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ABSTRACT
In many applications, an anomaly detection system presents
the most anomalous data instance to a human analyst, who
then must determine whether the instance is truly of in-
terest (e.g. a threat in a security setting). Unfortunately,
most anomaly detectors provide no explanation about why
an instance was considered anomalous, leaving the analyst
with no guidance about where to begin the investigation.
To address this issue, we study the problems of computing
and evaluating sequential feature explanations (SFEs) for
anomaly detectors. An SFE of an anomaly is a sequence of
features, which are presented to the analyst one at a time
(in order) until the information contained in the highlighted
features is enough for the analyst to make a confident judge-
ment about the anomaly. Since analyst effort is related to
the amount of information that they consider in an inves-
tigation, an explanation’s quality is related to the number
of features that must be revealed to attain confidence. One
of our main contributions is to present a novel framework
for large scale quantitative evaluations of SFEs, where the
quality measure is based on analyst effort. To do this we
construct anomaly detection benchmarks from real data sets
along with artificial experts that can be simulated for eval-
uation. Our second contribution is to evaluate several novel
explanation approaches within the framework and on tra-
ditional anomaly detection benchmarks, offering several in-
sights into the approaches.
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1. INTRODUCTION
Anomaly detection is the problem of identifying anoma-

lies in a data set, where anomalies are those points that are
generated by a process that is distinct from the process gen-
erating “normal” points. Statistical anomaly detectors ad-
dress this problem by seeking statistical outliers in the data.
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In most application, however, statistically outliers will not
always correspond to the semantically-meaningful anoma-
lies. For example, in a computer security application, a user
may be considered statistically anomalous due to an unusu-
ally high amount of copying and printing activity, which in
reality has a benign explanation and hence is not a true
anomaly. Because of this gap between statistics and seman-
tics, an analyst typically investigates the statistical outliers
in order to decide which ones are likely to be true anomalies
and deserve further action.

Given an outlier point, an analyst faces the problem of
analyzing the data associated with that point in order to
make a judgement about whether it is an anomaly or not.
Even when points are described by just tens of features,
this can be challenging, especially, when feature interactions
are critical to the judgement. In practice, the situation is
often much worse with points being described by thousands
of features. In these cases, there is a significant risk that
even when the anomaly detector passes a true anomaly to
the analyst, the analyst will not recognize the key properties
that make the point anomalous due to information overload.
This means that, in effect, the missed anomaly rate of the
overall system is a combination of the miss rates of both
the anomaly detector and the analyst. Thus, one avenue for
improving detection rates is to reduce the effort required by
an analyst to correctly identify anomalies, with the intended
side-effect of reducing the analyst miss rate.

In this paper, we consider reducing the analyst’s detection
effort by providing them with explanations about why points
were judged to be anomalous by the detector. Given such
an explanation, the analyst can minimize effort by focusing
the investigation on information related to the explanation.

Our first contribution is to introduce an intuitive and sim-
ple form of explanation, which we refer to as sequential fea-
ture explanations (SFEs). Given a point judged to be an
outlier by a detector, an SFE for that point is an ordered
sequence of features, where the order indicates the impor-
tance with respect to causing a high outlier score. An SFE
is presented to the analyst by incrementally revealing the
features one at a time, in order, until the analyst has ac-
quired enough information to make a decision about whether
the point is an anomaly or not (e.g. in a security domain,
threat or non-threat). The investigative work of the analyst
is roughly related to the number of features that must be re-
vealed. Hence, the goal for computing SFEs is to minimize
the number of features that must be revealed in order for
the analyst to confidently identify true anomalies.

Our second contribution is to formulate a quantitative



evaluation methodology for evaluating SFEs, allowing for
the comparison of different SFE algorithms. The key idea
of the approach is to construct a simulated analyst for each
anomaly detection benchmark using supervised learning and
ground truth about which points are anomalies. The sim-
ulated analyst can then be used to evaluate the quality of
SFEs with respect to the number of features that must be
revealed to reach a specified confidence level. Incorporat-
ing human analysts in the evaluation process seem plausible
and could fit the purpose much better. But, large scale ex-
periments involving real human are complicated and cum-
bersome in practice and would require a complete separate
study. Hence, In this paper we focused on how to conduct
large scale quantitative evaluations—necessarily using sim-
plified analyst models. To the best of our knowledge this is
the first methodology for quantitatively evaluating any type
of anomaly explanation method.

Our third contribution is to define several algorithms for
computing SFEs that can be applied to any density-based
anomaly detector. The main requirement of the algorithms
is that it is possible to (approximately) compute joint marginals
of a detector’s density function, which is an operation that
is supported for most commonly-used densities.

