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Automated Rapid-Throughput
Arthropod Population Counting

+ Population counts of small arthropods are an important source of data
for

= community ecology
= Dbiodiversity studies
= biomonitoring of soils, lakes, streams, and oceans
+ Manual identification and counting of specimens
= very time-consuming
= requires high degree of expertise
= very few experts in the world
+ Goal:
= technician collects specimens in the field by various means

= robotic device automatically manipulates, photographs, classifies, and sorts
the specimens

¢+ Three applications:
= stoneflies in freshwater streams
= Soil mesofauna
= freshwater zooplankton
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Application 1: Stonefly populations in
freshwater streams

differentially sensitive to many pollutants
live in rivers; reliable indicator of stream health
difficult and expensive for people to classify (particularly

0. L0 genus or species levels)
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Application 2: Small arthropods
In soil: “soil mesofauna”
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Application 3:
Freshwater Zooplankton

Daphnia Bosmina Polyphemus Cyclops
(cladocerans) (copepod)

+ Measure biodiversity in freshwater lakes

+ /0 species
= 100-1000 specimens per sample

Images from Microscopy-UK.
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Image Capture Apparatus

Stonefly Imaging

Soil Mesofauna / Zooplankton
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Robotic Extraction of Specimens
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Computer Vision Challenges(1)

+ Highly-articulated objects with deformation
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Computer Vision Challenges(2)

+ Huge intra-class changes of appearances due to
development and maturation
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Computer Vision Challenges(3)

¢ Small between-class differences
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Machine Learning

Training New
Examples Examples

Calineuria

Calineuria

Learning

Doroneuria A|gorithm Classifier

Doroneuria l

Doroneuria
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Stonefly Identification System

¢+ Semi-automated specimen handling and
photography
¢ Computer Steps:
Dorsal view detection
Region detection

1,
7)
3. Region description
4. Classification
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Region Detectors

Hessian-Affine Detector Kadir Entropy Detector PCBR Detector
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Scale-Independent Feature Transform
SIFT (Lowe, 1999)

Image gradients Keypoint descriptor

(Lowe, 1999)
Compute intensity gradient at each pixel in 16x16 region
Weight them by a Gaussian distribution (indicated by circle)

Collect into histograms within each 4x4 region (gives 16
histograms)

Result: 128-element vector normalized to have Euclidean norm 1
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Classification

+* Dominant Approach:
= Learn visual dictionary
= Map bag of SIFTs to keyword histogram
» Bag-of-word classifier

* A New Approach:
= Direct multiple instance classification
= Stacked “evidence trees”
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Learn Visual Dictionary by
Clustering

Gaussian Mixture Model (k=100) with diagonal covariance
matrices (EM, initialized with K-means)
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Count each detected keyword into
a “feature vector”
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Classification

* Boosted Decision Trees

* Other Approaches in the Literature
= Boosted Logistic Model Trees

= Support Vector Machines
e Earthmover Distance kernel
e Pyramid Match kernel
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Issues with Visual Dictionaries

+ Unsupervised

s Several efforts to construct discriminative
dictionaries (Moosman et al., 2006)

* Do not scale to many classes

s 3 detectors x 9 classes x 100 keywords = 2700
features

s Some efforts to learn shared / universal
dictionaries (Winn, et al., 2005; Perronnin, et al., 2007)
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Multiple-Instance Learning

¢ Given:

» Labeled bags of feature vectors:
(Bi, i)
where each B; = {x;, ..., xi,Ni}
and each x;; is a 128-element SIFT vector
y. € {Cal, Dor, Hes, Iso, Mos, Pte, Swe, Yor, ﬂ
Zap} Calineuria
* Find
= A scoring function f(B,y) such that
y; = argmax, f(B;, y)

134 SIFT vectors
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Multiple-Instance Learning is Hard

+ Not all of the SIFTs are relevant

s SOmMe are measuring parts shared across all
species

= Some are measuring the same region at multiple
scales

¢ A good predictor needs to combine evidence
from multiple SIFTs

= each individual SIFT just captures a small patch
of the image
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Evidence Trees

¢ Standard decision trees, but output the evidence rather than
a decision

# of instances of each class
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Our Method: Random Forest
Evidence Trees + Stacking

