

ǫt =(1 − 1

(1 + α)2
) ‖w′

t‖
2
2 − 2(1 − 1

1 + α
)w′

t · ut+1

Using the fact that ‖u − v‖2
2 ≥ 0 which equals to

‖u‖2
2 − 2u · v ≥ −‖v‖2

2, we get

(1 − 1

(1 + α)2
) ‖w′

t‖
2
2 − 2(1 − 1

1 + α
)w′

t · ut+1

≥−
1 − 1

1+α

1 + 1
1+α

‖ut+1‖2
2 = − αD2

2 + α
(3.7)

Using Eq 3.5, 3.6 and 3.7, we get

T
∑

t=1

∆t ≥ m

(

1 − α2

R2
− 2(1 + α)µβ − αD2

2 + α

)



Applying
∑

t ∆t ≤ D2 gives

m

(

1 − α2

R2
− 2(1 + α)µβ − αD2

2 + α

)

≤ D2(3.8)

Since g = 1−α2

R2 − 2(1 + α)µβ − αD2

2+α
> 0, we get the

result in the theorem.

Note the error bound increases as µ increases. This

suggests that a learning problem with dramatic changing

concepts is difficult, even for a regularized online learning

algorithm.

3.2 Online Learning with Norm Constraint The

objective-regularized algorithm keeps shrinking the weights

even when the weights have become quite small. This

could hurt prediction accuracy. We can instead only shrink

the weights when they get too large by enforcing a norm

constraint:

wt+1 = arg min
w∈Rn

1

2
‖w − wt‖2

2(3.9)

s.t. yt(w · xt) ≥ 1 and ‖w‖2 ≤ β

This leads to the following simple closed-form update:

LEMMA 3.2. Problem 3.9 has the closed-form solu-

tion wt+1 = 1
Zt

(wt + τtytxt), where Zt =

max

{

1,

√

‖wt‖
2
2
‖xt‖

2
2
−(wt·xt)

2

β2‖xt‖
2
2
−1

}

, τt = ℓt+Zt−1
‖xt‖

2
2

.

This algorithm performs the normal passive-aggressive

update until the norm of wt becomes large enough. It then

shrinks the weights a little bit. The experiments show that

this approach is slightly more accurate than the objective-

regularized algorithm.

It is easy to show that both the objective-regularized

and the L2 norm constrained algorithms are rotationally

invariant. Let M = {M ∈ R
n×n|MM ′ = M ′M =

I, |M | = 1} be the class of rotational matrices, where I
is the identity matrix. Given a learning algorithm L, we

say it is rotational invariant [15] if for any training set S,

rotational matrix M ∈ M, and test example x, we have

L[S, x] = L[MS,Mx], where L[S, x] is the predicted label

of x resulting from using L to train on S.

LEMMA 3.3. The learning algorithm solving Problem 3.1

and the algorithm solving Problem 3.9 are rotationally in-

variant.

A detailed proof is presented in Appendix. Ng [15]

shows that rotationally invariant algorithms can require a

large number of training instances to learn a simple model

when there are many irrelevant features. In such situations,

learning algorithms with L1 regularization usually converge

to the right model much faster. Thus, it is worth exploring

the following L1 norm constrained learning algorithm:

wt+1 = arg min
w∈Rn

1

2
‖w − wt‖2

2(3.10)

s.t. yt(w · xt) ≥ 1 and ‖w‖1 ≤ β

This can be transformed into a quadratic programming

problem and solved with an off-the-shelf quadratic program-

ming package. Since the L1 norm constraint is still convex, it

is guaranteed to find the global optimum. There is a disconti-

nuity in the gradient of L1 with respect to wi at wi = 0. This

tends to force a subset of weights to be exactly zero [18], so

that the learned weight vector is sparse.

