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Automated Rapid-Throughput 
Arthropod Population CountingArthropod Population Counting

Population counts of small arthropods are an important source of data 
forfor

community ecology
biodiversity studies
biomonitoring of soils, lakes, streams, and oceansg , , ,

Manual identification and counting of specimens
very time-consuming
requires high degree of expertise

f t i th ldvery few experts in the world
Goal: 

technician collects specimens in the field by various means
robotic device automatically manipulates, photographs, classifies, and sorts obo c de ce au o a ca y a pu a es, p o og ap s, c ass es, a d so s
the specimens

Three applications:
stoneflies in freshwater streams
soil mesofauna
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soil mesofauna
freshwater zooplankton



Application 1: Stonefly populations in 
freshwater streamsfreshwater streams

• differentially sensitive to many pollutants
• live in rivers; reliable indicator of stream health
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live in rivers; reliable indicator of stream health
• difficult and expensive for people to classify (particularly 

to genus or species levels)



Application 2: Small arthropods 
in soil: “soil mesofauna”in soil: soil mesofauna

AchipteriaAAchipteriaA BdellozoniumIBdellozoniumI BelbaABelbaA BelbaIBelbaI CatoposurusACatoposurusA EniochthoniusAEniochthoniusA PtenothrixVPtenothrixV

E t b TME t b TM E id AE id A EpilohmanniaAEpilohmanniaA EpilohmanniaDEpilohmanniaD EpilohmanniaTEpilohmanniaT HypochthoniusLAHypochthoniusLA PtiliidAPtiliidA
EntomobrgaTMEntomobrgaTM EpidamaeusAEpidamaeusA EpilohmanniaAEpilohmanniaA EpilohmanniaDEpilohmanniaD EpilohmanniaTEpilohmanniaT HypochthoniusLAHypochthoniusLA

HypogastruraAHypogastruraA

IsotomaAIsotomaA
IsotomaVIIsotomaVI LiacarusRALiacarusRA MetrioppiaAMetrioppiaA

NothrusFNothrusF

QuadroppiaAQuadroppiaA

onychiurusAonychiurusA
OppiellaAOppiellaA PeltenuialaAPeltenuialaA PhthiracarusAPhthiracarusA

PlatynothrusFPlatynothrusF
PlatynothrusIPlatynothrusI SiroVISiroVITomocerusATomocerusA



Application 3: 
Freshwater ZooplanktonFreshwater Zooplankton

DaphniaDaphnia PolyphemusPolyphemus
(cladocerans)(cladocerans)

CyclopsCyclops
(copepod)(copepod)

BosminaBosmina

Measure biodiversity in freshwater lakes
70 species70 species

100-1000 specimens per sample
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Images from MicroscopyImages from Microscopy--UK. UK. 



Image Capture Apparatusg p pp

Stonefly ImagingStonefly Imaging
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Soil Mesofauna Soil Mesofauna / Zooplankton/ Zooplankton
ImagingImaging



Robotic Extraction of Specimensp
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Computer Vision Challenges(1)p g ( )

Highly-articulated objects with deformationHighly articulated objects with deformation
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Computer Vision Challenges(2)p g ( )

Huge intra-class changes of appearances due toHuge intra class changes of appearances due to 
development and maturation

tergites wingsbecome
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g g



Computer Vision Challenges(3)p g ( )

Small between-class differencesSmall between class differences

Calinueria Doronueria
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Machine Learningg

Training 
Examples

New 
Examples

CalineuriaCalineuria

Learning
Algorithm Classifier

CalineuriaCalineuria

DoroneuriaDoroneuria Algorithm

DoroneuriaDoroneuria

3/7/2009 Cornell 11

Doroneuria



Stonefly Identification Systemy y

Semi-automated specimen handling andSemi automated specimen handling and 
photography
Computer Steps:Computer Steps:

1. Dorsal view detection
2. Region detection2. Region detection
3. Region description
4. Classification
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Region Detectorsg
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HessianHessian--Affine DetectorAffine Detector Kadir Entropy DetectorKadir Entropy Detector PCBR DetectorPCBR Detector



Scale-Independent Feature Transform
SIFT (Lowe 1999)SIFT (Lowe, 1999)

•• Compute intensity gradient at each pixel in 16x16 regionCompute intensity gradient at each pixel in 16x16 region

(Lowe, 1999)(Lowe, 1999)

•• Weight them by a Weight them by a Gaussian Gaussian distribution (indicated by circle)distribution (indicated by circle)

•• Collect into histograms within each 4x4 region (gives 16 Collect into histograms within each 4x4 region (gives 16 
histograms)histograms)
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histograms)histograms)

•• Result: 128Result: 128--element vector normalized to have Euclidean norm 1element vector normalized to have Euclidean norm 1



Classification

Dominant Approach:Dominant Approach: 
Learn visual dictionary
Map bag of SIFTs to keyword histogramMap bag of SIFTs to keyword histogram
Bag-of-word classifier