. Convert bags to individual labeled SIFTs

. Train an ensemble of evidence trees using
random forests & bootstrapping

. Re-represent each Bag by the total
predicted counts from these trees

. Train a stacked classifier (boosted decision
trees) to make the final decision using
these counts
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Step 1: Convert Labeled Bags to
Labeled SIFTs

¢ |[nput labeled bags:
(Bi, i)
+ Create a new training set consisting of

labeled SIFTs:
(Xi; ;) foreachx;; € B
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Step 2: Bootstrap Ensemble of
Random Forest Evidence Trees

s ForL=1,...,60

» Draw a bootstrap replicate training set S', by
sampling with replacement from entire Bags
(Bis ¥i)

s Convert S’ to labeled SIFTs

s Train a random forest evidence tree T,

e at each node, choose floor(1 + log, n) attributes at
random

e choose the best attribute to split on from these
e each leaf constrained to contain > 20 points
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Step 3: Create a Stacking
Training Set

* For each original labeled bag (B, y:)
= Take each SIFT x;e B;, process it through each

tree T, in which it was not used in training (B, not
e S)
» Let C; be count vector at the leaf of the tree

¢+ Compute the vector sum C. of these and
normalize it to sum to 1.0

+ Form a new training example (C,, y:)
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Step 4: Train a Boosted Ensemble
on the Stacking Data Set

Final Classifier

Normalized |, o 3%{ weighted

Count vector C _-77|__vote

Bootstrap Random Forest Ensemble Boosted Ensemble
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Additional Detalls

¢ Train a separate bootstrapped random forest for
each of three detectors

Harris-Affine
Kadir
PCBR

+ Concatenate the resulting feature vectors prior
to stacking

¢ Adaboost: 100 C4.5 decision trees

¢ Can also grow random forests based on other
features (e.g., shape)
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Experimental Study
O Taxa of Stoneflies

Calineuria Doroneuria Hesperoperla Yoroperla
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Stonefly9 Dataset

+ 3826 images
¢ /73 specimens
+ O classes

* Error estimation by 3-fold cross-validation
» all images of a specimen belong to the same fold
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Results: 94.6% Correct

Predicted Species
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Comparison of Methods

Error Rate

Visual Dictionary Stacked Evidence Trees
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Combining Evidence is better than
Voting Decisions or Probabilities

Evidence \ \
Counts
Class /
Decisions abilities

y S adil

Evidence Counts Class Probabilities Decisions

721 62| 35| 23 1.16 | 0.73 | 0.50 | 0.63 1] 1

38| .32 .18 | .12 38|(.24 | .17 .21 : 33| .33
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Mathematical Model

+ Parameters:
s C training examples in each leaf
s L trees in the ensemble
= D regions detected in the test image

= 7. probabilistic margin of each leaf
e one class has probability 1/2 + v
e one class has probability 1/2 — v
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Applying Chernoff Bounds

+ Voting classifications

» Each leaf has a probability € of being mislabeled
during training

e ~ Exp[-2Cy?]
= [he vote has a probability of error
g,y & EXp[-2DLy*(1 = 2¢)]
+ \/oting evidence
= Vote has probability of error
e ~ EXp[-8CDLy4]
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Result

+ If C > 1/(4y?) then voting evidence is better

than voting decisions: g4 < g,

* A good tree has y > 0.25, so voting evidence
will be better than voting decisions if C > 4
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Most Discriminative Regions

e
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Generic Object Recognition:
PASCAL 2006 VOC

Area Under ROC Curve

Rank:

5th out of 21
B Our Method

B Best Published
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Next Steps

+ Stoneflies
= Detecting and Rejecting “Distractors”

» Extending coverage to Ephemeroptera (mayflies) and
Trichoptera (caddis flies)

= EPA field study
+ Soil Mesofauna
+ Freshwater Zooplankton
¢+ Moths
¢ Shellfish Larvae

* PASCAL 2007; PASCAL 2008 Challenges
* Night Calls of Migrating Birds?
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Conclusions

¢+ Computer vision and machine learning
methods can achieve high accuracy
classification of stoneflies

* For computer vision problems involving
multiple detections per image, voting the
evidence is more accurate than voting class
probabilities or voting decisions

¢ Our methods are competitive on generic
object recognition problems
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