The following theorem provides an error bound for the

online learning algorithms with L2 or L1 norm constraints:

THEOREM 3.2. Assume that there exists an optimal se-

quence of vectors u0, ...,uT ∈ R
n such that ‖ut‖2 =

D ≤ β, ℓ∗t = 0 for all t, ‖ut − ut+1‖2 ≤ µ and µ sat-

isfies 1
R2 − 2µβ > 0, then the number of errors made by

the algorithm with the L2 norm constraint is bounded by

m ≤ R2D2

1−2µβR2 . Similarly, if there exists an optimal vector se-

quence such that ‖ut‖1 = D ≤ β and ‖ut − ut+1‖∞ ≤ µ,

then the number of errors made by the algorithm with the L1

norm constraint is bounded by m ≤ R2D2

1−2µβR2 .

Proof. We concentrate on the L2 norm case. The proof can

be applied to the L1 case similarly. Let ∆t = ‖wt − ut‖2
2 −

‖wt+1 − ut+1‖2
2. We can prove the bound by lower and

upper bounding
∑

t ∆t. We know
∑

t ∆t ≤ D2.

We now lower bound ∆t. We let ∆t = (‖wt − ut‖2
2 −

‖wt+1 − ut‖2
2) + (‖wt+1 − ut‖2

2 − ‖wt+1 − ut+1‖2
2) =

γt + χt.

For χt, we have χt = −2wt+1 · (ut − ut+1) ≥ −2µβ.

It is obvious that ‖u‖1 =
∑

i |ui| ≥ |
∑

i ui|. Thus

‖(wt+1 − wt)xt‖1 ≥ |yt(wt+1 − wt) · xt| ≥ 1(3.11)

Applying Holder’s inequality, we have

‖(wt+1 − wt)xt‖1 ≤ ‖wt+1 − wt‖2 ‖xt‖2(3.12)

‖wt+1 − wt‖2 ≥ 1

‖xt‖2

≥ 1

R
(3.13)

Let PS(w) denote the projection of w onto the convex

set S, we know for any u ∈ S, we have ‖w − u‖2
2 −

‖PS(w) − u‖2
2 ≥ ‖w − PS(w)‖2

2 [2].

We note that wt+1 is a projection of wt onto the convex

set S = {w ∈ R
n|loss(w, (yt,xt)) = 0 and ‖w‖2 ≤ β}

for the L2 norm constrained algorithm. Since ut ∈ S,

γt ≥ ‖wt − wt+1‖2
2 ≥ 1

R2
(3.14)



Thus, we have

∑

i∈IT

(

1

R2
− 2µβ

)

≤ D2(3.15)

m ≤ R2D2

1 − 2µβR2
(3.16)

We get the result in the theorem.

Since ‖ut − ut+1‖∞ ≤ ‖ut − ut+1‖2, the error

bounds suggest that the L1 algorithm could tolerate more

fluctuations of the best hypotheses than the L2 algorithm.

3.3 Feature Selection Effect of Regularized Online

Learning Regularized online learning methods force many

feature weights to be small. We now show that we can

remove these features with small weights without hurting

the accuracy too much. Assume that features are sorted in

ascending order according to the absolute values of their

weights. Suppose we remove the first k features so that
∑k

i=1 w
2
i < σ and

∑k+1
i=1 w

2
i ≥ σ. As long as σ is small,

the number of errors is still close to the original regularized

method. For the objective-regularized algorithm, we have

the following error bound:

THEOREM 3.3. Assume that there exists an optimal se-

quence of vectors u0, ...,uT ∈ R
n such that ‖ut‖2 = D,

ℓ∗t = 0 for all t, ‖ut − ut+1‖2 ≤ µ and µ satisfies

h = 1−α2

R2 − 2(1 + α)µβ − αD2

2+α
− 2

√
σD > 0. Given

maxt ‖wt‖2 = β, then the number of prediction mistakes

made by the objective-regularized algorithm which removes

small weights is bounded by m ≤ D2

h
.

