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Abstract

When training data is sparse, more domain
knowledge must be incorporated into the learn-
ing algorithm in order to reduce the effective size
of the hypothesis space. This paper builds on
previous work in which knowledge about qual-
itative monotonicities was formally represented
and incorporated into learning algorithms (e.g.,
Clark & Matwin’s work with the CN2 rule learn-
ing algorithm). We show how to interpret knowl-
edge of qualitative influences, and in particular
of monotonicities, as constraints on probability
distributions, and to incorporate this knowledge
into Bayesian network learning algorithms. We
show that this yields improved accuracy, particu-
larly with very small training sets.

1 Introduction

Computer systems constructed with machine learning give
the best known performance in many domains includ-
ing speech recognition, optical character recognition, bio-
informatics, biometrics, anomaly detection, and informa-
tion extraction. However, it is not correct to view these sys-
tems as having been constructed purely from data. Rather,
every practical machine learning system combines knowl-
edge engineering with data. A critical and time-consuming
part of building any successful machine learning applica-
tion is the feature engineering, feature selection, and algo-
rithm selection required to effectively incorporate domain
knowledge.

One of the reasons this process is so time consuming
is that machine learning tools do not provide very many
ways of expressing domain knowledge. In particular, there
are many forms of prior knowledge that an expert might
have that cannot be accepted or exploited by existing ma-
chine learning systems. This paper discusses one particu-
lar form of prior knowledge—knowledge about qualitative

monotonicities—and describes how this knowledge can be
formalized and incorporated into learning algorithms for
Bayesian networks.

Researchers in qualitative physics have developed several
formal languages for representing qualitative influences
[5, 15]. Others have shown that these qualitative influ-
ences could be usefully incorporated into learning algo-
rithms, including the CN2 learning system, decision tree
algorithms, and the back-propagation neural network algo-
rithm [7, 2, 3, 9, 11, 8, 19]. In this paper, we have chosen
Bayesian network learning algorithms, because Bayesian
networks already make it easy to express the causal struc-
ture and conditional independencies of a domain. We for-
malize qualitative monotonicities in terms of first-order
stochastic dominance, building on the work of Wellman
[26]. This in turn places inequality constraints on the
Bayesian network parameters and leads naturally to an al-
gorithm for finding the maximum likelihood values of the
parameters subject to these constraints. Finally, we show
experimentally that the additional constraint provided by
qualitative monotonicities can improve the performance of
Bayesian network classifiers, particularly on very small
training sets.

2 Monotonicity Constraints

A monotonic influence, denoted X Q+
� Y (or X Q−

� Y ),
informally means that higher values of X stochastically re-
sult in higher (lower) values of Y . For example, we might
expect a greater risk for diabetes in persons with a higher
body mass index.

Our basic question, then, is: how does the statement
X Q+

� Y constrain a probability distribution P (Y | X)?
Although there are various definitions of stochastic order-
ing [16, 23, 25], we employ first order stochastic domi-
nance (FSD) monotonicity, which is based on the intuition
that increasing values of X shift the probability mass of Y
upwards. This leads to the following three definitions.

Definition (First Order Stochastic Dominance) Given



P (Y | X)
y x 0 1 2
0 θ0 θ3 θ03

1 θ1 θ4 θ14
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Constraints :
θ0 ≥ θ1

θ1 ≥ θ2

θ0 + θ3 ≥ θ1 + θ4

θ1 + θ4 ≥ θ2 + θ5

Figure 1: Example of a CPT for a three-valued variable Y
given a three-valued parent X , with constraint X Q+

� Y .
The values for θab are given by 1 − θa − θb.

two probability distributions P1 and P2, and their respec-
tive cumulative distribution functions F1 and F2,

P1 �(1) P2 iff ∀y F1(y) ≤ F2(y). (1)

Definition (FSD Monotonicity) We say Y is FSD iso-
tonic (antitonic) in X in a context C if for all x1, x2 such
that x1 ≥ x2 (respectively, x1 ≤ x2), we have

P (Y | X = x1, C) �(1) P (Y | X = x2, C). (2)

Definition ( Q+
� , Q−

� Statements) Suppose Y has
multiple parents X1, X2 . . . Xq. The statement
Xi

Q+
� ( Q−

� )Y means for all contexts (configura-
tions of other parents) C ∈ ×j 6=iXj , that Y is FSD
isotonic (antitonic) in Xi in context C.

