Vision and Machine Learning for Automated Arthropod Biodiversity Studies

Students: N. Larios, H. Deng, W. Zhang, N. Payet, M. Sarpola, C. Fagan, J. Yuen, S. Ruiz Correa
Postdocs: G. Martinez
Faculty: R. Paasch, A. Moldenke, D. A. Lytle, E. Mortensen, L. G. Shapiro, S. Todorovic, T. G. Dietterich

> Oregon State University University of Washington

## Automated Rapid-Throughput Arthropod Population Counting

- Population counts of small arthropods are an important source of data for
  - community ecology
  - biodiversity studies
  - biomonitoring of soils, lakes, streams, and oceans
- Manual identification and counting of specimens
  - very time-consuming
  - requires high degree of expertise
  - very few experts in the world
- Goal:
  - technician collects specimens in the field by various means
  - robotic device automatically manipulates, photographs, classifies, and sorts the specimens
- Three applications:
  - stoneflies in freshwater streams
  - soil mesofauna
  - freshwater zooplankton

#### **Application 1: Stonefly populations in** freshwater streams



- differentially sensitive to many pollutants lacksquare
- live in rivers; reliable indicator of stream health  $\bullet$
- difficult and expensive for people to classify (particularly to genus or species levels)

# Application 2: Small arthropods in soil: "soil mesofauna"







Bdellozoniuml

niuml



BelbaA







**EniochthoniusA** 



PtenothrixV



EntomobrgaTM



EpidamaeusA



EpilohmanniaA

EpilohmanniaD

Belbal

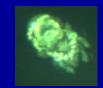


nniaD EpilohmanniaT HypochthoniusLA





PtiliidA



QuadroppiaA



HypogastruraA



IsotomaA

**OppiellaA** 



**Tomocerus**A

-

onychiurusA



IsotomaVI



LiacarusRA



PeltenuialaA PhthiracarusA



usRA MetrioppiaA



PlatynothrusF



**NothrusF** 



SiroVI

Platynothrusl

## Application 3: Freshwater Zooplankton

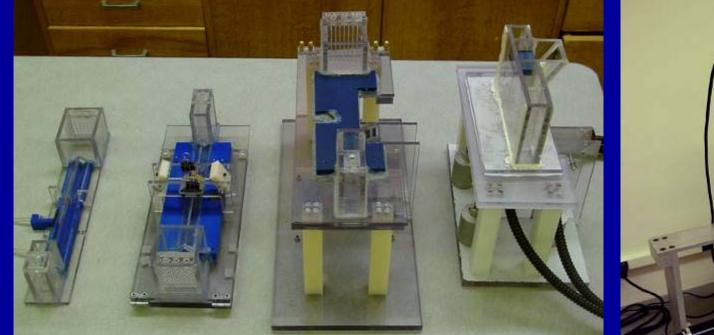


- Measure biodiversity in freshwater lakes
- 70 species
  - 100-1000 specimens per sample

Images from Microscopy-UK.

Cornell

# Image Capture Apparatus



Stonefly Imaging



Soil Mesofauna / Zooplankton Imaging

Cornell

# **Robotic Extraction of Specimens**



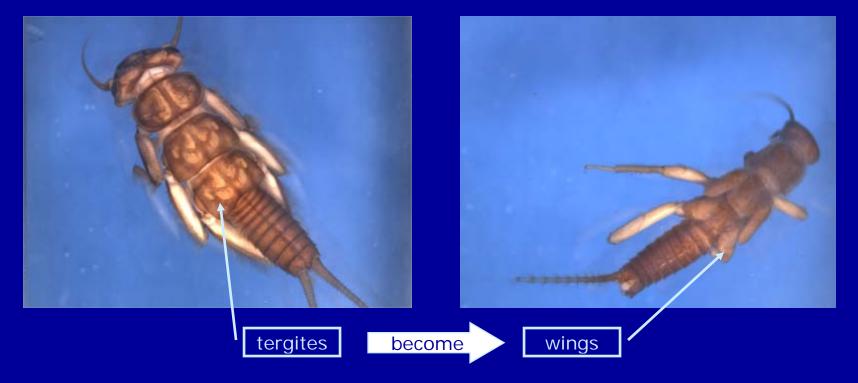
# Computer Vision Challenges(1)