Proof. Let ∆t = ‖wt − ut‖2
2 − ‖wt+1 − ut+1‖2

2. We can

prove the bound by lower and upper bounding
∑

t ∆t. As

the above, we know
∑

t ∆t ≤ D2.

Let w′
t = wt + τtytxt, w

′′
t = 1

1+α
w

′
t. We define vector

vt ∈ R
n such as

vti =

{

w
′′
t i if

∑i
j=1 w

′′
t
2
j < σ

0 otherwise
(3.17)

Then wt+1 = w
′′
t − vt. ∆t can be rewritten as

(‖wt − ut‖2
2 − ‖w′

t − ut‖2
2)

+(‖w′
t − ut‖2

2 − ‖w′
t − ut+1‖2

2)

+(‖w′
t − ut+1‖2

2 − ‖w′′
t − ut+1‖2

2)

+(‖w′′
t − ut+1‖2

2 − ‖wt+1 − ut+1‖2
2) = δt + ψt + ǫt + ρt.

We have proved the lower bound of δt, ψt and ǫt. For

ρt, we have

ρt =2vt · w′′
t − 2vt · ut+1 − ‖vt‖2

2

It is obvious that vt · w′′
t = ‖vt‖2

2, thus we have

ρt = ‖vt‖2
2 − 2vt · ut+1 ≥ −2vt · ut+1(3.18)

Applying Cauchy-Schwarz inequality, we get

ρt ≥− 2 ‖vt‖2 ‖ut+1‖2 ≥ −2
√
σD(3.19)

Using Eq 3.5, 3.7 and 3.19, we get

T
∑

t=0

∆t ≥m
(

1 − α2

R2
− 2(1 + α)µβ − αD2

2 + α
− 2

√
σD

)

Since
∑

t ∆t ≤ D2, we have

m

(

1 − α2

R2
− 2(1 + α)µβ − αD2

2 + α
− 2

√
σD

)

≤ D2

Since h = 1−α2

R2 − 2(1 + α)µβ − αD2

2+α
− 2

√
σD > 0,

we get the result in the theorem.

Similarly, for the algorithms with norm constraints, we

have the following error bound:

THEOREM 3.4. Assume that there exists an optimal se-

quence of vectors u0, ...,uT ∈ R
n such that ‖ut‖2 = D ≤

β, ℓ∗t = 0 for all t, ‖ut − ut+1‖2 ≤ µ and µ satisfies

q = 1
R2 −2µβ−2

√
σD > 0, then the number of errors made

by the algorithm with the L2 norm constraint is bounded by

m ≤ D2

q
. Similarly, if there exists an optimal vector se-

quence such that ‖ut‖1 = D and ‖ut − ut+1‖∞ ≤ µ, the

number of errors made by the algorithm with the L1 norm

constraint is bounded by m ≤ D2

q
.

From the theorems, removing those small features

slightly increases the error bounds by subtracting 2
√
σ ‖u‖2

from the denominator. Given a small σ, ignoring the small

features has little influence on the prediction accuracy. Our

experimental results show that the accuracy is not hurt even

when we remove more than half of the features. This feature

selection effect can also explain the superior performance of

regularized online learning: our algorithms drive many fea-

tures towards zero and ignore them in prediction. The algo-

rithms tend to learn a model with a sparse parameter vector

when the feature space is large.

4 Experimental Results

Datasets. We tested our algorithms on one image dataset

(USPS) and two text datasets (20NewsGroup, SRAA 1). We

removed the header of each text document and converted the

remainder into a 0/1 vector without stemming or a stoplist.