Finally, our fourth contribution is to provide an empir-
ical investigation of several methods for computing SFEs.
Our primary evaluations use a recently constructed set of
anomaly detection benchmarks derived from real-world su-
pervised learning data. In addition we provide an evaluation
on the standard KDD-Cup benchmark. The investigation
leads to a recommended method and additional insights into
the methods.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work on explanations for both su-
pervised learning and anomaly detection. Next, Section 3
presents the anomaly-concepts formulation used in this pa-
per. Section 4 then more formally presents the concept of
SFEs and possible quality metrics. Section 5 describes and
contrast several methods for computing SFEs. Section 6
then introduces our quantitative evaluation framework for
SFEs and finally Section 7 presents experiments evaluating
the introduced methods within the framework.

2. RELATED WORK
The problem of computing explanations for both super-

vised learning and unsupervised settings, such as anomaly
detection, has received relatively little attention. Related
work in the area of supervised classification aims to provide
explanations about why a classifier predicted a particular
label for a particular instance. For example, a number of
methods have been proposed to produce explanations in the
form of relevance scores for each feature, which indicate the
relative importance of a feature to the classification decision.
Such scores have been computed by comparing the difference
between a classifier’s prediction score and the score when a
feature is assumed to be unobserved [1], or by considering
the local gradient of the classifier’s prediction score with re-
spect to the features for a particular instance [2].

Other work has considered how to score features in a way
that takes into account the joint influence of feature subsets
on the classification score, which usually requires approxi-
mations due to the exponential number of such subsets [3, 4].
Since these methods are typically based on the availability
of a class-conditional probability function, they are not di-

rectly generalizable to computing explanations for anomaly
detectors. Our experiments, however, do evaluate a method,
called Dropout, which is inspired by the approach of [1].

The form of such feature-relevance explanations is similar
in nature to our SFEs in that they provide an ordering on
features. However, prior work has not explicitly considered
the concept of sequentially revealing features to an analyst,
which is a key part of the SFE proposal for reducing analyst
effort.

Prior work on feature-based explanations for anomaly de-
tection has focused primarily on computing explanations in
the form of feature subsets. Such explanations are intended
to specify the subset of features that are jointly responsible
for an object receiving a high anomaly score. For example,
Micenkova, et al. [5] computed a subset of features such that
the projection of the anomalous object onto the features
shows the greatest deviation from normal instances. One
issue with this approach is that the computation of an ex-
planation is independent of the anomaly detector being em-
ployed. This is contrary to the goal of trying to explain why
a particular anomaly detector judged a particular object to
be anomalous. In contrast, the explanation approaches we
consider in this paper are sensitive to the particular anomaly
detector.

Other work on computing feature-subset explanations [6]
developed an anomaly detection system called LODI which
includes a specialized explanation mechanism for the partic-
ular anomaly detector. A similar approach is considered by
Dang, et al. [7], where the anomaly detection mechanism di-
rectly searches for discriminative subspaces that can be used
for the purpose of explanation. In contrast, the explanation
approaches we consider in this work can be instantiated for
any anomaly detection scheme based on density estimation,
which includes a large fraction of existing detectors.

Existing approaches for evaluating explanations methods
in both supervised and unsupervised settings are typically
quite limited in their scope. Often evaluations are limited
to visualizations or illustrations of several example explana-
tions [2, 7] or to testing whether a computed explanation
collectively conforms to some known concept in the data
set [2], often for synthetically generated data. Prior work
has not yet proposed a larger scale quantitative evaluation
methodology for explanations, which is one of the main con-
tributions of our work.

3. ANOMALY DETECTION FORMULATION
We consider anomaly detection problems defined over a

set of N data points {x1, . . . , xN}, where each point xi is an
n dimensional real-valued vector. The set contains a mix-
ture of normal points and anomaly points, where generally
the normal points account for an overwhelming fraction of
the data. In most applications of anomaly detection, the
anomaly points are generated by a distinct process from
that of the normal points, in particular, a process that is
important to detect for the particular application. For ex-
ample, the data points may describe the usage behavior of
all users of a corporate computer network and the anomalies
may correspond to insider threats.

Since N is typically large, manual search for anomalies
through all points is generally not practical. Statistical
anomaly detectors address this issue by seeking to identify
anomalies by finding statistical outliers. The problem, how-
ever, is that not all outliers correspond to anomalies, and



in practice an analyst must examine the outliers to decide
which ones are likely to be anomalies. We say that an ana-
lyst detects an anomaly when he or she is presented with an
anomaly point and is able to determine that there is enough
evidence that the point is indeed an anomaly. The success of
this approach depends on the anomaly detector’s precision
of identifying anomalies as outliers, and also on the analysts’
ability to correctly detect anomalies. Without further assis-
tance, an analyst may need to consider information related
to all n features of an anomaly point during analysis. In
many cases, considering this information thoroughly will be
impossible, increasing the chance of not detecting anomalies,
which can be costly in many domains.