#### Highly-articulated objects with deformation



# Computer Vision Challenges(2)

 Huge intra-class changes of appearances due to development and maturation



# Computer Vision Challenges(3)

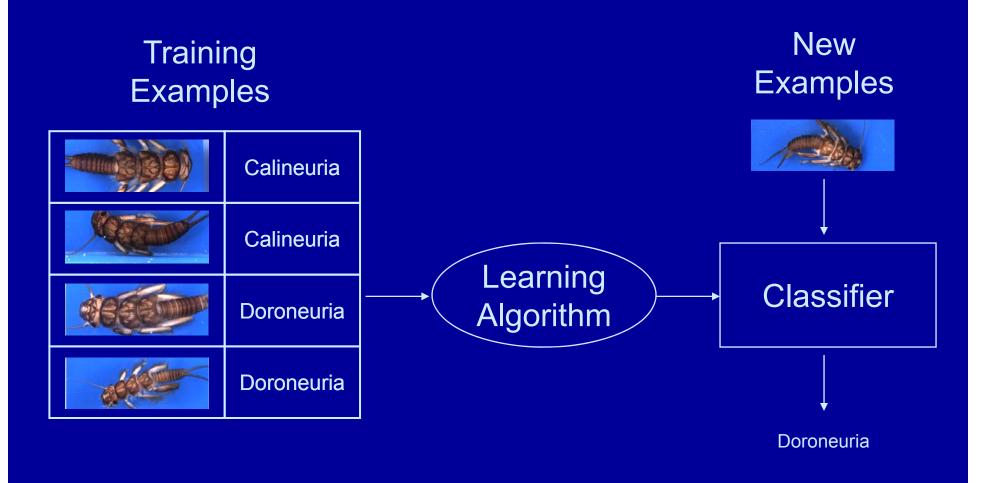
#### Small between-class differences



#### Calinueria

Doronueria

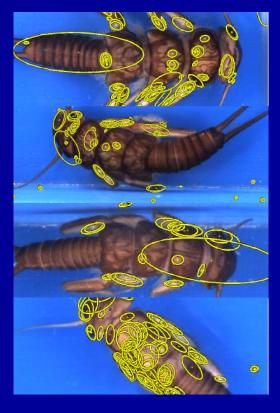
# Machine Learning



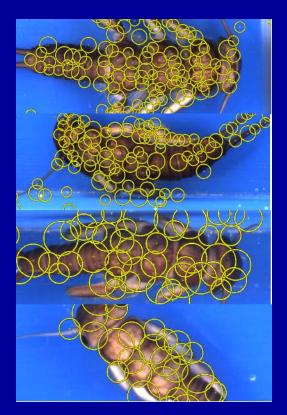
# **Stonefly Identification System**

- Semi-automated specimen handling and photography
- Computer Steps:
  - 1. Dorsal view detection
  - 2. Region detection
  - 3. Region description
  - 4. Classification

