Outline

- Analysis of the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised AD
- Explaining Anomalies
- Incorporating Expert Feedback
- PAC Theory of Rare Pattern Anomaly Detection
Defining Anomaly Detection

- Data \(\{x_i\}_{i=1}^{N} \), each \(x_i \in \mathbb{R}^d \)
- Mixture of “nominal” points and “anomaly” points
- Anomaly points are generated by a different generative process than the nominal points
Three Settings

- **Supervised**
 - Training data labeled with “nominal” or “anomaly”

- **Clean**
 - Training data are all “nominal”, test data may be contaminated with “anomaly” points.

- **Unsupervised**
 - Training data consist of mixture of “nominal” and “anomaly” points
 - I will focus on this case
Well-Defined Anomaly Distribution Assumption

- WDAD: the anomalies are drawn from a well-defined probability distribution
 - example: repeated instances of known machine failures

- The WDAD assumption is often risky
 - adversarial situations (fraud, insider threats, cyber security)
 - diverse set of potential causes (novel device failure modes)
 - user’s notion of “anomaly” changes with time (e.g., anomaly == “interesting point”)
Strategies for Unsupervised Anomaly Detection

Let α be the fraction of training points that are anomalies

Case 1: α is large (e.g., > 5%)
- Fit a 2-component mixture model
 - Requires WDAD assumption
 - Mixture components must be identifiable
 - Mixture components cannot have large overlap in high density regions

Case 2: α is small (e.g., 1%, 0.1%, 0.01%, 0.001%)
- Anomaly detection via Outlier detection
 - Does not require WDAD assumption
 - Will fail if anomalies are not outliers (e.g., overlap with nominal density; tightly clustered anomaly density)
 - Will fail if nominal distribution has heavy tails
Outline

- Analysis of the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised AD
- Explaining Anomalies
- Incorporating Expert Feedback
- PAC Theory of Rare Pattern Anomaly Detection
Benchmarking Study

Andrew Emmott

- Most AD papers only evaluate on a few datasets
- Often proprietary or very easy (e.g., KDD 1999)
- Research community needs a large and growing collection of public anomaly benchmarks
Benchmarking Methodology

- Select data sets from UC Irvine repository
 - >= 1000 instances
 - classification or regression
 - <= 200 features
 - numerical features (discrete features ignored)
 - no missing values (mostly)
- Choose one or more classes to be “anomalies”; the rest are “nominals”
Selected Data Sets

<table>
<thead>
<tr>
<th>Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Plates Faults</td>
</tr>
<tr>
<td>Gas Sensor Array Drift</td>
</tr>
<tr>
<td>Image Segmentation</td>
</tr>
<tr>
<td>Landsat Satellite</td>
</tr>
<tr>
<td>Letter Recognition</td>
</tr>
<tr>
<td>OptDigits</td>
</tr>
<tr>
<td>Page Blocks</td>
</tr>
<tr>
<td>Shuttle</td>
</tr>
<tr>
<td>Waveform</td>
</tr>
<tr>
<td>Yeast</td>
</tr>
<tr>
<td>Abalone</td>
</tr>
<tr>
<td>Communities and Crime</td>
</tr>
<tr>
<td>Concrete Compressive Strength</td>
</tr>
<tr>
<td>Wine</td>
</tr>
<tr>
<td>Year Prediction</td>
</tr>
</tbody>
</table>
Systematic Variation of Relevant Aspects

- **Point difficulty:** How deeply are the anomaly points buried in the nominals?
 - Fit supervised classifier (kernel logistic regression)
 - Point difficulty: \(P(\hat{y} = "nominal" | x) \) for anomaly points

- **Relative frequency:**
 - Sample from the anomaly points to achieve target values of \(\alpha \)

- **Clusteredness:**
 - Greedy algorithm selects points to create clusters or to create widely separated points

- **Irrelevant features**
 - Create new features by random permutation of existing feature values

- **Result:** 25,685 Benchmark Datasets
Metrics

- **AUC (Area Under ROC Curve)**
 - ranking loss: probability that a randomly-chosen anomaly point is ranked above a randomly-chosen nominal point
 - transformed value: $\log \frac{AUC}{1 - AUC}$

- **AP (Average Precision)**
 - area under the precision-recall curve
 - average of the precision computed at each ranked anomaly point
 - transformed value: $\log \frac{AP}{\mathbb{E}[AP]} = \log LIFT$
Algorithms

- **Density-Based Approaches**
 - RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
 - EGMM: Ensemble Gaussian Mixture Model (our group)