4. SEQUENTIAL FEATURE EXPLANATIONS
In order to reduce the analyst’s effort toward detecting

anomalies, we propose to provide the analyst with sequen-
tial feature explanations (SFEs) that attempt to efficiently
explain why a point was considered to be an outlier. A
length k SFE for a point is an ordered list of feature indices
E = (e1, . . . , ek), where ei ∈ {1, . . . , n}. The intention is
that features that appear earlier in the order are considered
to be more important to the high outlier score of a point
(e.g. xe1 is the most important). We will use the notation
Ei to denote the set of the first i feature indices of E. Also,
for any set of feature indices S and a data point x, we let xS
denote the projection of x onto the subspace specified by S.

Given an SFE E for a point x, the point is incrementally
presented to the analyst by first presenting only feature xE1 .
If the analyst is able to make a judgement based on only that
information then we are finished with the point. Otherwise,
the next feature is added to the information given to the
analyst, that is, the analyst now sees xE2 . The process of
incrementally adding features to the set of presented infor-
mation continues until the analyst is able to make a decision.
The process may also terminate early because of time con-
straints; however, we don’t study that case in this paper.

For normal points, the incremental presentation of SFEs
may not help the analyst more efficiently exonerate the points.
In contrast, for anomalies, it is reasonable to expect that an
analyst would be able to detect the anomalies by consid-
ering a much smaller amount of information than without
the SFE, which should reduce the chance of missed detec-
tions. We assume that the amount of analyst effort is a
monotonically increasing function of the number of features
considered. This motivates measuring the quality of an SFE
for a target by the number of features that must be revealed
to an analyst for correct detection. More formally, given an
anomaly point x, an analyst a, and an SFE E for x, the
minimum feature prefix, denoted MFP(x, a,E), is the mini-
mum number of features that must be revealed to a, in the
order specified by E, for a to detect x as an anomaly.

While MFP provides a quantitative measure of SFE qual-
ity, its definition requires access to an analyst. This compli-
cates the comparison of SFE computation methods in terms
of MFP. Section 6 addresses this issue and describes an ap-
proach for conducting wide evaluations in terms of MFP.

5. EXPLANATION METHODS
We now consider methods for computing SFEs for anomaly

detectors. Prior work on computing explanations for anomaly
detectors has either computed explanations that do not de-

pend on the particular anomaly detector used (e.g. [5]) or
used methods that were specific to a particular anomaly de-
tector (e.g. [6]). We wish to avoid the former approach,
since intuitively an explanation should attempt to indicate
why the particular detector being employed found a point to
be an outlier. Considering the latter approach, we seek more
general methods that can be applied more widely across dif-
ferent detectors. Thus, here we consider explanation meth-
ods for the widely-studied class of density-based detectors.1

Density-based detectors operate by estimating a probabil-
ity density function f(x) (e.g. a Gaussian mixture) over the
entire set of N points and treating f as the density over nor-
mal points. This is reasonable under the usual assumption
that anomalies are very rare compared to normals. Points
are then ranked according to ascending values of f(X) so
that the least normal objects according to f are highest in
the order. Our methods do not assume knowledge of the
form of f , but do require an interface to f that allows for
joint marginal values to be computed. That is, for any sub-
set of feature indices S and point x, we require that we can
compute f(xS). For many choices of f , such as mixtures of
Gaussians, these joint marginals have simple closed forms.
If no closed form is available, then exact or approximate
inference techniques (e.g., MCMC) may be employed.

It is worth noting that by considering SFE methods that
depend on the anomaly detector being used, the perfor-
mance in terms of MFP will depend on the quality of the
anomaly detector as well as the SFE method. For example,
consider a situation where the anomaly detector judges an
anomaly point x to be an outlier for reasons that are not se-
mantically relevant to why x is an anomaly. The SFE for x
is not likely to help the analyst to more efficiently determine
that x is an anomaly, since the semantically critical features
may appear late in the ordering. While this is a possibility,
it is out of control of the SFE method. Thus, when design-
ing SFE methods we will assume that outlier judgements
made by f are semantically meaningful with respect to the
application. We now present our two main classes of SFE
methods which we refer to as marginal methods and dropout
methods.