The last definition expresses a ceteris paribus assumption,
namely that the effect of X on Y holds for each config-
uration of other parents of Y .1 A simple example of the
induced monotonic CPT constraints is shown in Figure 1.

3 Inference and Learning

Our approach to learning with prior knowledge of mono-
tonicities is to apply the monotonicity constraints to the
parameter estimation problem to find the set of parameter
values that gives the best fit to the training data while also
satisfying the constraints. This is a form of constrained
Maximum A Posteriori (MAP) estimation.

Let G be the graph of a Bayesian network with nodes
X1, . . . , Xn. Let θi denote the parameters of the CPT for
Xi. Let θij denote the row corresponding to parent config-
uration j, where j ≤ qi, the total number of parent configu-
rations for Xi. Let θijk denote the kth scalar in that vector,
for k ≤ ri, the number of states of Xi. Finally, let θ denote
the entire collection of parameters.

The learning task involves finding the most probable values
for θ given our fully observed data D and our prior ξ over

1Kuipers [15] discusses M+ monotonicity, which has an un-
conditional positive effect across all configurations of the other
parents (i.e., the monotonicity effect is global and cannot be over-
ridden by other influences). Other notations for Q+

� include S+

(Wellman [26]) and ∝Q+ (Forbus [12])

the parameters. In this case, ξ is comprised of: (1) ξG,
the conditional independence assumptions corresponding
to the structure of G; (2) ξQ, the monotonicity constraints
implied by our qualitative model Q; and (3) ξP , the prior
over parameter values (e.g., a Dirichlet distribution for each
conditional distribution).

The likelihood for θi factors as follows:

I(θi satisf . ξQ)

qi
∏

j=1

ri
∏

k=1

θ
Nijk

ijk , (3)

where I(B) is an indicator function that is 1 if B is true and
0 otherwise (in this case, if θi satisfies constraints ξQ), and
Nijk is the observed number of examples in which Xi = k
given parent configuration j.

This is a constrained optimization problem which we solve
with an exterior penalty method, replacing the indicator
function in Equation 3 with penalty functions that take
on large negative values when the constraints are violated.
This approach is prone to problems with convergence, but
it is flexible and scales linearly with the number of con-
straints, which can be very large in our problems.

3.1 Reparameterization and Notation

We first reparameterize the problem to eliminate the sim-
plex constraints (

∑

k θijk = 1). We define µijk such that

θijk ≡
exp(µijk)

∑ri

k′=1 exp(µijk′ )
. (4)

Although this adds a redundant free parameter, we had no
problems with runaway optimization. For the following
formulas, we introduce an abbreviated notation, defining
Σi

jkc
≡
∑kc

k=1 exp(µijk). Here and elsewhere, summation
and product bounds over parent configurations and local
states, when unspecified, are taken to be complete, that is,
1 . . . qi for j, and 1 . . . ri for k.

3.2 Likelihood Function

Our goal is to maximize, subject to the qualitative con-

straints, the likelihood
∏

jk

(

exp(µijk)
P

k′ exp(µijk′ )

)Nijk

. It is

equivalent to maximize the natural logarithm:

JL(θi) =
∑

jk

Nijk

(

µijk − ln

(

∑

k′

exp(µijk′ )

))

(5)

The gradient is defined by the partials:

∂

∂µijk

JL(θi) = Nijk −
exp(µijk)

Σi
j

∑

k′

Nijk′ (6)



3.3 Inequality Constraint Margins

When observed data violates a monotonicity constraint, the
maximum likelihood parameters are invariant to the par-
ent configuration. It is debatable whether or not this is the
intended or desired behavior. The proper solution would
be a soft Bayesian prior on monotonicity which is updated
with data, but for computational reasons we choose a sim-
pler strategy. We enforce the strength of monotonicity by
adding a margin to each inequality, replacing equation 1 by

P1 �(1) P2 iff ∀y F1(y) + ε ≤ F2(y). (7)

We must be careful not to make ε too large, or it will
strengthen the constraints to the point where they have
no solution (this is because inequalities are transitive,
e.g.: F1(y) + ε ≤ F2(y), F2(y) + ε ≤ F3(y), . . .).
The maximum length of such a “chain” of inequali-
ties is the Manhattan distance between the minimum-
influence and maximum-influence corners of the CPT:
di
∞ =

∣

∣pa
max
i − pa

min
i

∣

∣

∞
=
∏

p∈πi
(rp − 1), where πi

is the set of parents of Xi. For example, if qi = 2, and
each parent has 3 states, we get di

∞ = 4 inequalities, and
our maximum allowable value for ε is 0.25. Thus we define
a global margin parameter ε and let each node Xi have its
own εi margin, where εi = ε/di

∞. Theoretically, ε could
range up to 1.0, but we find that our current gradient search
algorithms have difficulty finding the feasible region for ε
greater than 0.2.