To make the experiments more realistic and dynamic, we

1Available at http://www.cs.umass.edu/˜mccallum/data/sraa.tar.gz



200 400 600 800 1000

0.08

0.09

0.1

0.11

The number of instances

T
h
e
 c

u
m

u
la

ti
v
e
 e

rr
o
r 

ra
te

NORMA
PA
Objective−regularized
L2 norm constrained

(a) USPS

200 400 600 800 1000 1200 1400 1600

0.05

0.06

0.07

0.08

0.09

The number of instances

T
h

e
 c

u
m

u
la

ti
v
e

 e
rr

o
r 

ra
te

NORMA
PA
L2 norm constrained
L1 norm constrained

(b) 20NewsGroup

200 400 600 800 1000 1200 1400 1600

0.14

0.16

0.18

0.2

The number of instances

T
h
e
 c

u
m

u
la

ti
v
e
 e

rr
o
r 

ra
te

NORMA
PA
L2 norm constrained
L1 norm constrained

(c) SRAA

Figure 1: Cumulative error rate of different online methods as a function of the number of instances.

define a non-stationary process for generating the data se-

quence. In each data set, we choose four classes (P1, P2,

N1, N2) and we treat P1 and P2 as positive, N1 and N2 as

negative. Then we define four phases for the data sequence.

In Phase 1, the probability of class P1 decreases from 0.7 to

0.5 and the probability of N1 increases from 0.3 to 0.5. In

Phase 2, the probability of P1 decreases from 0.5 to 0.3, P2

increases from 0 to 0.2, and N1 is fixed at 0.5. In Phase 3, P2

is fixed at 0.5, N1 decrease from 0.2 to 0, and N2 increases

from 0.3 to 0.5. In Phase 4, P2 decreases from 0.5 to 0.3 and

N2 increases from 0.5 to 0.7. Classes not mentioned have

probability 0. For the USPS set, we sample 500 instances

in each phase and define P1 to be the digit “3”, P2 to be

“7”, N1 to be “8”, and N2 to be “9”. For the 20NewsGroups

and SRAA set, we sample 800 instances in each phase. For

20NewsGroups, P1 is “Baseball”, P2 is “Hockey”, N1 is

“Auto”, and N2 is “Motorcycle”. For SRAA, P1 is “RealAu-

tos”, P2 is “RealAviation”, N1 is “SimulatedAuto”, and N2

is “SimulatedAviation”. There are 256 features in the sam-

pled USPS data, around 8000 features in the 20NewsGroup

data, and around 9000 features in the SRAA data.

Approach. We applied our algorithms to the generated

data sequence as follows. We used the first half of the

data to select the regularization parameter and then train the

model on the first half. We then measure online performance

using the second half of the data. Since the second half

corresponds to phases 3 and 4, this approach means that

the initial model (learned in phases 1 and 2) performs very

badly initially. The results are similar if the regularization

parameters are tuned on the second half of the data. All

results are averaged over 40 trials.

Comparison with Other Online Learning Methods.

We compare our algorithms with the linear NORMA algo-

rithm [12] which is another regularized online learning al-

gorithm and the standard passive-aggressive algorithm [3]

which is a state-of-the-art online learning algorithm. The

results are shown in Figure 1. The regularized online al-

gorithms outperform PA in all three problems. The differ-

ence in accuracy is particularly large at the beginning of

the online testing. The difference then decreases as more

instances come in. This suggests that the regularized al-

gorithms can adapt well to the changing environment and

can converge to a good model more quickly. The method

with L2 norm constraint slightly outperforms the objective-

regularized method. This may be because the objective-

regularized method keeps shrinking the weight vector even

when the weights are small, which could lead to over-

shrinking. Thus, for the rotationally invariant algorithms we

will focus on the method with the L2 norm constraint.

By ensuring a large margin, our algorithms give much

higher accuracy than NORMA. Although NORMA can also

quickly adjust its hypothesis, it is not as accurate as our

algorithms, because NORMA updates the hypothesis based

on a stochastic gradient approach and the update does not

take into account how large the loss is. The accuracy

difference between NORMA and our algorithm is small at

the beginning and then increases as more training instances

come in. This is especially clear for the SRAA dataset which

is a relatively more difficult problem.