A New Approach:
Direct multiple instance classification
Stacked “evidence trees”
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Learn Visual Dictionary by 
ClusteringClustering

Gaussian Mixture Model (k=100) with diagonal covariance ( ) g
matrices (EM, initialized  with K-means)

abdomenabdomen

nosenose

eyeseyes

centers ofcenters of
tergitestergites

legslegs

sides ofsides of

headhead
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tergitestergites

100 clusters100 clusters



Count each detected keyword into 
a “feature vector”a feature vector

4 2 0 4 2 5 . . . . . 1 . . . 2 1 2
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Classification

Boosted Decision TreesBoosted Decision Trees

Oth A h i th Lit tOther Approaches in the Literature
Boosted Logistic Model Trees
Support Vector Machines

Earthmover Distance kernel
Pyramid Match kernel
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Issues with Visual Dictionaries

UnsupervisedUnsupervised
Several efforts to construct discriminative 
dictionaries (Moosman et al 2006)dictionaries  (Moosman et al., 2006)

Do not scale to many classes
3 detectors 9 classes 100 keywords 27003 detectors × 9 classes × 100 keywords = 2700 
features
Some efforts to learn shared / universalSome efforts to learn shared / universal 
dictionaries (Winn, et al., 2005; Perronnin, et al., 2007)
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Multiple-Instance Learningp g

Given:Given:
Labeled bags of feature vectors:
(Bi, yi)
where each Bi = {xi,1, …, xi,Ni

}
and each xi,j is a 128-element SIFT vector
yi ∈ {Cal, Dor, Hes, Iso, Mos, Pte, Swe, Yor, 

134 SIFT vectors134 SIFT vectors

yi ∈ { , , , , , , , ,
Zap}

Find
CalineuriaCalineuria

A scoring function f(B,y) such that
yi = argmaxy f(Bi, y)
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Multiple-Instance Learning is Hardp g

Not all of the SIFTs are relevantNot all of the SIFTs are relevant
some are measuring parts shared across all 
speciesspecies
some are measuring the same region at multiple 
scalesscales

A good predictor needs to combine evidence 
from multiple SIFTsfrom multiple SIFTs

each individual SIFT just captures a small patch 
of the image
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of the image



Evidence Trees
Standard decision trees, but output the evidence rather than 

d i ia decision

xx1212 > 0.6> 0.61212

yesyes nono
“splits”“splits”

xx109109 > 0.9> 0.9 xx6666 > 0.1> 0.1

nononono yesyesyesyes

100523 001232 000180 741030
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# of instances of each class# of instances of each class



Our Method: Random Forest 
Evidence Trees + StackingEvidence Trees + Stacking

1 Convert bags to individual labeled SIFTs1. Convert bags to individual labeled SIFTs
2. Train an ensemble of evidence trees using 

random forests & bootstrappingrandom forests & bootstrapping
3. Re-represent each Bag by the total 

di t d t f th tpredicted counts from these trees
4. Train a stacked classifier (boosted decision 

trees) to make the final decision using 
these counts
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Step 1: Convert Labeled Bags to 
Labeled SIFTsLabeled SIFTs

Input labeled bags:Input labeled bags:
(Bi, yi) 

Create a new training set consisting ofCreate a new training set consisting of 
labeled SIFTs:
( ) f h B(xi,j, yi)  for each xi,j ∈ Bi
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Step 2: Bootstrap Ensemble of 
Random Forest Evidence TreesRandom Forest Evidence Trees

For L = 1 60For L = 1, …, 60
Draw a bootstrap replicate training set S’L by 
sampling with replacement from entire Bagssampling with replacement from entire Bags 
(Bi, yi)
Convert S’L to labeled SIFTsConvert S L to labeled SIFTs
Train a random forest evidence tree TL

at each node, choose floor(1 + log2 n) attributes atat each node, choose floor(1  log2 n) attributes at 
random
choose the best attribute to split on from these
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each leaf constrained to contain ≥ 20 points



Step 3: Create a Stacking 
Training SetTraining Set

For each original labeled bag (Bi yi)For each original labeled bag (Bi, yi)
Take each SIFT xij∈ Bi, process it through each 
tree TL in which it was not used in training (Bi nottree TL in which it was not used in training (Bi not 
∈ S’L) 
Let Cij be count vector at the leaf of the treeLet Cij be count vector at the leaf of the tree

Compute the vector sum Ci of these and 
normalize it to sum to 1 0normalize it to sum to 1.0
Form a new training example (Ci, yi)
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Step 4: Train a Boosted Ensemble 
on the Stacking Data Seton the Stacking Data Set