3.4 Constraints and Penalty Functions

We now consider our exterior penalty functions. Individual
inequality constraints resulting from monotonicity state-
ments are indexed by four variables: the node i to which
the constraint applies, the two parent configurations j1, j2
being compared, and the state index kc for which the cumu-
lative distribution function is evaluated (c is not a variable,
but only stands for “cumulative distribution function”).
Without loss of generality, we consider monotonically in-
creasing constraints ( Q+

� ), such that the cdf corresponding
to parent configuration j1 is greater than or equal to the cdf
for j2, when j1 < j2. We denote a particular constraint as
Ci,kc

j1,j2
. Thus, ξQ

i ≡
{

Ci,kc

j1 ,j2

∣

∣ j1 < j2 ≤ qi ∧ kc < ri

}

. We

define the epsilon-margin modified constraint C i,kc

j1,j2
as

0 ≥ P (Xi ≤ kc | pa
j2
i ) − P (Xi ≤ kc | pa

j1
i ) + ε

=

kc
∑

k′=1

θij2k′ −

kc
∑

k′=1

θij1k′ + ε

=

kc
∑

k′=1

exp(µij2k′)

Σi
j2

−

kc
∑

k′=1

exp(µij1k′)

Σi
j1

+ ε

=
Σi

j2kc

Σi
j2

−
Σi

j1kc

Σi
j1

+ ε ≡ δ (8)

This term, denoted as δ, will be positive when the constraint
is violated. Thus, for each constraint C i,kc

j1,j2
we define the

natural penalty function

P i,kc

j1,j2
= I(δ>0) δ2 (9)

The gradient (whose lengthy derivation we omit for lack of
space) is given by

∂

∂µijk

P i,kc

j1,j2
= 2I(δ≥0) δ exp(µijk)

(

I(j=j2) − I(j=j1)

)

(

(

I(k≤kc) Σi
j − Σi

jkc

) / (

Σi
j

)2
)

After applying the exterior penalty methods, the final func-
tion to optimize will be the log-likelihood minus the sum
of the penalty functions times a penalty weight w:

J(θi) = JL(θi) − w
∑

C
i,kc
j1,j2

∈ξ
Q

i

P i,kc

j1,j2
(10)

4 Experiments and Evaluation

To test the effectiveness of qualitative monotonicities, we
conducted a series of experiments comparing Bayesian net-
work classifiers learned with and without qualitative mono-
tonicities.

4.1 Data Sets

We have chosen five data sets from the UCI ML repository:
auto-mpg[21], haberman[14], pima-indian-diabetes[22],
breast-cancer-wisconsin[4], and car[6, 29]. For each of
these data sets we constructed the structure of the net-
work (KB structure) using domain knowledge, and inserted
monotonicity annotations ( Q+

� or Q−
� ) on each of the

network links according to our domain knowledge. This
domain knowledge was based only on common knowledge
(e.g., car purchasing) and information from previous publi-
cations concerning these data sets. In particular, we did not
examine the data itself.

We hypothesized that monotonicity constraints would
prove more helpful at finer discretizations. To test this,
for each data set, attributes with numeric values were
discretized using Weka’s (ver. 3.4) equal-frequency dis-
cretization tool to generate data sets with numbers of bins
2, 3, and 5, yielding a total of 15 data sets for our exper-
iments. All class variables have two classes. Moreover,
all incomplete rows in any of the data sets have been re-
moved. We had originally chosen ten datasets, but of these,
only five had a tractable Bayes net structure (the others had
nodes with 8–11 incoming arcs, making the optimization
task very difficult, and yielding low performance on all
Bayes net classifiers).
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Figure 2 shows the KB structure and monotonicity con-
straints for data set auto-mpg. In this data set, the classi-
fication problem is to predict whether a car has low (≤ 28)
or high (> 28) mileage per gallon (mpg). auto-mpg has 392
instances of which 106 are labeled positive examples. Do-
main knowledge suggests that an increase in the number of
cylinders (cylinders) usually leads to an increase in horse-
power (horsepwr), displacement (disp), and vehicle weight
(weight). An increase in weight leads to a decrease in mpg.
The heavier the vehicle, the slower it accelerates (accel).
The larger the displacement, the greater the horsepower.
However, large displacement also means low mileage per
gallon. Finally, newer models (modelyear) tend to be more
fuel-efficient, as do vehicles originating from (origin) Japan
(encoded as 1) as opposed to either Europe or the United
States (encoded as 0). These monotonicity relations are en-
coded as constraints in the network as shown in Figure 2.