The method with L2 norm constraint shows results that

are competitive with the method with L1 norm constraint.

For the 20NewsGroups problem, which is relatively easy to

predict, the L2 constraint even slightly outperforms the L1

norm constraint. A possible reason for the nearly identi-

cal performance is that the number of irrelevant features is

within an order of magnitude of the number of informative

features in these problems. As we will show later, more than

half of the features are informative in the USPS problem. For

the text problems, there are several times more the meaning-

less features than the informative features, but the number of

informative features is still quite large. It is well known that

L1 regularization works best when a small number of fea-

tures play moderate-sized effects in classification, while L2

regularization is quite competitive when a large number of

features play small effects in classification [18].

For the L1 constrained algorithm, we use the current

weight vector as the initial value when doing the update by

solving the quadratic programming problem. This makes the



103050100180

0.1

0.15

0.2

0.25

0.3

0.35

The number of features

T
h
e
 o

v
e
ra

ll 
e
rr

o
r 

ra
te

Information gain
Game theoretic
L2 norm constrained
L1 norm constrained

(a) USPS

5010030010006000

0.05

0.1

0.15

0.2

The number of features

T
h

e
 o

v
e

ra
ll 

e
rr

o
r 

ra
te

Information gain
L2 norm constrained
L1 norm constrained

(b) 20News

5010030010006000

0.2

0.3

0.4

0.5

The number of features

T
h
e
 o

v
e
ra

ll 
e
rr

o
r 

ra
te

Information gain
L2 norm constrained
L1 norm constrained

(c) SRAA

Figure 2: Performance of feature selection methods as a function of the number of features, with 95% confidence intervals.

update quite efficient. For example, it usually takes less than

10 minutes to process all 3200 20NewsGroup instances on a

Linux machine (AMD64 2.6Ghz CPU, 2G memory).

Feature Selection Effect. Next we investigate the

feature selection power of our algorithms. We explicitly

ignore features with small weights so that the sum of their

squared weights roughly equals to the threshold σ. We then

count the average number of features per iteration and the

overall error rate over the testing sequence.

We compared the L1 and L2-norm constrained algo-

rithms with two feature selection methods: information gain

[19] and a game-theoretic method. When updating the

model, we first perform feature selection and then carry out

the model update. Online learning usually faces a dynamic,

sometimes even adversarial environment [9, 6]. We can de-

vise a game-theoretic feature selection algorithm by trying

to maximize the accuracy in the worst case. We treat feature

selection as a two-person game [7]. Let the learner be the

row player and the environment be the column player. The

game can be thought as this: given an observation x, the row

player chooses a feature xi and probabilistically determines

y[i], the label of x based only on feature xi. Simultaneously,

the column player chooses a feature xj and probabilistically

determines the label y[j]. If they predict the same label, then

the row player gets reward 1, otherwise 0. We want to design

a reward matrixM so thatM(i, j) is proportional to the like-

lihood that y[i] = y[j] when the row player selects feature

xi and the column player selects feature xj . There could be

many choices. One possibility is the information gain of the

feature pair 〈xi, xj〉. Let u be the learner’s selection strategy

and v be the environment’s strategy, our goal is then to find

a strategy that can maximize the reward in the worst case:

max
u

min
v

(uMv)(4.20)

s.t. ∀i ui = 0/1, ∀j vj = 0/1,
∑

i

ui =
∑

j

vj = k,

where k is the number of selected features. We then select

those features with ui = 1. In practice, we can relax

the integer requirement and replace the constraint ∀i ui =
0/1, ∀j vj = 0/1 with constraint ∀i 0 ≤ ui ≤ 1, ∀j 0 ≤
vj ≤ 1. The problem can be converted into a linear

programming problem and be solved efficiently. We then

select k features with the largest ui.

