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Marvin Minsky (1927-2016)

PROCEEDINGS OF THE IRE

Steps Toward Artificial Intelligence®

MARVIN MINSKY?, MEMBER, IRE

1961
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Minsky: Difference between
Computer Programs and People

“almost any error will completely
paralyze a typical computer
program, whereas a person
whose brain has failed at some
attempt will find some other way
to proceed. We rarely depend
upon any one method. We usually
know several different ways to do
something, so that if one of them
fails, there's always another.”



Outline

= The Need for Robust Al

- High Stakes Applications

= Need to Act in the face of Unknown
Unknowns

= Approaches toward Robust Al
= Robustness to Known Unknowns
= Robustness to Unknown Unknowns

= Concluding Remarks



Exciting Progress in Al:
Perception

Google Speech Recognition




Image Captioning




Perception + Translation

El area al frente de este
panel electrico debe
estar libre de objetos por
lo menos 36 pulgadas.

Reaulaciones de OSHA-NEC




Skype Translator: Speech
Recognition + Translation

X r- Frohes neues Jahr! Wir freuen uns auf 2016!

Eu também, mas eu ainda preciso fazer H
minha resolucao.

credit: Skype



Exciting Progress
Reasoning (SAT)

[,000,000 Constraints

100,000 Constraints

10,000 Constraints

1,000 Constraints

+ Solver-based programming languages
+ Compiler optimizations using solvers
+ Solver-based debuggers

*+ Solver-based type systems

* Solver-based concurrency bugfinding
* Solver-based synthesis

* Bio & Optimization

* Concaolic Testing

* Program Analysis

* Equivalence Checking
* Auto Configuration

+ Bounded MC
* Program Analysis
s Al

=
1998

Credit: Vijay
Ganesh




Exciting Progress: Reasoning
(Heads-Up Limit Hold’Em Poker)
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Exciting Progress: Chess and Go

TOP HUMAN o

GRAND MASTER Silver, et al. (2016) Nature

Deep Learning +
MASTER CHESS-PLAYING Monte Carlo Tree Search
PROGRAM

GO-PLAYING
PROGRAM

Credit: Martin Mueller 11



Personal Assistants
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Technical Progress Is
Encouraging the Development
of High-Stakes Applications



Self-Driving Cars

Tesla AutoSteer

w48 ®

Credit: The Verge




Automated Surgical Assistants

uu d DaVinci

-7 Credit: Wikipedia
- CCBY-SA3.0
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Al Hedge Funds
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Al Control of the Power Grid

CONTROLLING THE POWER GRID WITH
ARTIFICIAL INTELLIGENCE

02.07.2015
Credit: EBM Netz AG

DARPA Exploring Ways to Protect Nation’s
Electrical Grid from Cyber Attack

Effort calls for creation of automated systems to restore power within seven days or less after
attack

Credit: DARPA



Autonomous Weapons

Northroop Grumman X-47B

Credit: Wikipedia

UK Brimstone Anti-Armor Weapon
TEER
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High-Stakes Applications
Require Robust Al

= Robustness to

= Human user error
= Cyberattack
= Misspecified goals

= Incorrect models
- Unmodeled phenomena



Why Unmodeled Phenoma?

= It is Impossible to model everything
= |t is not desirable to model everything



It Is Impossible to model
everything

= Qualification Problem:

= It Is iImpossible to enumerate all of the
preconditions for an action

= Ramification Problem:

= It Is iImpossible to enumerate all of the
Implicit consegquences of an action



It Is Important to not model
everything

= Fundamental theorem of machine

learning
model complexity

error rate < _
sample size

= Corollary:

= If sample size is small, the model should
be simple

- We must deliberately oversimplify our



Conclusion:

An Al system must act
without having a complete
model of the world



Digression: Uncertainty in Al

Known-Knowns
= Known Knowns 1958-1980

= Theorem proving

= Planning in deterministic, fully-
observed worlds

= Games of perfect information




Known Unknowns

Known-Knowns

= Probabilistic Graphical Models 1958-1980

Pearl (1988), Koller & Friedman Known-Unknowns
(2009) 1980-present

= Probabilistic Machine Learning
Murphy (2012)

= Planning In Markov Decision
Problems

= Computational Game Theory



Unknown Unknowns

Known-Knowns

= Natural step on our 1958-1980
trajectory toward robust Al Known-Unknowns

1980-present

Unknown-Unknowns
1980-present




Outline

= The Need for Robust Al

o High Stakes Applications

= Need to Act In the face of Unknown
Unknowns

= Approaches toward Robust Al
= Lessons from Biology
= Robustness to Known Unknowns
» Robustness to Unknown Unknowns