5.1 Marginal Methods
Here we consider modeling the analyst as a Bayesian clas-

sifier that assumes normal points are generated according to
f and that anomalies have a uniform distribution u over the
support of the feature space, a reasonable assumption in the
absence of prior knowledge about the anomaly distribution.
Given a point x, an SFE E, and a number of revealed fea-
tures i, such an analyst would make the decision of whether
x is an anomaly or not by comparing the likelihood ratio
f(xEi

)

u(xEi
)

to some threshold. Since u is assumed to be uniform,

this is equivalent to comparing the joint marginal f(xEi)
to a threshold. Intuitively this means that if our goal is to
cause the analyst to quickly decide that x is an anomaly,
we should chose an E that yields small values of f(xEi),
particularly for small i.

This leads to our first SFE method, called sequential marginal
(SeqMarg). The SeqMarg method adds one feature to the

1Our methods can actually be employed on the more general
class of “score-based detectors” provided that scores can be
computed given any subset of features. For simplicity, we
focus on density-based detectors in this paper, where the
density function is used to compute scores.



SFE E = (e1, . . . , ek) at a time, at each step adding the
feature that minimizes the joint marginal density with the
previously-selected features. More formally, SeqMarg com-
putes the following explanation:

SeqMarg: ei = arg min
j∈Ei−1

f(xEi−1 , xj)

where S is the complement of set S. SeqMarg requires O(kn)
joint marginal computations in order to compute an expla-
nation of length k. Note that due to the inherent greediness
of SeqMarg, xEi may not necessarily be the optimal set of
i features for minimizing f . Rather, if the goal were to op-
timize for a particular value of i, we would need to consider
all O(ni) feature subsets of size i. However, our problem for-
mulation does not provide us with a target value of i, and
thus SeqMarg offers a more tractable approach that focuses
on minimizing f as quickly as possible in a greedy manner.

In addition to SeqMarg we also consider a computation-
ally cheaper alternative, called independent marginal (Ind-
Marg), which only requires the computation of individual
marginals f(xi). This approach simply selects an expla-
nation E for x by sorting the features in increasing order
of f(xi). This only requires O(n) marginal computations
for computing an explanation of any length. IndMarg of-
fers a computationally cheaper alternative to SeqMarg, but
fails to capture joint feature interactions. For example, Se-
qMarg will select ei in a way that optimizes the joint value
when combined with previous features Ei−1. Instead, Ind-
Marg ignores interactions with previously-selected features.
Thus, IndMarg serves as a baseline for understanding the
importance of accounting for joint feature interactions when
computing explanations.

5.2 Dropout Methods
The next two methods are inspired by the work of Robnik-

Sikonja and Kononenko [1] on computing feature-relevance
explanations for supervised classifiers. In their work, the rel-
evance score for a feature is the difference between the clas-
sification score when the feature is provided to the classifier
and the classification when the feature is omitted (“dropped
out”). The analogous approach for anomaly detection is to
score features according to the change in the density value
when the feature is included and when the feature is not
included, or marginalized out. This yields the first dropout
method, referred to as independent dropout (IndDO): given
a point x, each feature is assigned a score of f(x−xi)−f(x),
where we abuse notation and denote the removal of xi from
x by x− xi. Intuitively, features with larger scores are ones
that make the point appear most normal when removed.
The SFE E is then obtained by sorting features in decreas-
ing order of score.

We can also define a sequential version of dropout, by
following the same recipe we considered for IndMarg versus
SeqMarg. Let the sequential dropout (SeqDO) be defined as
follows:

SeqDO: ei = arg max
j∈E1:i−1

f(xEi
− xj).

This approach requires the same number of marginal compu-
tations as SeqMarg. This algorithm can be viewed as a dual
of SeqMarg in that it measures the contribution of feature
sets according to how much more normal a point looks after
their removal, whereas SeqMarg measures how abnormal a
point looks with only those features included.

6. FRAMEWORK FOR EVALUATING EX-
PLANATIONS

There are at least two challenges involved in evaluating
anomaly-explanation methods. First, compared to super-
vised learning, the area of anomaly detection has many fewer
established benchmark data sets, particularly benchmarks
based on real-world data. Second, given a benchmark data
set, it is not immediately clear how to quantitatively eval-
uate explanations, since the benchmarks do not come with
either ground truth explanations or analysts.

Here we describe an evaluation framework that addresses
both issues. We address the first issue by drawing on recent
work on constructing large numbers of anomaly detection
benchmarks based on real-world data. We address the sec-
ond issue by using supervised learning to construct a simu-
lated analyst that can be applied to quantitatively evaluate
our explanations in terms of MFP. Below we expand on both
of these points.