The feature selection results are plotted in Figure 2. In

most cases, the regularized methods significantly outperform

other feature selection methods, especially for the USPS

problem in which most features are informative. Information

gain does not realize that the data is changing and still selects

features aggressively based on overall mutual information.

Its performance is extremely bad when we only select a small

number of features. Information gain shows improvement

only for the 20NewsGroup problem, which is relatively

easy to predict. The game-theoretic method selects better

feature sets than information gain. The weight shrinking

of the regularized methods is continuous and thus produces

smoother results. The L1 norm constrained method is more

likely to put more weights on some informative features.

Once these features are removed, its performance is severely

hurt. Although it shows slightly better performance when we

allow many features, it becomes unstable and its accuracy

is much worse than the L2 constrained method when the

number of selected features is limited. The accuracy of our

regularized method is not hurt even when we remove most

features. This suggests that our regularized methods have

the ability to ignore some features and learn a sparse model.

Adapting to the New Environment. For online learn-

ing, its learned model is determined by its active set. The

regularized methods naturally reduce the influence of the old

active instances and put more attention on the more recent

ones. We compare the final learned models for the USPS

problem. We plot the learned models as follows: each fea-

ture corresponds to its position in the image, and the gray

scale is proportional to its absolute weight. We apply the in-

formation gain criterion to the entire data sequence and get

the weight for each feature. We also apply the PA algorithm

and the regularized algorithms to the sequence. We compute

the absolute weights of the features at the end of the testing.

The results are plotted in Figure 3. At the end of Phase 4,



(a) Information gain (b) PA (c) L2 norm constraint (d) L1 norm constraint

Figure 3: The learned models. The lighter color means the larger absolute value of weight.

the system is simply predicting whether a digit is “7” or “9”.

Hence, the features from the regularized algorithms make

much more sense. The L1 constrained method more aggres-

sively puts large weights on a smaller number of features.

The PA algorithm still puts large weights on those features

that can discriminate “3” and “8”.

5 Conclusions And Further Work

We thoroughly analyzed the characteristics of the regular-

ization mechanism in online learning settings and presented

three efficient large margin learning algorithms. We theoret-

ically analyzed our algorithms to obtain error bounds. They

have some interesting characteristics that make them espe-

cially attractive in the dynamic environments: they shrink

the weights towards zero and make it easy to adjust the model

when the environment is changing. Our regularized methods

learn a sparse model by ignoring some features and exhibit

good feature selection ability. They naturally shrink the in-

fluence of the old active instances and put more weights on

the more recent ones. We have successfully applied a varia-

tion of our algorithms to the activity recognition [17].

The learned weight vector of our L2 regularized meth-

ods is a linear combination of the active instances. It would

be interesting to employ the kernel trick here by replacing the

standard scalar product with a function satisfying the Mercer

conditions and compare our algorithms with the Forgetron

algorithm [5]. The Forgetron is an online kernel-based learn-

ing algorithm that controls the number of support vectors by

removing the oldest support vector when the number of sup-

port vectors exceeds a fixed quota. Since removing a sup-

port vector may significantly change the hypothesis, it ag-

gressively “shrinks” the weight of old support vectors. Our

objective-regularized online algorithm naturally shrinks the

weights of those support vectors and we could also control

the number of support vectors by removing the oldest one.

Appendix – Detailed Proof of the Theorems

Proof of Lemma 3.2

Proof. The Lagrangian of Problem 3.9 is

L(w, τ) =
1

2
‖w − wt‖2

2

+ τ(1 − yt(w · xt)) + λ(‖w‖2
2 − β2),

where τ ≥ 0 and λ ≥ 0 are the Lagrange multipliers.

Differentiating this Lagrangian with respect to the elements

of w and setting the partial derivative to zero gives

w =
1

1 + 2λ
(wt + τytxt).(5.21)

We let Z = 1 + 2λ. The KKT conditions require constraint

1 − yt(w · xt) ≤ 0 to be active, which leads to

τ =
Z − yt(w · xt)

‖xt‖2
2

.(5.22)

The KKT conditions require λ(‖w‖2
2−β2) = 0. We discuss

two cases here. First, λ = 0, then we get τ = 1−yt(w·xt)

‖xt‖
2
2

from Equation 5.22.