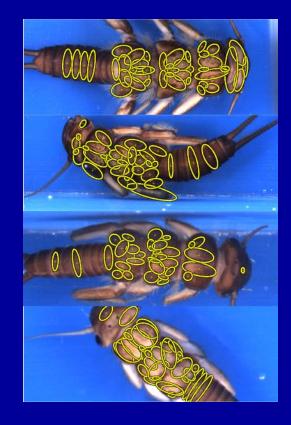
# **Region Detectors**



Hessian-Affine Detector

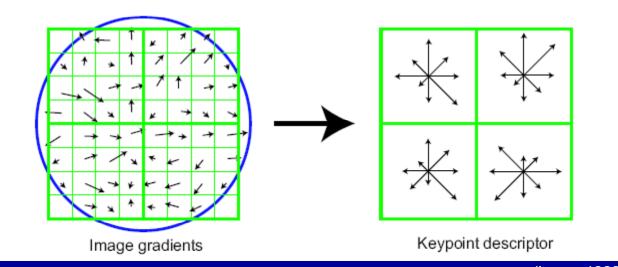


Kadir Entropy Detector



**PCBR Detector** 

#### Scale-Independent Feature Transform SIFT (Lowe, 1999)



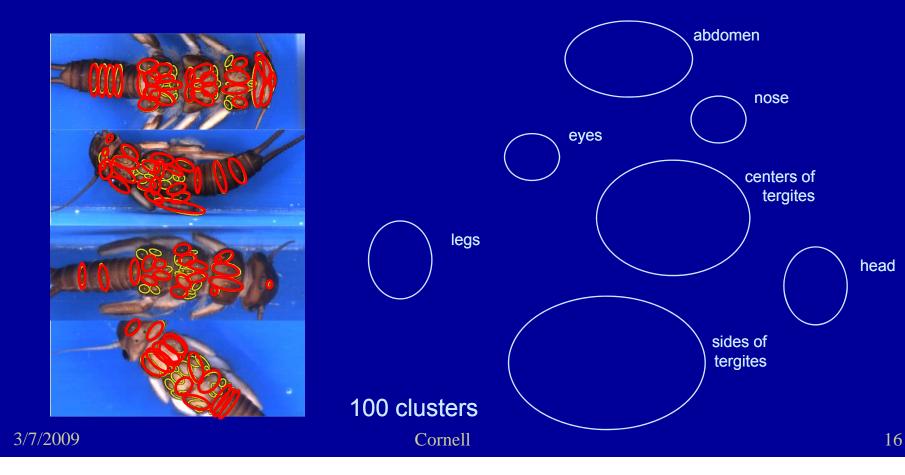
- (Lowe, 1999)
- Compute intensity gradient at each pixel in 16x16 region
- Weight them by a Gaussian distribution (indicated by circle)
- Collect into histograms within each 4x4 region (gives 16 histograms)
- Result: 128-element vector normalized to have Euclidean norm 1

# Classification

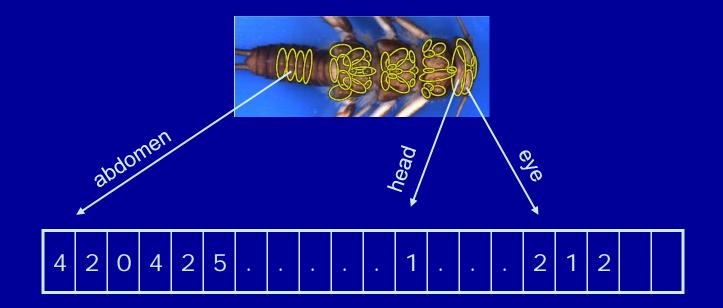
- Dominant Approach:
  - Learn visual dictionary
  - Map bag of SIFTs to keyword histogram
  - Bag-of-word classifier
- A New Approach:
  Direct multiple instance classification
  Stacked "evidence trees"

# Learn Visual Dictionary by Clustering

 Gaussian Mixture Model (k=100) with diagonal covariance matrices (EM, initialized with K-means)



# Count each detected keyword into a "feature vector"



# Classification

#### Boosted Decision Trees

Other Approaches in the Literature
Boosted Logistic Model Trees
Support Vector Machines
Earthmover Distance kernel
Pyramid Match kernel

# **Issues with Visual Dictionaries**

#### Unsupervised

 Several efforts to construct discriminative dictionaries (Moosman et al., 2006)

#### Do not scale to many classes

- 3 detectors × 9 classes × 100 keywords = 2700 features
- Some efforts to learn shared / universal dictionaries (Winn, et al., 2005; Perronnin, et al., 2007)

# **Multiple-Instance Learning**

#### Given:

Labeled <u>bags</u> of feature vectors:

 $\begin{array}{l} (\mathsf{B}_{i},\, y_{i}) \\ \text{where each } \mathsf{B}_{i} = \{x_{i,1},\, \ldots,\, x_{i,N_{i}}\} \\ \text{and each } x_{i,j} \text{ is a 128-element SIFT vector} \\ y_{i} \in \{\text{Cal, Dor, Hes, Iso, Mos, Pte, Swe, Yor,} \\ \underline{Zap}\} \end{array}$ 





Calineuria

#### Find

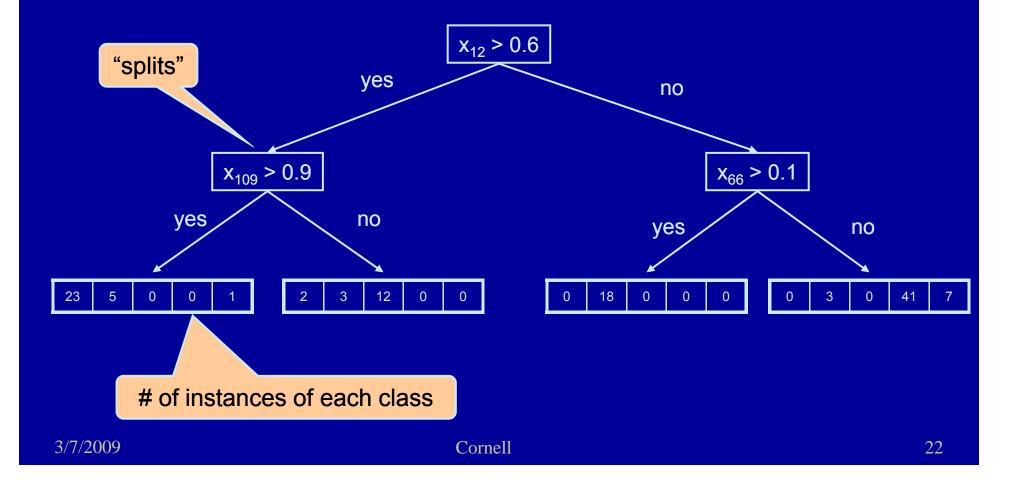
A scoring function f(B,y) such that
 y<sub>i</sub> = argmax<sub>v</sub> f(B<sub>i</sub>, y)

## Multiple-Instance Learning is Hard

- Not all of the SIFTs are relevant
  - some are measuring parts shared across all species
  - some are measuring the same region at multiple scales
- A good predictor needs to combine evidence from multiple SIFTs
   each individual SIFT just captures a small patch
  - of the image

## **Evidence Trees**

 Standard decision trees, but output the evidence rather than a decision



## Our Method: Random Forest Evidence Trees + Stacking

- 1. Convert bags to individual labeled SIFTs
- 2. Train an *ensemble* of evidence trees using random forests & bootstrapping
- 3. Re-represent each Bag by the total predicted counts from these trees
- Train a stacked classifier (boosted decision trees) to make the final decision using these counts

### Step 1: Convert Labeled Bags to Labeled SIFTs

- Input labeled bags:
   (B<sub>i</sub>, y<sub>i</sub>)
- Create a new training set consisting of labeled SIFTs:

 $(x_{i,j}, y_i)$  for each  $x_{i,j} \in B_i$ 

## Step 2: Bootstrap Ensemble of Random Forest Evidence Trees

#### • For L = 1, ..., 60

- Draw a bootstrap replicate training set S'<sub>L</sub> by sampling with replacement from entire Bags (B<sub>i</sub>, y<sub>i</sub>)
- Convert S'<sub>L</sub> to labeled SIFTs
- Train a random forest evidence tree T<sub>L</sub>
  - at each node, choose floor(1 + log<sub>2</sub> n) attributes at random
  - choose the best attribute to split on from these
  - each leaf constrained to contain  $\geq$  20 points