6.1 Anomaly Detection Benchmarks
Recent work [8] described a methodology for systemat-

ically creating anomaly detection benchmarks from super-
vised learning benchmarks (either classification or regres-
sion). Given the huge number of real-world supervised learn-
ing benchmarks, this allows for a corresponding huge num-
ber and diverse set of anomaly detection benchmarks. Fur-
ther, these benchmarks can be created to have controllable
and measurable properties, such as anomaly frequency and
“clusteredness” of the normal and anomalous points. We
briefly sketch the main idea. Given a supervised classifica-
tion data set, called the mother set, the approach selects
one or more of the classes to represent the anomaly class,
with different choices giving rise to different properties of the
anomaly class. The union of the other classes represents the
normal class. Individual anomaly detection benchmarks are
then created by sampling the normal and anomaly points at
specified proportions.

Table 1 gives a summary of the benchmarks from Emmott
et al. [8] used in our experiments. For example, the UCI data
set shuttle was used as a mother set to create 1600 distinct
anomaly detection benchmarks. The number of points in the
shuttle benchmarks range from 3570 to 9847. The number
of anomalies ranges from 8 to 984.

6.2 Simulated Analyst
We consider modeling an analyst as a conditional distri-

bution of the normal class given a subset of features from
a data point. More formally we model the analyst as a
function A(x, S) = P (normal | xS), which returns the prob-
ability that point x is normal considering only the features
specified by the set S. We describe how we obtain this func-
tion in our experiments below. Given this function, a point
x, and an SFE E for x, we can generate an analyst certainty
curve that plots the analyst’s certainty after revealing i fea-
tures, that is, A(x,Ei) versus i. Figure 1 shows an example
of three analyst curves from our experiments using our sim-
ulated analysts on a benchmark computed from the UCI
Abalone dataset. The curves each correspond to a different
anomaly in the data set using explanations computed us-
ing SeqMarg. We see that the different anomalies lead to
different rates at which the analyst becomes certain of the
anomaly, that is, certain that the point is not normal.

Recall that our proposed quality metric MFP(x, a,E) mea-
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Figure 1: Analyst Certainty Curves. These are example curves generated using our simulated analyst on
anomalies from the Abalone benchmark using SFEs produced by SeqMarg. The x-axis shows the index
of the feature revealed at each step and the y-axis shows the analyst certainty about the anomalies being
normal. The leftmost curve shows an example of where the analyst gradually becomes certain that the point
is anomalous, while the middle curve shows more rapidly growing certainty. The middle curves is an example
of where the analyst is certain of the anomaly after the first feature is revealed and remains certain.

sures the number of features that must be revealed to analyst
a according to SFE E in order for a to detect an anomaly
x. Evaluating this metric requires that we define the condi-
tions under which the analyst detects x. We model this by
associating an analyst with a detection threshold τ ∈ [0, 0.5]
and saying that a detection occurs if A(x,Ei) ≤ τ , that is,
the probability of normality becomes small enough. We will
denote this analyst by a(τ). Given an a(τ) we can then com-
pute the MFP for any anomaly point by recording number
of features required for the analyst certainty curve to first
drop below τ .

Of course, there is no a priori basis for selecting a value
of τ . Thus, in our experiments, we consider a discrete dis-
tribution over values for τ , P (τ), which models a range of
reasonable thresholds. Given this distribution, we report the
expected MFP—the expected value of MFP(x, a(τ), E)—as
the quantitative measure of SFE E for anomaly x. In our
experiments we define P (τ) to be uniform over the values
0.1, 0.2, and 0.3, noting that our results are consistent across
a variety of reasonable choices for this distribution.

It remains to specify how we obtain the analyst function
A(x, S). Since our anomaly detection benchmarks are each
derived from a mother classification data set, we can con-
struct a training set over those points for the anomaly and
normal classes. Given this training set, one approach to ob-
taining the analyst would be to learn a generative model,
or joint distribution P (normal, x), which could be used to
compute A(x, S) by marginalizing out features not included
in s. However, such generative models tend to be much
less accurate in practice compared to discriminative mod-
els. However, learning a discriminative model P (normal | x)
does not directly support computing the probability for ar-
bitrary subsets of x as we require. While heuristics have
been proposed for this purpose (e.g. Robnik-Sikonja and
Kononenko [1]) we have found them to be unreliable when
applied widely. Thus, in this work we follow a brute force
approach. We simply pre-learn an individual discriminative
model for each possible subset of features up to a maximum
size k. Evaluating A(x, S) then simply requires evaluating
the model associated with the subset S.

When the number of features or number of data points is
very large, it may not be possible to pre-learn all possible
subsets. In such cases, one option is to learn and cache

models on the fly as they are needed during evaluation (each
model would be learned only once). We used this approach
for the KDD-Cup results reported in our experiments.

7. EMPIRICAL EVALUATION
We now present our empirical evaluation on anomaly de-

tection benchmarks from Emmott et al. [8] and the com-
monly used KDDCup anomaly detection benchmark.