Second, ‖w‖2
2 −β2 = 0. We replace τ with

Z−yt(w·xt)

‖xt‖
2
2

in it and get

‖wt‖2
2 +

2Zyt(w · xt) − 2(w · xt)
2

‖xt‖2
2

+
Z2 − 2Zyt(w · xt) + (w · xt)

2

‖xt‖2
2

= β2Z2

(β2 ‖xt‖2
2 − 1)Z2 = ‖wt‖2

2 ‖xt‖2
2 − (w · xt)

2.

This can be possible only if β2 ‖xt‖2
2 − 1 ≤

‖wt‖2
2 ‖xt‖2

2 − (w · xt)
2 since Z = 1 + 2λ ≥ 1. In this

case, we get Z =

√

‖wt‖
2
2
‖xt‖

2
2
−(wt·xt)

2

β2‖xt‖
2
2
−1

. If β2 ‖xt‖2
2 − 1 >

‖wt‖2
2 ‖xt‖2

2 − (w · xt)
2, this corresponds to the first case,

λ = 0. We can easily show that constraint ‖w‖2
2 ≤ β2 is

always feasible and inactive if it is true:

‖w‖2
2 =

‖wt‖2
2 ‖xt‖2

2 − (w · xt)
2 + 1

‖xt‖2
2

<
β2 ‖xt‖2

2 − 1 + 1

‖xt‖2
2

= β2.

Since both our objective function and constraint func-

tions are convex, we know our solution is globally optimal.

Combining the above two cases, we conclude the proof.



Proof of Lemma 3.3

Proof. We focus on the Problem 3.1. The proof can be

similarly applied to Problem 3.9. We show that if L trained

with S outputs w then L trained withMS outputs the weight

vector Mw by inducting on the size of S.

Let L[S] denote the weight vector returned by L trained

with S.

When |S| = 0, both weight vectors are zero vectors.

Thus, the claim is true and the score functions will be the

same since they always return 0.

Assume when |S| = k, L[MS] = ML[S]. Now,

consider |S| = k + 1. Let S = S′ ∪ {xk+1} and MS =
(MS′) ∪ {Mxk+1}. We know L[MS′] = ML[S′], since

the size of S′ is k. Since we are using the linear product as

the score function, for L trained withMS′ we have the score

for Mxk+1: L[MS′] · (Mxk+1) = (ML[S′]) · (Mxk+1) =
L[S′] (MM)xk+1 = L[S′] · xk+1. Thus the prediction of

Mxk+1 given by LwithMS′ is the same with the prediction

of xk+1 given by L with S′.

If there is no need to update weight, we obviously have

L[MS] = ML[S]. If we need to update the weight, the

update will be L[MS] = 1
1+α

(L[MS′] + τ ′tyt (Mxk+1)),

where τ ′t = ℓ′+α
‖Mxk+1‖

2 = ℓ+α
‖xk+1‖

2 = τt. Thus L[MS] =

M 1
1+α

(L[S′] + τtyt (xk+1)) = ML[S].
As a summary, L[MS] = ML[S] given any dataset.

Since we are using the linear product as the score function,

we always have L[S, x] = L[MS,Mx].

Proof of Theorem 3.4

Proof. Let ∆t = ‖wt − ut‖2
2 − ‖wt+1 − ut+1‖2

2. We can

prove the bound by lower and upper bounding
∑

t ∆t. As

the above, we know
∑

t ∆t ≤ D2.

Obviously, only if t ∈ IT , ∆t 6= 0. We will only con-

sider this case here. Let w
′
t be the solution of Problem 3.9.