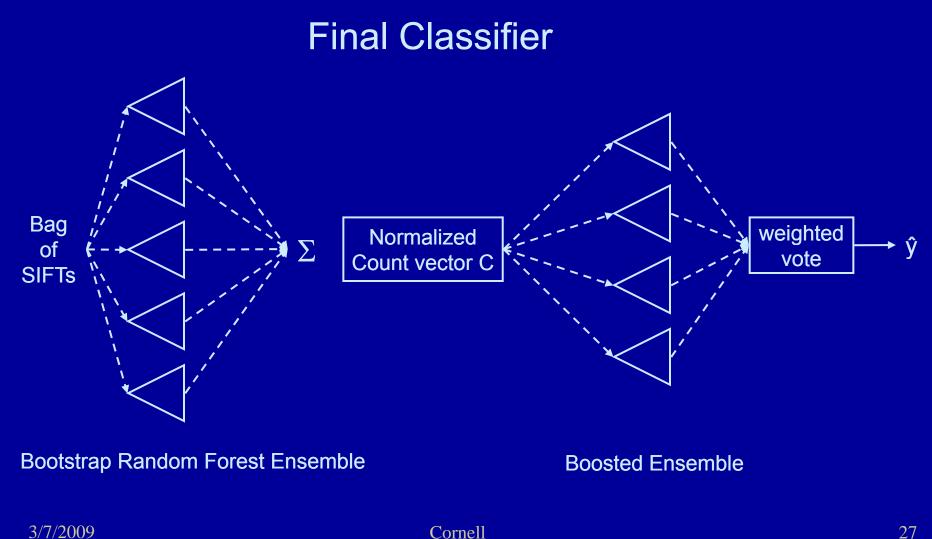
## Step 3: Create a Stacking Training Set

- For each original labeled bag (B<sub>i</sub>, y<sub>i</sub>)
  - Take each SIFT x<sub>ij</sub>∈ B<sub>i</sub>, process it through each tree T<sub>L</sub> in which it was *not used in training* (B<sub>i</sub> not ∈ S'<sub>L</sub>)

#### Let C<sub>ii</sub> be count vector at the leaf of the tree

- Compute the vector sum C<sub>i</sub> of these and normalize it to sum to 1.0
- Form a new training example (C<sub>i</sub>, y<sub>i</sub>)

## Step 4: Train a Boosted Ensemble on the Stacking Data Set



# **Additional Details**

- Train a separate bootstrapped random forest for each of three detectors
  - Harris-Affine
  - Kadir
  - PCBR
- Concatenate the resulting feature vectors prior to stacking
- Adaboost: 100 C4.5 decision trees
- Can also grow random forests based on other features (e.g., shape)

# Experimental Study 9 Taxa of Stoneflies



# **Stonefly9** Dataset

- 3826 images
- 773 specimens
- 9 classes
- Error estimation by 3-fold cross-validation
   all images of a specimen belong to the same fold