7.1 Anomaly Detector
For all of our experiments, we have chosen to use the En-

semble Gaussian Mixture Model (EGMM) as the anomaly
detector. This detector was first described in Emmott et
al. [8] and was shown to be a competitive density-based
approach across a wide range of benchmarks. EGMM is
based on learning a density function f(x) represented as an
ensemble of Gaussian mixture models (GMMs). The ap-
proach independently learns M GMM models by training
each one using the Expectation-Maximization (EM) proce-
dure on bootstrap replicates of the data set. Then it discards
the low-likelihood GMMs (if any) and retains others based
on a pre-specified threshold. The number of components
of the GMMs is varied across the ensemble. In our experi-
ments, the ensembles included 45 GMMs, 15 each using 3, 4,
and 5 components. The final EGMM density f(x) is simply
a uniform mixture of the densities of the retained GMMs.
The EGMM approach addresses at least two pitfalls of us-
ing single GMM models. First, EM training can sometimes
produce poor models due to bad local optima. Second, it
is difficult to select the best number of components to use
for a single model. EGMM gains robustness by performing
model averaging over the variations.

One advantage of using the EGMM model is that it is
straightforward to derive closed forms for the marginal den-
sity computations required by our explanation methods. In
particular, the overall EGMM density f can be viewed as a
single large GMM model containing a mixture of all compo-
nents across the ensemble. Since individual Gaussians have
simple closed forms for marginal densities [9], we can easily
obtain closed forms for the mixture. It is worth noting that
closed forms can also be derived for EGMM marginals when
the data points are transformed by linear projections to re-
duce dimensionality (e.g. principle component analysis).



7.2 Simulated Expert
Recall that our evaluation framework is based on using

supervised learning in order to obtain a simulated analyst.
Our experiments are based on using Regularized Random
Forests (RRFs) [10] as the analyst model. The RRF model
was selected for two primary reasons. First, RRFs are well-
known to provide high accuracies that are competitive with
the state-of-the-art across a wide range of classification prob-
lems. Second, RRFs are relatively efficient to train, which
is important to our study, since we must train one RRF
for each possible subset of features (up to some maximum
size). We trained RRFs composed of 500 trees using 10-fold
cross-validation in order to tune the RRF regularization pa-
rameters.

It is worth noting that our evaluation framework is poten-
tially sensitive to the choice of analyst model, since different
models will have different biases. It was beyond the scope
of this first study to replicate all experiments using a quali-
tatively different model. This will be a point of future work.

7.3 Evaluation on Benchmark Data Sets
We run our evaluation on anomaly detection benchmarks,

from Emmott et al. [8], derived from seven UCI mother sets.
A summary of the benchmarks are given in Table 1. There
are over 10,000 benchmarks in total, which contain a number
of points ranging from 10 to 9800 and a number of anomalies
ranging from 1 to 930. An EGMM model was fit for each
of the benchmarks to serve as the anomaly detector, and
RRF models were trained for each mother set on all possi-
ble feature subsets. For this first study, we have chosen to
focus on benchmarks with relatively small dimensionality in
order to allow for a large scale study, which requires train-
ing large numbers of EGMM models (over 10,000) and RRF
analyst models. All data from these experiments, including
the analysts’ models, will be made publicly available.

We evaluated six methods for computing SFEs. These in-
cluded the four methods from Section 5: SeqMarg, IndMarg,
SeqDO, and IndDO. In addition, we evaluated a random
explanation method. In the case of random, we report the
average performance across 100 randomly generated SFEs.

Finally, in order to provide a lower-bound on attainable
performance (lower MFP is better) we consider an opti-
mal oracle method, OptOracle. This method is allowed ac-
cess to the simulated analyst and for each number of fea-
tures i computes the optimal feature subset of size i. More
formally, for each value of i, OptOracle finds the feature
subset Si that minimizes the analyst’s conditional proba-
bility P (normal | xSi). The MFP achieved by OptOra-
cle for an anomaly x, given a particular analyst thresh-
old τ (recall Section 6), is the minimum value of i such
that P (normal | xSi) < τ . Note that OptOracle is not
constrained to produce “sequential explanations”—rather,
OptOracle can produce an Si that does not necessarily con-
tain Si−1. This gives OptOracle an additional advantage
compared to the other methods which are constrained to
produce SFEs. Clearly, OptOracle represents an upper bound
on the performance of any SFE method that is evaluated
with respect to the simulated analyst.