- **Quantile-Based Methods**
 - OCSVM: One-class SVM (Schoelkopf, et al., 1999)
 - SVDD: Support Vector Data Description (Tax & Duin, 2004)

- **Neighbor-Based Methods**
 - LOF: Local Outlier Factor (Breunig, et al., 2000)
 - ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)

- **Projection-Based Methods**
 - IFOR: Isolation Forest (Liu, et al., 2008)
 - LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)
Filtering Out Impossible Benchmarks

- For each algorithm and each benchmark
 - Check whether we can reject the null hypothesis that the achieved AUC (or AP) is better than random guessing
 - If a benchmark dataset is too hard for all algorithms, then we delete it from the benchmark collection
Analysis

- **Synthetic Control Data Set**
 - Nominals: standard d-dimensional multivariate Gaussian
 - Anomalies: uniform in the $[-4, +4]^d$ hypercube

- **Linear ANOVA**
 - $\text{metric} \sim \text{rf} + \text{pd} + \text{cl} + \text{ir} + \text{mset} + \text{algo}$
 - rf: relative frequency
 - pd: point difficulty
 - cl: normalized clusteredness
 - ir: irrelevant features
 - mset: “Mother” set
 - algo: anomaly detection algorithm

- Assess the *algo* effect while controlling for all other factors
Algorithm Comparison

![Algorithm Comparison Diagram]

Change in Metric wrt Control

Dataset

Algorithm

- iforest
- egmm
- lof
- rkde
- abod
- loda
- ocsvm
- svdd

logit(AUC)

log(LIFT)
More Analysis

- In a forthcoming paper, we provide much more detail
 - Mixed-effects model
 - Validation of the importance of each factor
 - Robustness of each algorithm to the factors
- Impact of different factors (descending order)
 - Choice of data set
 - Relative frequency
 - Algorithm
 - Point difficulty
 - Irrelevant features
 - Clusteredness
Outline

- Analysis of the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised AD
- Explaining Anomalies
- Incorporating Expert Feedback
- PAC Theory of Rare Pattern Anomaly Detection
Scenario: Explaining a Candidate Anomaly to an Analyst

- Need to persuade the expert that the candidate anomaly is real

- Idea:
 - Expose one feature value at a time to the expert
 - Provide appropriate visualization tools

- “Sequential Feature Explanation”

(arXiv:1503.00038)
Sequential Feature Explanation (SFE)

Performance Metric: Minimum Feature Prefix (MFP). Minimum number of features that must be revealed for the analyst to become confident that a candidate anomaly is a true anomaly. In this example MFP = 4.
Let $S(x_1, ..., x_d)$ be the anomaly score for the vector $x = (x_1, ..., x_d)$.

Assume we have an algorithm that can compute a marginal score for any subset of the dimensions.

- Easy for EGMM, RKDE (score is $-\log \hat{P}(x)$)

Four Algorithms:

- Marginal Greedy
- Forward Selection: Independent Marginal Sequential Marginal
- Backward Elimination: Independent Dropout Sequential Dropout
Algorithms

- **Independent Marginal**
 - Compute $S(x_j)$ for each feature j
 - Order features highest $S(x_j)$ first

- **Sequential Marginal**
 - Let $L = \langle \rangle$ be the sequence of features chosen so far
 - Compute $S(L \cup x_j)$ for all $j \not\in L$
 - Add the feature j to L that maximizes $S(L \cup x_j)$

- **Independent Dropout**
 - Let R be the set of all features
 - Compute $S(x_{R\setminus\{j\}})$ for each feature j (delete one feature)
 - Sort features lowest $S(x_{R\setminus\{j\}})$ first

- **Sequential Dropout**
 - Let $L = \langle \rangle$ be the sequence of features chosen so far
 - Let R be the set of features not yet chosen
 - Repeat: Add the feature $j \in R$ to L that minimizes $S(x_{R\setminus\{j\}})$
Experimental Evaluations

(1) OSU Anomaly Benchmarks

- **Datasets**: 10,000 benchmarks derived from 7 UCI datasets
- **Anomaly Detector**: Ensemble of Gaussian Mixture Models (EGMM)
- **Simulated Analysts**: Regularized Random Forests (RRFs)
- **Evaluation Metric**: mean minimum feature prefix (MMFP) = average number of features revealed on outliers before the analyst is able to make a decision (exonerate vs. open investigation)
Results (EGMM + Explanation Method)

In these domains, an oracle only needs 1-2 features.