Figure 3 shows the KB structure and monotonicity con-
straints for pima-indian-diabetes. The problem for this data
set is to classify examples that tested positive for diabetes.
This data set has 768 instances of which 268 are labeled
positive. Domain knowledge suggests that an increase in
each of the triceps’ skin fold thickness (skin) is expected
with an increase in the number of experienced pregnan-
cies (preg), an increase in age (age), and perceived risk
due to pedigree (pedi). The same monotonic relations are
also suggested in body mass index (mass). An increase in
preg, pedi, age, skin, or mass increases the risk of diabetes
(class). Most diabetics have high levels of plasma glucose
concentration (plas) and most suffer from high blood pres-
sure (pres) while having low levels of insulin (insu).

The KB structure and monotonicity constraints for breast-
cancer-wisconsin are shown in Figure 4. The classification
problem is to predict whether a given example is malig-
nant (malignant) or benign. The data set breast-cancer-
wisconsin has 683 examples, of which 239 are positive.
The attributes in the database have been assigned values
that range from 1 (normal state) to 10 (most abnormal
state). The attributes are: clump thickness (clumpthick),
uniformity of cell size (cellsize), uniformity of cell shape
(cellshape), single epithelial cell size (epitsize), bare nuclei
(barenuc), normal nucleoli (normnuc), mitoses, marginal
adhesion (adhesion), and bland chromatin (blandchr).
These attributes have been visually assessed using fine nee-
dle aspirates taken from patients’ breasts. Malignant sam-
ples have observed abnormal states, i.e., the more the ma-
lignant a sample the higher the state of abnormality. Hence,
all network links from malignant to other attributes have
Q+
� monotonicity constraints.

Figure 5 shows the KB structure and monotonicity con-
straints for haberman. The problem in this data set is
to predict the survival status of a patient who has under-
gone breast cancer surgery. haberman has 306 instances of
which 225 are positive examples. The data set has three
attributes: the age of patient at time of operation (age), the
patient’s year of operation (year), and the number of posi-
tive axillary lymph nodes detected (nodes). We expect the
survivability of the patient to decrease as the patient gets
older, to decrease as the number of positive nodes detected
increases, and increase with the operation year, i.e., more
recent implying better survival.

Figure 6 shows the relevant information for the car data
set. The prediction problem in this data set is to determine
whether a given instance is acceptable (class) given the fol-
lowing attributes: (price), cost of maintenance (maint), ca-
pacity in number of persons (person), size of luggage space
(luggage), estimated safety rating (safety), and number of
doors (doors). car has a total of 1728 examples of which
30% are positive. This data set has non-numeric attributes
and for uniformity and clarity we re-encoded their respec-
tive values as numbers, in their respective ordinal order.
Common knowledge about car buying preferences suggests
that as price and maintenance costs increase, acceptability
should decrease. Increases in the safety rating and passen-
ger capacity would generally increase acceptability. It is
not clear whether the number of doors plays a significant
role in a car’s acceptability, but here we assume that it does
not. Also, an increase in the cost of making safe cars, an
increase in passenger capacity, and an increase in luggage
space could lead to an increase in price. These monotonic-
ity relations are encoded in the network shown in Figure 6.
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4.2 Experimental Setup

We selected an implementation of the L-BFGS2 algorithm
from the conditional random fields package Mallet [17] to
optimize our penalized objective function. To ensure con-
vergence in the feasible region, the L-BFGS maximization
was wrapped in the outer-level algorithm given in Figure 7.