Robustness Lessons from
Biology

= Evolution is not optimization
You can’t overfit if you don’t optimize
= Populations of diverse individuals
A “portfolio” strategy
= Redundancy within individuals

diploidy/polyploidy = regressive alleles can
be passed to future generations

alternative metabolic pathways
= Dispersal
Search for healthier environments



Approaches to Robust Al

= Robustness to Model Errors
Robust optimization
Regularize the model
Optimize a risk-sensitive objective
Employ robust inference algorithms
= Robustness to Unmodeled Phenomena
Expand the model
Learn a causal model
Employ a portfolio of models
Monitor performance to detect anomalies



ldea 1: Robust Optimization

= Many Al reasoning
problems can be
formulated as optimization
problems \\ J(xq, x2)

m maX](X1, xZ) \ /

X1,X2

= subject to
°oaxy +bxy, <r
°ocxy+dxy <s

~




Uncertainty in the constraints

= maxJ(xq,x7)
X1,X2

= subject to
s oax;+bx, <71 \ J(x1,%2)
°cxy+dxy, <s .
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Minimax against uncertainty

= max min J(xq,x5;a,b,c,d,1,s)
X1,X, a,b,c,d,r,s

= subject to
°axq+bxy, <r
°ocxytdxy, <8
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Impose a Budget on the
Adversary

* max min J(xq,X5; 04, ..., 0g)
X1,X2 8q,-0g

= subject to
c(a+6)x1+(b+6p)x, < (r+6,)
“(c+6)x+(d+65)x, < (s+ ;)
- Xl =B
- 8, €U,
- 8, € Uy
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ldea 2: Regularize the Model
Regularization in ML:

= Glven:
= training examples (x;,y;) for an unknown
function y = f(x)
= a loss function L(y,y): how serious it is to
output y when the right answer is y?

» Find:
= the model h that minimizes

z L(h(x;),y:) + AllA]l

loss + comilexiti ienalti



Regularization can be Equivalent
to Robust Optimization

= Xu, Caramanis & Mannor (2009)

Suppose an adversary can move each training
data point x; by an amount §;

Optimizing the linear support vector objective
> L@y + Allwl
i

IS equivalent to minimaxing against this
adversary who has a total budget

D I8l =2
i
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Idea 3: Optimize a Risk-
Sensitive Objective

= Setting: Markov Decision Process
- Fort=1,..,T
- agent observes world state s;
- agent chooses action a; according to policy
(S¢)
- world executes action a; and moves to state
S¢+1 according to P(S¢4q1|Ss ap)

- agent receives reward R(s¢, az)



Idea 3: Optimize Conditional
Value at Risk

= For any fixed policy m,
the cumulative return
VT[ — ’11;:1 R(St, at) Wl”
have some distribution
P(V™)

= “Minimizing downside
risks CVaR = 3.94

= The Conditional Value at
Risk at quantile «a is the

expected return of the
bottom a quantile

= By changing = we can
change the distribution
P(V™), so we can try to
push the probability to
the right
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Optimizing CVaR confers
robustness

= Suppose that for each time t, an adversary can
choose a vector §, and define a new probability
distribution P(s;y1|s: a;) - 6¢(a;)

= Optimizing CVaR at quantile a Is equivalent to
minimaxing against this adversary subject to a
budget along each trajectory of

H&Sa
t

= Chow, Tamar, Mannor & Pavone (NIPS 2014)

= Conclusion: Acting Conservatively Confers
Robustness to Model Errors

38



ldea 4: Robust Inference

= Credal Bayesian Networks

Convex uncertainty sets over the
probability distributions at nodes

Upper and lower probability models
(Cosman, 2000; UAI 1997)

» Robust Classification
(Antonucci & Zaffalon, 2007)

= Robust Probabilistic Diagnosis (etc.)
(Chen, Choi, Darwiche, 2014, 2015)
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Approaches to Robust Al

= Robustness to Model Errors
= Robust optimization
o Regularize the model
o Optimize a risk-sensitive objective
= Employ robust inference algorithms
= Robustness to Unmodeled Phenomena
= Expand the model
- Learn a causal model
- Employ a portfolio of models




ldea 5: Expand the Model

= Knowledge Base Construction
Cyc (Lenat & Guha, 1990)
= Information Extraction & Knowledge Base
Population
NELL (Mitchell, et al., AAAI 2015)
TAC-KBP (NIST)
Robust Logic (Valiant; AlJ 2001)
= Learning Models of Actions Iin Planning
and Reinforcement Learning
Gil (1994)



ldea 5: Expand the Model

= Risk:
Every new item added to a model may
Introduce an error
Inference may propagate these errors

The expanded model may not be more
accurate than the original model

= Does not address the fundamental
need to act robustly In iIncompletely-
modeled environments



ldea 6: Use Causal Models

= Causal relations are more likely to be
robust
> Require less data to learn
- [Heckerman & Breese, IEEE SMC 1997]

= Can be transported to novel situations
- [Pearl & Bareinboim, AAAI 2011]
- [Lee & Honavar, AAAIl 2013]



Idea 7: Employ a Portfolio of
Models

“We usually know several different
ways to do something, so that if one of
them falls, there's always another.”