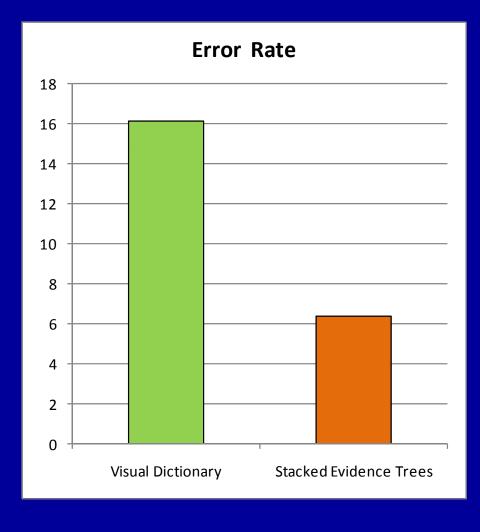
# Results: 94.6% Correct

#### **Predicted Species**

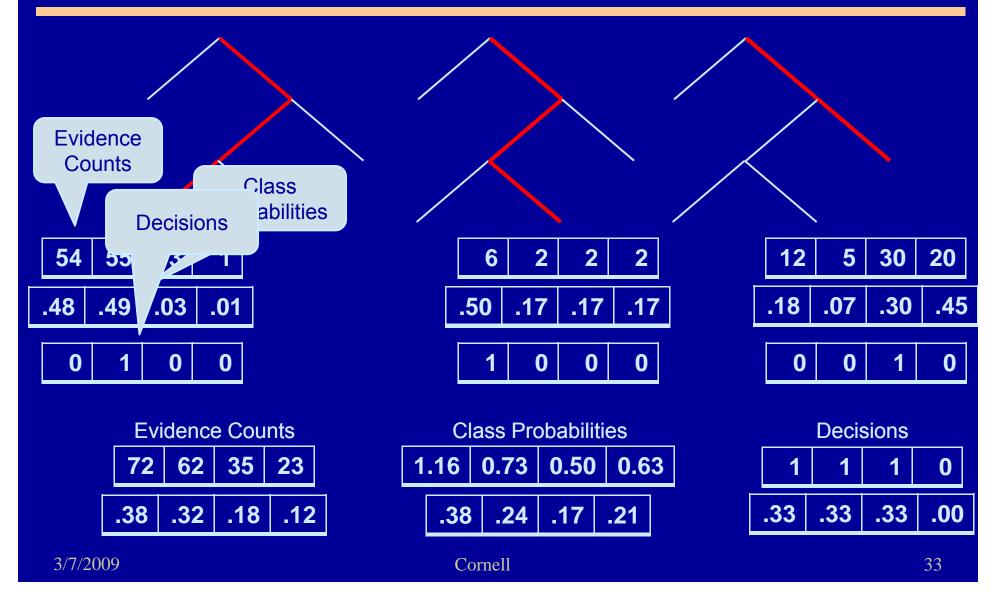
|   |     | Cal | Dor | Hes | lso | Mos | Pte | Swe | Yor | Zap |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| • | Cal | 443 | 17  | 3   | 4   | 0   | 0   | 20  | 0   | 5   |
|   | Dor | 19  | 489 | 1   | 10  | 1   | 0   | 7   | 0   | 5   |
|   | Hes | 6   | 5   | 460 | 5   | 0   | 1   | 12  | 0   | 2   |
|   | lso | 3   | 6   | 3   | 456 | 0   | 2   | 27  | 0   | 3   |
|   | Mos | 0   | 0   | 0   | 1   | 107 | 0   | 3   | 0   | 8   |
|   | Pte | 0   | 3   | 0   | 0   | 0   | 203 | 6   | 5   | 6   |
|   | Swe | 4   | 10  | 2   | 23  | 0   | 1   | 433 | 1   | 5   |
|   | Yor | 1   | 1   | 1   | 1   | 1   | 3   | 0   | 481 | 3   |
|   | Zap | 0   | 0   | 2   | 8   | 4   | 9   | 3   | 4   | 468 |

True Species

# **Comparison of Methods**



## Combining Evidence is better than Voting Decisions or Probabilities



# **Mathematical Model**

#### Parameters:

- C training examples in each leaf
- L trees in the ensemble
- D regions detected in the test image
- γ: probabilistic margin of each leaf
  - one class has probability 1/2 +  $\gamma$
  - one class has probability  $1/2 \gamma$