Dropout methods are often worse than marginal.

Random is always worst.

Often no benefit to sequential methods over independent methods.
Results
(Oracle Detector + Explanation Methods)

Sequential Marginal is better than Independent Marginal in most cases

Sequential Marginal is often tied with Optimal
Experimental Evaluations
(2) KDD 1999 (Computer Intrusion)

- Marginal much better than Dropout
- KDD 1999 is Easy

[95% Confidence Intervals]
Outline

- Analysis of the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised AD
- Explaining Anomalies
- Incorporating Expert Feedback
- PAC Theory of Rare Pattern Anomaly Detection
Incorporating Expert Feedback [Shubhomoy Das]

- Expert labels the best candidate
- Label is used to update the anomaly detector
Idea: Learn to reweight LODA projections

- LODA
 - Π_1, \ldots, Π_M set of M sparse random projections
 - f_1, \ldots, f_M corresponding 1-dimensional density estimators
 - $S(x) = \frac{1}{M} \sum_m - \log f_m(x)$ average “surprise”

- Parameter τ: quantile corresponding to number of cases analyst can label

- Goal: Learn to reweight the projections so that all known anomalies are above quantile τ and all known nominals are ranked below quantile τ

- Method: Modification of Accuracy-at-the-Top algorithm (Boyd, Mohri, Cortes, Radovanovic, 2012)
Experimental Setup

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Nominal Class</th>
<th>Anomaly Class</th>
<th>Total</th>
<th>Dims</th>
<th># anomalies(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abalone</td>
<td>8, 9, 10</td>
<td>3, 21</td>
<td>1920</td>
<td>9</td>
<td>29 (1.5%)</td>
</tr>
<tr>
<td>ANN-Thyroid-1v3</td>
<td>3</td>
<td>1</td>
<td>3251</td>
<td>21</td>
<td>73 (2.25%)</td>
</tr>
<tr>
<td>Covtype</td>
<td>2</td>
<td>4</td>
<td>286048</td>
<td>54</td>
<td>2747 (0.9%)</td>
</tr>
<tr>
<td>Covtype-sub</td>
<td>2</td>
<td>4</td>
<td>2000</td>
<td>54</td>
<td>19 (0.95%)</td>
</tr>
<tr>
<td>KDD-Cup-99</td>
<td>‘normal’</td>
<td>‘u2r’, ‘probe’</td>
<td>63009</td>
<td>91</td>
<td>2416 (3.83%)</td>
</tr>
<tr>
<td>KDD-Cup-99-sub</td>
<td>‘normal’</td>
<td>‘u2r’, ‘probe’</td>
<td>2000</td>
<td>91</td>
<td>77 (3.85%)</td>
</tr>
<tr>
<td>Mammography</td>
<td>-1</td>
<td>+1</td>
<td>11183</td>
<td>6</td>
<td>260 (2.32%)</td>
</tr>
<tr>
<td>Mammography-sub</td>
<td>-1</td>
<td>+1</td>
<td>2000</td>
<td>6</td>
<td>46 (2.3%)</td>
</tr>
<tr>
<td>Shuttle</td>
<td>1</td>
<td>2, 3, 5, 6, 7</td>
<td>12345</td>
<td>9</td>
<td>867 (7.02%)</td>
</tr>
<tr>
<td>Shuttle-sub</td>
<td>1</td>
<td>2, 3, 5, 6, 7</td>
<td>2000</td>
<td>9</td>
<td>140 (7.0%)</td>
</tr>
<tr>
<td>Yeast</td>
<td>‘CYT’, ‘NUC’, ‘MIT’</td>
<td>‘ERL’, ‘POX’, ‘VAC’</td>
<td>1191</td>
<td>8</td>
<td>55 (4.6%)</td>
</tr>
</tbody>
</table>
Algorithms

- Baseline: No learning; order cases highest $S(x)$ first
- Random: order cases at random
- AAD: Our method
- AI2: Veeramachaneni, et al. (CSAIL TR).
- SSAD: Semi-Supervised Anomaly Detector (Görnitz, et al., JAIR 2013)
Results: KDD 1999

![Graph showing the number of true anomalies against the number of queries for different methods: AAD, baseline, AI2, SSAD-MC, and SSAD-Top.](image)
Results: Abalone
Results: ANN-Thyroid-1v3
Results: Mammography
Summary: Incorporating Expert Feedback

- This can be very successful with LODA
 - Even when the expert labels the initial candidates as “nominal”
- AAD is doing implicit feature selection
Outline