For each of the 10,000 benchmarks, we used the corre-
sponding EGMM model to rank the points. For the anomaly
points ranked in the top 10%, we computed SFEs using each
of the six methods. This choice is an attempt to model the
fact that, in actual operation, only highly ranked anoma-

lies will be presented to the expert. The expected MFP
was computed for each SFE using a distribution over an-
alyst thresholds that was uniform over the values 0.1, 0.2,
and 0.3. For each mother set, we then report the average
MFP across the anomalies derived from that mother set.
These average MFPs are shown in Figure 2 along with 95%
confidence intervals.

We first note that our observations below are not sensi-
tive to the choice of focusing on anomalies in the top 10%.
Indeed, we have also compiled results for other percentage
points, including using all anomalies. The main observations
are qualitatively similar across all of these choices.

Comparison to Random and OptOracle. We observe
in Figure 2 that all of the SFE methods outperform ran-
dom explanations and often do so by a large margin. Com-
paring to OptOracle we see that, for three benchmarks—
concrete, yeast, and wine—the lower bound provided by
OptOracle is significantly better than our best SFE method.
This gap could be due to either: 1) suboptimal SFE com-
putations, 2) a poor match between the anomaly detector’s
notion of outlier versus the analyst’s notion of anomaly, or 3)
the fact that OptOracle is not constrained to output sequen-
tial explanations. We will investigate this further below.

For the remaining four mother sets, we see that the marginal
methods are quite close to the lower bound of OptOracle,
though there is still some room for improvement. Finally,
it is worth noting that OptOracle is able to achieve MFPs
of close to 1 for most of the mother sets. Thus, on average,
for these data sets, a single feature is sufficient to allow for
correct analyst detections.

Independent versus Sequential. It is reasonable to ex-
pect that the sequential version of the marginal and dropout
methods will outperform the independent versions. This
is because the sequential versions attempt to account more
aggressively for feature interaction when computing SFEs,
which requires additional computation time. However, we
see that overall there is very little difference in performance
between the independent and sequential methods. That
is, SeqMarg and IndMarg (as well as SeqDO and IndDO)
achieve nearly identical performance. The only exception is
in magic.gamma where there a small, but statistically signif-
icant, advantage (according to a paired t-test) of SeqMarg
over IndMarg. One possible explanation for these results is
that feature interactions are not critical in these domains for
detecting anomalies. This explanation is supported by the
fact that OptOracle is able to achieve average MFPs close
to one.

Marginal versus Dropout. Recall that the marginal
and dropout methods are dual approaches. Marginal evalu-
ates a set of features in terms of how abnormal those features
alone make a point appear, while dropout evaluates a set by
the increase in normality score when the features are re-
moved. We see that overall the marginal methods are never
significantly worse than dropout and significantly better on
abalone, magic.gamma, shuttle, and skin. The differ-
ence is particularly large on shuttle, where the marginal
methods are close to OptOracle and the dropout methods
are closer to random.

One possible explanation is that we have observed that
often dropout will produce a “weaker signal” compared to
marginal when making early decisions. For example, when
considering single features, the differences in scores pro-
duced by dropout for those features are often much smaller



Table 1: Summary of the benchmark datasets
Mother Set Original

Problem
Type

#Features # of Anomaly
Benchmarks

# of Points
per Bench-
mark (range)

# of Anomaly
per Benchark
(range)

magic.gamma Binary 10 1600 600 - 6180 5 - 618
skin Binary 3 1200 10 - 9323 1 - 932
shuttle Multiclass 9 1600 3570 - 9847 8 - 984
yeast Multiclass 8 1600 70 - 1000 1 - 97
abalone Regression 7 1600 580 - 2095 1 - 209
concrete Regression 8 1200 190 - 1000 1 - 51
wine Regression 11 1600 2590 - 4112 3 - 411
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Figure 2: Performance of explanation methods on benchmarks. Each group of bars shows the performance of
the six methods on benchmarks derived from a single mother set. The bars show the expected MFP averaged
across anomalies in benchmarks for the corresponding mother set. 95% confidence intervals are also shown.

than the differences produced by marginal. This can make
dropout less robust for early decisions, which are the most
important ones for achieving small MFP scores. Recall, that
the dropout method was inspired by prior work on explana-
tions for supervised learning. The results here suggest that
it is worth investigating adaptations of marginal to the su-
pervised setting.

7.4 Comparing Methods with Oracle Detec-
tors

Since the SFE methods make their decisions based on the
anomaly detector’s density function f , the results above re-
flect both the SFE methods and the quality of the detector.
Here we attempt to factor out the performance of the SFE
methods themselves by supplying the methods with an or-
acle anomaly detector. To do this we simply replace the
use of f with the simulated analyst’s conditional probabil-
ity function P (normal | xS), which we can compute for any
feature subset S. For example, the first feature selected by
SeqMarg is the xi that minimizes P (normal | xi). Note
that this is also the first feature that would be selected by
OptOracle. Unlike OptOracle, however, SeqMarg is sequen-
tially constrained and will select the second feature as the
one that works best when combined with the first selected
feature.