# **Applying Chernoff Bounds**

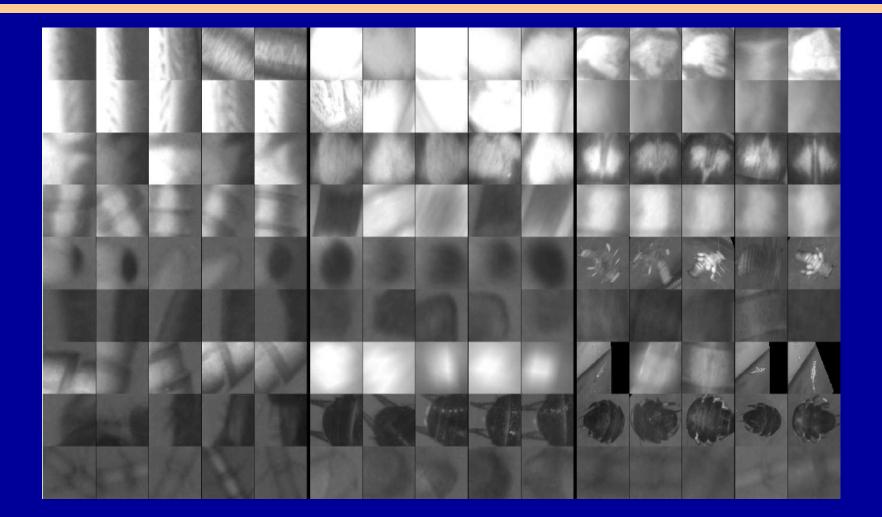
- Voting classifications
  - Each leaf has a probability ε of being mislabeled during training
    - $\varepsilon \approx \text{Exp}[-2C\gamma^2]$
  - The vote has a probability of error
    The vote has a probability of error
  - $\varepsilon_{\rm vy} \approx {\rm Exp}[-2{\rm DL}\gamma^2(1-2\varepsilon)^2]$
- Voting evidence
  - Vote has probability of error
    - $\epsilon_{\text{v\#}} \approx \text{Exp}[-8\text{CDL}\gamma^4]$

## Result

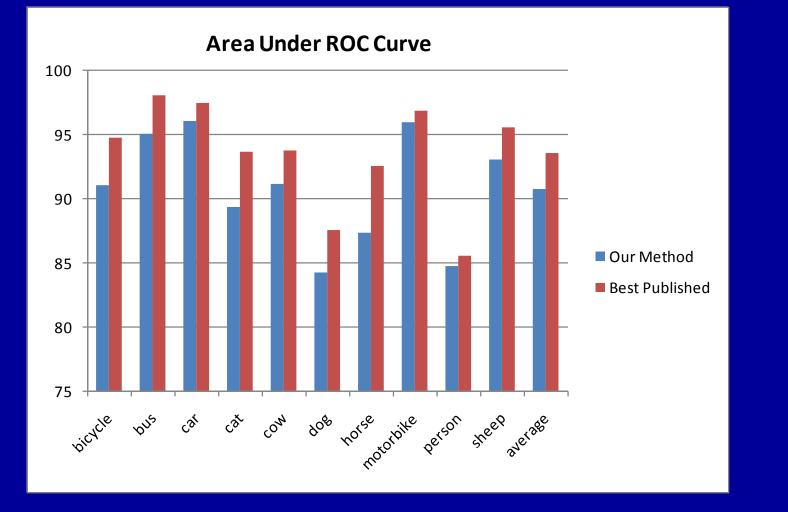
 If C > 1/(4γ<sup>2</sup>) then voting evidence is better than voting decisions: ε<sub>v#</sub> < ε<sub>vy</sub>

 A good tree has γ > 0.25, so voting evidence will be better than voting decisions if C > 4

# Most Discriminative Regions



### Generic Object Recognition: PASCAL 2006 VOC



Rank: 5th out of 21

# Next Steps

- Stoneflies
  - Detecting and Rejecting "Distractors"
  - Extending coverage to Ephemeroptera (mayflies) and Trichoptera (caddis flies)
  - EPA field study
- Soil Mesofauna
- Freshwater Zooplankton
- Moths
- Shellfish Larvae

# PASCAL 2007; PASCAL 2008 Challenges Night Calls of Migrating Birds?

## Conclusions

- Computer vision and machine learning methods can achieve high accuracy classification of stoneflies
- For computer vision problems involving multiple detections per image, voting the evidence is more accurate than voting class probabilities or voting decisions
- Our methods are competitive on generic object recognition problems

# Acknowledgements

#### Grant Support: US National Science Foundation