1. Initialize the µijk parameters at the unconstrained MLE
point (found simply by counting the observations)

2. If this point satisfies the constraints, return it

3. Otherwise, initialize a weight w for the penalty functions

4. Take steps in the steepest direction of the penalized likeli-
hood until convergence

5. If we converged outside the feasible region, increase the
penalty weight and repeat the previous step.

Figure 7: Constrained optimization algorithm

In addition, L-BFGS would sometimes fail to converge, or
simply fail to continue from certain points in the parame-
ter space. We suspect that these problems were due to the
relatively sharp edges at the constraint boundary. To work
around this, upon failure we slightly increased the penalty
weight w (just to change the shape of the function) and
re-ran the maximizer routine (perhaps many times). This
proved sufficient for many of our experiments, though we
still had to be careful not to set our ε margin too high, since
it would make the feasible region so small that it might
never be found. We also experimented with variations—
for example, using cubed violations for penalty functions
rather than squared, or using a very small exponent (such
as 1.01). None of the variations resulted in significantly
more reliable estimation routines.

For running experiments, we integrated the learning algo-
rithm with the Weka package (the Waikato Environment
for Knowledge Analysis [28]), which allowed us to easily
script learning runs and to run comparisons against other
learning algorithms. The algorithms we analyzed were:

Zero-Regression (ZR) Always picks the mode of the ob-
served distribution of the class variable, without re-
gard to the features.

2Limited-memory BFGS, a varation of the the Broyden-
Fletcher-Goldfarb-Shanno algorithm (see, e.g., [20, pg.324]).

Naı̈ve Bayes (NB) Also known as the simple Bayesian
classifier (SBC). Treats the class variable as the parent
in a Bayesian network, with all features as children.

Knowledge-based Bayes (KB) Fit the parameters of a
Bayesian network whose structure incorporates do-
main knowledge—specifically, the Bayesian network
structures shown in Figures 2-6. Parameters are fit by
maximum likelihood with a Laplace correction.

Constrained Knowledge-based Bayes (CKB) Same as
KB, except that the parameters are fit to maximize
the posterior probability subject to the inequality
constraints induced by the qualitative monotonicity
statements. CKB was run with three different mar-
gins, ε ∈ {0.0, 0.1, 0.2}. These runs are designated
CKB0, CKB0.1, and CKB0.2.

4.3 Results

To compare the algorithms on each data set, we first ran-
domly split the data set into a test set (1/3 of the data)
and a training set pool (2/3 of the data), stratified by class.
Then we performed 50 replications for each training set
size m, for various m from 1 to 50. In each replication,
we randomly drew m elements without replacement from
the training set pool, and trained our algorithms on the set.
The resulting fitted networks were then evaluated on the
test set. The results are shown in Figure 8. We also present
in Figure 9 the results of running McNemar’s test on the
NB, KB, CKB0 and CKB0.1 classifiers trained on the pima
data set.

Let us begin by considering the performance of the dif-
ferent algorithms on very small samples. Our hypothesis
was that ZR would perform the worst, that Naı̈ve Bayes
would be the second worst, that the Knowledge-based net-
works would come next, and that the networks that com-
bined knowledge-based structure with monotonicity con-
straints (CKB) would give the best results. The plots show
that actually, ZR performs surprisingly well: comparable
to or better than NB at small sample sizes on all data sets.
Furthermore, on haberman, NB and ZR dominate, even on
small samples. Otherwise, we do see the expected ranking,
though at small sample sizes, ZR and NB frequently tie, as
do KB and CKB.

Since our largest training set was of size 50, which we
still consider relatively small for models of the complexity
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Figure 9: McNemar’s test for pima at 2, 3, and 5 bins, comparing pairs of algorithm from CKB0.1, NB, CKB0, and KB
(in order from lightest to darkest shade). The 6 pairwise comparisons are run at training set sizes 1 through 50 (x axis,
log scale). The lower and upper regions represent the number of statistically significant wins of each algorithm, with the
remaining center region indicating ties or statistically insignificant wins.

used here, we actually expected to see this ranking extend
through more of the tested sample sizes. One somewhat
surprising result was how well NB performed on car at
higher sample sizes with discretizations finer than 2 bins.
We were also particularly surprised by the results on the
haberman data set, where NB and ZR did very well all the
way through m = 50. A simple data analysis on the haber-
man data (2-bin) using correlation and mutual information
reveals that the data set exhibits independence between the
class variable and any one of the three parent attributes.
Moreover, the conditional probability tables reveal that the
parameters do not exhibit monotonicity, e.g., the chances of
surviving given that the patient is young is high but surpris-
ingly the data also says that the chances of surviving given
that the patient is old is also high. Clearly, our assumptions
about the structure and monotonicities of this data set were
incorrect.

