Improving Automated Email Tagging with Implicit Feedback

Mohammad S. Sorower
Michael Slater
Thomas G. Dietterich
• Motivation
• The Email Predictor
 • EP2 Instrumentation
• Algorithms
 • Baseline Algorithms
 • Implicit Feedback Algorithms
• The Lab-controlled User Study
 • Data set of Tagged Email Messages
 • Post-study Simulation
• Results
• Summary
Online Email Tagging:
- user receives an email message
- system predicts tags for the message
- the email user interface shows the predicted tags
- if a predicted tag is wrong:
 user may correct the tag
 (if so, the system receives training)
- if a predicted tag is right:
 user does not have to do anything
 (the system never receives training)
• **Challenges:**
 - learning algorithm never receives confirmation that its predictions are correct
 - the learning algorithm would benefit from positive feedback.

• **Survival Curve:**
 - the more time a user spends on a message, the more likely that the user will notice tag errors and correct them.

• **Implicit Feedback!**
• Implicit Feedback Features:
 - message was opened and read in either the Outlook Explorer or the Outlook Inspector
 - user added or removed a tag on the message
 - user added or removed a flag from the message
 - user moved the message to a folder
 - user copied, replied, forwarded, or printed a message
 - user saved an attachment from the message
Baseline Algorithms:

• No Implicit Feedback (NoIF)
 - never creates implicit feedback training examples
 - only trains on user corrections
 - standard behavior of EP (Lower-bound on performance)

• Online
 - ignores all implicit feedback events
 - after making a prediction, creates training examples with the ground truth tags
 - provides perfect feedback to EP (Upper-bound on performance)
Implicit Feedback Algorithms

• **Simple Implicit Feedback (SIF)**
 - when the user changes any tag immediately treats all remaining tags as correct

• **Implicit Feedback without SIF (IFwoSIF)**
 - maintains a count of the total number of implicit feedback events
 - treats tag changes just like all other implicit feedback events
 - when this count exceeds a specified threshold, then it creates the implicit feedback training examples

• **Implicit Feedback with SIF (IFwSIF)**
 - combines IFwoSIF and SIF
THE USER STUDY

• Participants
 - 15 participants (1 dropped out)
 - only adult email users who receive 20 or more emails per day, regularly use tags, categories, labels, or folders

• The Study Data
 - an email data set containing a total of 330 messages created from a variety of web sources
 - Train60, Test270

• The Study Sessions
 - three two-hour sessions on three separate days
 - 1 hour practice, 5 hours performing study tasks (reading emails, correct tags if necessary, follow instructions in the message)
 - user ground truth collected at the end
- Email life of a knowledge worker—a student in this case
 - a total of 330 messages
 - average number of tags per email message = 1.24
 - messages with information, requests to send file, search online, save attachment, forward message etc.

<table>
<thead>
<tr>
<th>Tags</th>
<th>%messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>15</td>
</tr>
<tr>
<td>Entertainment</td>
<td>18</td>
</tr>
<tr>
<td>Gardening</td>
<td>19</td>
</tr>
<tr>
<td>Health</td>
<td>23</td>
</tr>
<tr>
<td>Math</td>
<td>17</td>
</tr>
<tr>
<td>Meeting/Event</td>
<td>31</td>
</tr>
</tbody>
</table>
• The participants did not provide very much explicit feedback
 - mean percentage of messages for which they corrected tags was 16.3%

• Solution: combine the observed implicit feedback events with simulated explicit feedback
• Algorithm \textbf{SampleEF (user, TargetEF)}:

 Estimate the (fitted) probability, \(P(EF \mid totalIF) \)

 FOR every message, compute \(p_i = P(EF(i) \mid totalIF(i)) \)

 Compute the observed level of EF (\(obs_EF \)) in ‘user’ data

 IF \(obs_EF > TargetEF \):
 \begin{itemize}
 \item DO: delete EF from the message (that has EF) with the smallest \(p_i \)
 \item UNTIL \(obs_EF = TargetEF \)
 \end{itemize}

 ELSE:
 \begin{itemize}
 \item DO: add EF to the message (that has no EF) with the largest \(p_i \)
 \item UNTIL \(obs_EF = TargetEF \)
 \end{itemize}
• Implicit feedback captured during the study sessions of one participant.
• The first session ends after message 66, and the second session ends after message 168.
• Implicit Feedback Threshold Selection

- a threshold exists such that the loss in accuracy of the resulting incorrect training is out-weighed by the gain of the resulting correct training examples
• **Cumulative Mistakes**
 - Plotted as a function of number of examples seen from the test data
 - SIF and IFwSIF algorithms have largely eliminated the gap between NoIF and Online
• SIF produces the predominant share of the training examples
• Additional examples added by implicit feedback have a substantial effect on further reducing prediction errors
• IFwSIF receives 64% more training than NoIF, and 14% more training than SIF
• Quality of the implicitly-confirmed training examples
 - at TargetEF 0.20, only 64% of the confirmed messages have correct tags
 - at TargetEF 0.80, only 74% of the confirmed messages have correct tags

• Although implicit feedback is noisy, on balance the classifiers still benefited!
• Automated tagging of email with user-defined tags is possible
• By instrumenting the UI, we can detect “implicit positive feedback” with reasonable accuracy
• Incorporating implicit feedback into the classifier(s) improves the performance of the email predictor
Thank you
SUMMARY

• Highly-accurate tagging of email with user-defined tags is possible
• By instrumenting the UI, we can detect “implicit positive feedback” with reasonable accuracy
• Incorporating implicit feedback into the classifier(s) improves the performance of the email predictor