--Marvin Minsky



Portfolio Methods In SAT & CSP
s SATzilla:

Feature Algorithm Final

Presolver 1 Presolver 2 . .
Computation Selector Algorithm

Problem
Instance

= Xu, Hoos, Hutter, Leyton-Brown [JAIR
2008]



SATzilla Results

Cumulative Distribution

= HANDMADE
oroblem set

» Presolvers: <
March d104 g
(5 seconds) E
SAPS " af
(2 seconds)

10’ 10°

Runtime [CPU sec]

Xu, Hutter, Hoos, Leyton-Brown [JAI R2008]
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Parallel Portfolios

Runtime vs. Oracle

= Any task where an
algorithm can tell
It has a solution

= Race the different
algorithms In
parallel

] Stop aS Soon aS 200 400 600 i);R.\l’z(gJ 1200 1400 1600 1800
one algorlth m Yu & Epstein [LION 2012]. RSR-WG
Fe p() rts a S()luti()n chooses a subset of methods via machine

learning

v



IBM Watson / DeepQA

= Combines >100 different techniques for
analyzing natural language
Identifying sources
finding and generating hypotheses
finding and scoring evidence
merging and ranking hypotheses

Question
Decomposition

Hypothesis | Hypothesis and
Generation | Evidence Scoring

CTOC QYr NG ‘199N
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Knowledge-Level Redundancy

= Minsky: “You don’t really
understand something if
you only understand it one
way”

= Most Al systems only
understand things one way:

= Computer vision:

- Object Appearance + human
labels

- Natural Language:

- Word Co-occurrence statistics
+ human labels




Multifaceted Understanding

= There is a person who is the
cat’s owner

= That person does not like the
cat sitting on the chair

= The cat is preventing a person
from sitting on the chair

- People often need to sit on
chairs

= The cat leaves hair on the chair

= The cat is preventing the
person from picking up the
book

= The cat will soon not be on
the chair




Achieving Multi-Faceted

Understanding

= We need to give our computers access to
many different forms of experience

Performing tasks
Achieving goals through natural language
dialogue
Interacting with other agents
Examples:
Minsky, “Learning Meaning” [1982 MIT TR]
Blum & Mitchell, “Multi-View Learning” [1998]

Lake, Salakhutdinov & Tenenbaum [Science
2016]
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ldea 8: Watch for Anomalies

= Machine Learning

= Training examples drawn from Pg,4i,, (X)
= Classifier y = f(x) 1s learned
= Test examples from Py, ¢ (x)

o If Prost = Pirgin then with high probability
f (x) will be correct for test queries

» What If Piost # Prrgin?



Automated Counting of
Freshwater Macroinvertebrates

= Goal: Assess the
health of freshwater
streams

= Method:

= Collect specimens via
kicknet

= Photograph in the lab

= Classify to genus and
species

WWW.epa.gov




Open Category
ODbject
Recognition

= Train on 29 classes of
INnsects

= Test set may contain
additional species




Prediction with Anomaly
Detection

Anomaly
Detector

Training
Examples
(x5, i)




Novel Class Detection via
Anomaly Detection

= Train a classifier on
data from 2 classes

= Test on data from 26
classes

= Black dot: Best
previous method
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Anomaly Detection Notes

= We initially just used monochrome
Images
Feature selection studies showed this was
sufficient
= But color iIs very useful for detecting
novel classes

= Lesson: Use all of your features when
looking for anomalies
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Related Efforts

Open Category Classification
[Salakhutdinov, Tenenbaum, & Torralba, 2012]
[Da, Yu & Zhou, AAAI 2014]
[Bendale & Boult, CVPR 2015]

Change-Point Detection
[Page, 1955]

[Barry & Hartigan, 1993]
[Adams & MacKay, 2007]

= Covariate Shift Correction
[Sugiyama, Krauledat & Mduller, 2007]
[Quinonero-Candela, Sugiyama, Schwaighofer &
Lawrence, 2009]
Domain Adaptation
[Blitzer, Dredze, Pereira, 2007]
[Daume & Marcu, 2006]

58



Open Questions

= Does robustness of the known model
confer robustness to unmodeled
variation too?

Regularization toward “safer” regions

= When an agent detects that it has
entered an anomalous state, what
should 1t do?

Is there a general theory of safety?

59



Outline

= The Need for Robust Al

o High Stakes Applications

= Need to Act in the face of Unknown
Unknowns

= Approaches toward Robust Al
o Lessons from Biology
= Robustness to Known Unknowns
= Robustness to Unknown Unknowns




Concluding Remarks

High Risk Emerging Al applications
... Require Robust Al Systems

Al systems can’t model everything

... Al needs to be robust to
“unknown unknowns”



Existing Approaches to Robust
Al

= Robustness to Model Errors
Robust optimization
Regularize the model
Optimize a risk-sensitive objective
Employ robust inference algorithms
= Robustness to Unmodeled Phenomena
Expand the model
Learn a causal model
Employ a portfolio of models
Monitor performance to detect anomalies



We have many good ideas

We need many more!
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Questions?
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