A second hypothesis was that the monotonicity constraints
might be incorrect and lead to poor performance at large
sample sizes, particularly with ε = 0.2. The plots do
show flatter learning curves for CKB with ε > 0, com-
pared to CKB with no margin, and this difference is also
clearly shown in the McNemar’s test comparisons between
the two. However, without margins, CKB is comparable to
or better than KB at nearly all tested sample sizes.

A third hypothesis, as mentioned, was that monotonicity
constraints would help more at finer discretizations. The
plots show some support for this; on auto, there is little dif-
ference between CKB0 and KB at the 2-bin discretization,
and at higher discretizations and with more training data,
CKB0 dominates KB. CKB0.1 on auto shows very good
performance at the 5-bin discretization level. On bcw, all
algorithms perform about the same at high sample sizes,
though CKB0.1 does well at low sample sizes, and this ef-
fect is amplified at finer discretizations. Finally, looking
only at lower sample sizes, we observe this effect on the
pima data set. The results from the remaining data sets do
little to support or disprove this hypothesis.

5 Related Work

Knowledge-based model construction employs domain
knowledge to construct a model customized for a specific
truth, probability, or decision query [27, pg.26]. The mod-
els are usually graphical (e.g., qualitative probabilistic net-
works [27] or dynamic belief networks [13, 18]), but gen-
erally do not incorporate learning [27, pg.31].

Clark and Matwin [7] share our motivations for knowledge-
constrained learning, but perform learning only of parame-
ters of a qualitative process model (temporal simulation).

Several researchers have incorporated prior knowledge into
artificial neural networks. Knowledge-based ANN’s [24]
have structures and parameters initialized from knowledge
bases of Horn clauses. ANN’s also lend themselves to con-
nection weight constraints that enforce monotonicity; such
models are developed and applied in [2, 9].

In [8], Daniels, Feelders, and Velikova improve on prior
work in monotonic regression techniques by employ-
ing both constrained neural networks and decision trees.
Monotonicity in trees in further discussed in [19, 11, 3].
Monotonicity in trees is important since CART and C4.5
tend to build nonmonotonic trees even given monotonic
data [19]. Interestingly, some of the decision tree work
(e.g., [11]) reports poorer classification performance un-
der monotonicity constraints, the advantage being found in
simpler, more understandable decision trees. Much of this
work was also motivated by the need to make justifiable
decisions (e.g., in school admissions or job or loan applica-
tions, see for instance [3]).

The literature on machine learning with monotonicities ap-
pears to be restricted to classifiers, not probabilistic mod-
els, despite the fact that the statistics and financial litera-
ture is rich with discussions of stochastic ordering. A sem-
inal work is [16]; a comprehensive recent treatment can
be found in [23]. The specific problem of estimating a
pair of distributions P1(X) and P2(X) under the constraint



P1 �(1) P2 is discussed in [10], though we found no work
on estimating partially ordered sets of distributions.

Finally, Agresti and Chuang [1] discuss monotonicity pri-
ors (defined in terms of local odds-ratios rather than no-
tions of stochastic dominance) and Bayesian inference for
discrete joint probabilities.3

6 Summary and Future Work

We have presented a method for using qualitative domain
knowledge in the estimation of parameters for a probabilis-
tic model. The qualitative statements (monotonicity) are
natural and easily specified by domain experts, and they
have a probabilistic semantics consistent with a domain ex-
pert’s intuition. We have shown that these semantics are
tractable and can effectively constrain probability distribu-
tions, and that the constrained models in many cases gen-
eralize from the training set to the test set better than do
unconstrained models.

In other work, we have defined a language for expressing
qualitative constraints, including monotonicity, synergy,
strength of influence, and saturation, all defined in terms
of constraints on conditional probability distributions. We
plan on testing the efficacy of these other qualitative con-
straints in different domains. We also will research more
efficient and reliable optimization methods. We also plan
to extend our work to undirected models, as well as to try
to cast it in a maximum-entropy framework. Finally, we
wish to develop monotonic constraints in simplified inter-
action models (such as noisy-or) and test on the five re-
jected datasets whose KB structure had proved intractable
for Bayes net classifiers in this work.
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