We define vector vt ∈ R
n such as

vti =

{

w
′
ti if

∑i
j=1 w

′
t
2
j < σ

0 otherwise
(5.23)

Then wt+1 = w
′
t − vt. ∆t can be rewritten as

(‖wt − ut‖2
2 − ‖w′

t − ut‖2
2)(5.24)

+(‖w′
t − ut‖2

2 − ‖w′
t − ut+1‖2

2)(5.25)

+(‖w′
t − ut+1‖2

2 − ‖wt+1 − ut+1‖2
2)(5.26)

We have shown χt + γt ≥ 1
R2 − 2µβ and

‖w′
t − ut+1‖2

2 − ‖wt+1 − ut+1‖2
2 ≥ −2

√
σD. Thus,

∆t ≥
1

R2
− 2µβ − 2

√
σD(5.27)

Since we know 1
R2 − 2µβ − 2

√
σD > 0, we get the

result in the theorem.

References

[1] V. R. Carvalho and W. W. Cohen. Single-pass online learning:

performance, voting schemes and online feature selection. In

Proc. of KDD-06, pages 548–553, 2006.

[2] Y. Censor and S. Zenios. Parallel Optimization: Theory,

Algorithms, and Applications. Oxford University Press, New

York, NY, USA, 1997.

[3] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and

Y. Singer. Online passive-aggressive algorithms. Journal of

Machine Learning Research, 7:551–585, 2006.

[4] K. Crammer and Y. Singer. Ultraconservative online algo-

rithms for multiclass problems. Journal of Machine Learning

Research, 3:951 – 991, 2003.

[5] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron:

A kernel-based perceptron on a fixed budget. In Advances in

NIPS 18, pages 259–266. 2006.

[6] O. Dekel and O. Shamir. Learning to classify with missing

and corrupted features. In Proc. of ICML-08, pages 216–223,

2008.

[7] Y. Freund and R. E. Schapire. Game theory, on-line pre-

diction and boosting. In Proc. of COLT-96, pages 325–332,

1996.

[8] C. Gentile. A new approximate maximal margin classifi-

cation algorithm. Journal of Machine Learning Research,

2:213–242, 2002.

[9] A. Globerson and S. Roweis. Nightmare at test time: robust

learning by feature deletion. In Proc. of ICML-06, pages 353–

360, 2006.

[10] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of

Statistical Learning. Springer, 2001.

[11] M. Herbster and M. K. Warmuth. Tracking the best expert.

Machine Learning, 32(2):151–178, 1998.

[12] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learn-

ing with kernels. IEEE Transactions on Signal Processing,

52(8):2165– 2176, 2004.

[13] J. Kivinen and M. K. Warmuth. Exponentiated gradient

versus gradient descent for linear predictors. Information and

Computation, 132(1):1–63, 1997.

[14] Y. Li and P. M. Long. The relaxed online maximum margin

algorithm. Machine Learning, 46(1–3):361–387, 2002.

[15] A. Y. Ng. Feature selection, L1 vs. L2 regularization, and

rotational invariance. In Proc. of ICML-04, pages 78–85,

2004.

[16] F. Rosenblatt. The Perceptron: a probabilistic model for in-

formation storage and organization in the brain. Neurocom-

puting: foundations of research, pages 89–114, 1988.

[17] J. Shen, J. Irvine, X. Bao, M. Goodman, S. Kolibaba, A. Tran,

F. Carl, B. Kirschner, S. Stumpf, and T. Dietterich. Detecting

and correcting user activity switches: Algorithms and inter-

faces. In Proc. of IUI-09, 2009.

[18] R. Tibshirani. Regression shrinkage and selection via the

lasso. J. Royal. Statist. Soc B, 58(1):267–288, 1996.

[19] Y. Yang and J. O. Pedersen. A comparative study on feature

selection in text categorization. In Proc. of ICML-97, pages

412–420, 1997.