Final ClassifierFinal ClassifierFinal ClassifierFinal Classifier

BagBag NormalizedNormalizedΣΣ
weightedweighted ŷŷofof

SIFTsSIFTs

NormalizedNormalized
Count vector CCount vector CΣΣ

gg
votevote ŷŷ
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Bootstrap Random Forest Bootstrap Random Forest EnsembleEnsemble Boosted EnsembleBoosted Ensemble



Additional Details

Train a separate bootstrapped random forest for p pp
each of three detectors

Harris-Affine
KadirKadir
PCBR

Concatenate the resulting feature vectors priorConcatenate the resulting feature vectors prior 
to stacking
Adaboost: 100 C4.5 decision trees
Can also grow random forests based on other 
features (e.g., shape)
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Experimental Study
9 Taxa of Stoneflies9 Taxa of Stoneflies

CalineuriaCalineuria DoroneuriaDoroneuria HesperoperlaHesperoperla YoroperlaYoroperla
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Stonefly9 Datasety

3826 images3826 images
773 specimens
9 l9 classes
Error estimation by 3-fold cross-validation

all images of a specimen belong to the same fold
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Results: 94.6% Correct

Predicted SpeciesPredicted Species

Cal Dor Hes Iso Mos Pte Swe Yor Zap
Cal 443 17 3 4 0 0 20 0 5

Predicted SpeciesPredicted Species

Cal 443 17 3 4 0 0 20 0 5
Dor 19 489 1 10 1 0 7 0 5
Hes 6 5 460 5 0 1 12 0 2
I 3 6 3 456 0 2 27 0 3ec

ie
s

ec
ie

s

Iso 3 6 3 456 0 2 27 0 3
Mos 0 0 0 1 107 0 3 0 8
Pte 0 3 0 0 0 203 6 5 6ru

e 
S

pe
ru

e 
S

pe

Swe 4 10 2 23 0 1 433 1 5
Yor 1 1 1 1 1 3 0 481 3
Zap 0 0 2 8 4 9 3 4 468

TT
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Zap 0 0 2 8 4 9 3 4 468



Comparison of Methodsp

E R
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Visual Dictionary Stacked Evidence Trees



Combining Evidence is better than 
Voting Decisions or ProbabilitiesVoting Decisions or Probabilities

Evidence 
Counts

54 55 3 1 6 2 2 2 12 5 30 20

Counts
Class 

ProbabilitiesDecisions

.48 .49 .03 .01

0 1 0 0 1 0 0 0 0 0 1 0

.50 .17 .17 .17 .18 .07 .30 .45

72 62 35 23 1.16 0.73 0.50 0.63 1 1 1 0
Evidence CountsEvidence Counts Class ProbabilitiesClass Probabilities DecisionsDecisions
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.38 .32 .18 .12 .38 .24 .17 .21 .33 .33 .33 .00



Mathematical Model

Parameters:Parameters:
C training examples in each leaf
L trees in the ensembleL trees in the ensemble
D regions detected in the test image

b bili ti i f h l fγ: probabilistic margin of each leaf 
one class has probability 1/2 + γ
one class has probability 1/2 − γone class has probability 1/2 − γ
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Applying Chernoff Boundspp y g

Voting classificationsVoting classifications
Each leaf has a probability ε of being mislabeled 
during trainingduring training 
ε ≈ Exp[−2Cγ2]
The vote has a probability of errorThe vote has a probability of error
εvy ≈ Exp[−2DLγ2(1 − 2ε)2]

Voting e idenceVoting evidence
Vote has probability of error
εv# ≈ Exp[−8CDLγ4]
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Result

If C > 1/(4γ2) then voting evidence is betterIf C > 1/(4γ ) then voting evidence is better 
than voting decisions: εv# < εvy

A good tree has γ > 0.25, so voting evidence 
ill b b tt th ti d i i if C 4will be better than voting decisions if C > 4
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Most Discriminative Regionsg
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Generic Object Recognition:
PASCAL 2006 VOCPASCAL 2006 VOC

A U d ROCC

95

100

Area Under ROC Curve

90

95

Rank:Rank:
5th out of 215th out of 21

80

85 Our Method

Best Published

5t out o5t out o

75
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Next Stepsp

Stoneflies
Detecting and Rejecting “Distractors”
Extending coverage to Ephemeroptera (mayflies) and 
Trichoptera (caddis flies)
EPA fi ld dEPA field study

Soil Mesofauna
Freshwater ZooplanktonFreshwater Zooplankton
Moths
Shellfish Larvae

PASCAL 2007; PASCAL 2008 Challenges
Night Calls of Migrating Birds?
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Night Calls of Migrating Birds?



Conclusions

Computer vision and machine learningComputer vision and machine learning 
methods can achieve high accuracy 
classification of stonefliesclassification of stoneflies
For computer vision problems involving 
multiple detections per image voting themultiple detections per image, voting the 
evidence is more accurate than voting class 
probabilities or voting decisionsprobabilities or voting decisions
Our methods are competitive on generic 
bj t iti blobject recognition problems
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