Figure 3 shows results for all methods using the oracle
detectors. We use a ‘*’ to indicate that a method is using an

oracle detector, for example, SeqMarg* is the oracle version
of SeqMarg.

Comparison to OptOracle. The primary observation
is that SeqMarg* performs nearly identically to OptOracle
in all but one domain. Any difference between SeqMarg*
and OptOracle would reflect the loss in performance due to
requiring sequential explanations. For these data sets, there
is little to no loss. This is good news, since the motivation
for considering sequential explanations is to reduce the an-
alyst’s effort. In particular, the sequential constraint means
that the analyst is shown an incrementally growing set of in-
formation. Rather, without the constraint, OptOracle could
potentially show completely different sets of features from
step to step, which is arguably less desirable from a usabil-
ity perspective.

Independent versus Sequential. Here, we see that Se-
qMarg* is often outperforming IndMarg* and sometimes by
significant amounts. This is in contrast to the results ob-
tained when using EGMM as the anomaly detector. This
observation indicates that reasoning about feature interac-
tions, as done by SeqMarg*, can be important with higher
quality anomaly detection models. This leaves an open ques-
tion of whether we will be able to observe this advantage
when using non-oracle anomaly detection models on realis-
tic benchmarks.

Dropout versus Marginal. The marginal methods show
consistently better performance when using oracle detectors.
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Figure 3: Performance of explanation methods on benchmarks when using an oracle anomaly detector. Each
group of bars shows the performance of the six methods on benchmarks derived from a single mother set.
The bars show the expected MFP averaged across anomalies in benchmarks for the corresponding mother
set. 95% confidence intervals are also shown.

The performance gap is quite large in several of the bench-
marks. This provides evidence that the marginal approach
is generally a better way of computing SFEs. Again we hy-
pothesize that this is due to the “weak signal” during early
decisions observed for the dropout method.

7.5 Evaluation on KDDCup’99 Data set
We now show results on the UCI KDDCup intrusion de-

tection benchmark [11]. The points in this data set have
45 features, and we consider a subset of the data containing
instances involving http service. The resulting benchmark
contains approximately 620K points with approximately 4K
anomaly points representing network intrusions. We again
employed EGMM as the anomaly detector. It was infeasible
to train a simulated analyst on all feature subsets, thus we
followed the adaptive approach described Section 6 where
only the subset of models required during the evaluation
process was learned and cached. Overall this resulted in
approximately 7.5K RFF models being trained. In this do-
main, the EGMM model was quite effective and ranked all
anomalies very close to the top of the ranked list. Thus, we
evaluate on all anomalies in this domain.

Figure 4 shows the average MFP achieved by our methods
along with the random explanation. It is clear that the
marginal methods are significantly better than the dropout
methods here. In particular, both SeqMarg and IndMarg
achieve an average MFP close to one, which is the smallest
possible. This indicates that the combination of EGMM
and marginal explanations is very effective in this domain.
In particular, the simulated analyst only needed to be shown
a single feature on average in order to correctly detect the
anomalies.

We again hypothesize that the much weaker performance
of the dropout methods is due to the “weak signal” they
provide for early decisions. This problem is only amplified
in the context of larger numbers of features, as is the case
for the KDDCup data.

8. MAIN OBSERVATIONS
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Figure 4: Performance of different explanation
methods on the KDDCup benchmark. 95% confi-
dence intervals are also shown.

The main observations from the above experiments can
be summarized as follows.

• All of the introduced SFE methods significantly out-
performed randomly generated SFEs.

• The marginal methods were generally no worse and
sometime significantly better than the dropout meth-
ods.

• When using the EGMM anomaly detector, we observed
little to no difference between the performance of se-
quential versus independent methods.

• When using the oracle anomaly detector, SeqMarg sig-
nificantly outperformed IndMarg, which suggests that
in general sequential methods can outperform indepen-
dent methods.

• Overall, based on our results, SeqMarg is the recom-
mended method for computing SFEs, among the meth-
ods we studied.

9. SUMMARY



This paper introduced the concept of sequential feature
explanations (SFEs) for anomaly detection. The main mo-
tivation was to reduce the amount of effort of an analyst
that is required to correctly detect anomalies. We described
several methods for computing SFEs and introduced a new
framework that allows for large-scale quantitative evalua-
tion of explanation methods. Our experiments indicated
that, overall, the Sequential Marginal method for comput-
ing SFEs is the preferred method among those introduced
in this paper.
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