- Analysis of the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised AD
- Explaining Anomalies
- Incorporating Expert Feedback
- PAC Theory of Rare Pattern Anomaly Detection

- Existing theory on sample complexity
 - Density Estimation Methods:
 - Exponential in the dimension d
 - Quantile Methods (OCSVM and SVDD):
 - Polynomial sample complexity

- Experimentally, many anomaly detection algorithms learn very quickly (e.g., 500-2000 examples)
- New theory: Rare Pattern Anomaly Detection
Pattern Spaces

- A pattern \(h: \mathbb{R}^d \rightarrow \{0,1\} \) is an indicator function for a measurable region in the input space
 - Examples:
 - Half planes
 - Axis-parallel hyper-rectangles in \([-1,1]^d\)

- A pattern space \(\mathcal{H} \) is a set of patterns (countable or uncountable)
Rare and Common Patterns

- Let μ be a fixed measure over \mathbb{R}^d
 - Typical choices:
 - uniform over $[-1, +1]^d$
 - standard Gaussian over \mathbb{R}^d
- $\mu(h)$ is the measure of the pattern defined by h
- Let p be the “nominal” probability density defined on \mathbb{R}^d (or on some subset)
- $p(h)$ is the probability of pattern h
- A pattern h is τ-rare if
 \[f(h) = \frac{p(h)}{\mu(h)} \leq \tau \]
- Otherwise it is τ-common
Rare and Common Points

- A point x is τ-rare if there exists a τ-rare h such that $h(x) = 1$
- Otherwise a point is τ-common

- Goal: An anomaly detection algorithm should output all τ-rare points and not output any τ-common points
PAC-RPAD

- Algorithm \mathcal{A} is PAC-RPAD with parameters τ, ϵ, δ if for any probability density p and any τ, with probability $1 - \delta$ over samples drawn from p, \mathcal{A} draws a sample from p and detects all τ-outliers and rejects all $(\tau + \epsilon)$-commons in the sample.

- ϵ allows the algorithm some margin for error.

- If a point is between τ-rare and $(\tau + \epsilon)$-common, the algorithm can treat it arbitrarily.
RAREPATTERNDETECT

- Draw a sample of size $N(\epsilon, \delta)$ from p
- Let $\hat{p}(h)$ be the fraction of sample points that satisfy h
- Let $\hat{f}(h) = \frac{\hat{p}(h)}{\mu(h)}$ be the estimated rareness of h
- A query point x_q is declared to be an anomaly if there exists a pattern $h \in \mathcal{H}$ such that $h(x_q) = 1$ and $\hat{f}(h) \leq \tau$.
Results

- Theorem 1: For any finite pattern space \mathcal{H}, RAREPATTERNDETECT is PAC-RPAD with sample complexity

\[N(\epsilon, \delta) = O\left(\frac{1}{\epsilon^2} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right) \right) \]

- Theorem 2: For any pattern space \mathcal{H} with finite VC dimension $\nu_\mathcal{H}$, RAREPATTERNDETECT is PAC-RPAD with sample complexity

\[N(\epsilon, \delta) = O\left(\frac{1}{\epsilon^2} \left(\nu_\mathcal{H} \log \frac{1}{\epsilon^2} + \log \frac{1}{\delta} \right) \right) \]
Examples of PAC-RPAD \mathcal{H}

- half spaces
- axis-aligned hyper-rectangles
- stripes (equivalent to LODA's histogram bins)
- ellipsoids
- ellipsoidal shells (difference of two ellipsoidal level sets)
Isolation RPAD (aka Pattern Min)

- Grow an isolation forest
 - Each tree is only grown to depth k
 - Each leaf defines a pattern h
 - μ is the volume (Lebesgue measure)
 - Compute $\hat{f}(h)$ for each leaf

Details

- Grow the tree using one sample
- Estimate \hat{f} using a second sample
- Score query point(s)
Results: Shuttle

- PatternMin is consistently better for $k > 1$
RPAD Conclusions

- The PAC-RPAD theory seems to capture the behavior of algorithms such as IFOREST.
- It is easy to design practical RPAD algorithms.
- Theory requires extension to handle sample-dependent pattern spaces \mathcal{H}.
Summary

- Outlier Detection can perform unsupervised or clean anomaly detection when the relative frequency of anomalies, α is small.
- Algorithm Benchmarking
 - The Isolation Forest is a robust, high-performing algorithm.
 - The OCSVM and SVDD methods do not perform well on AUC and AP. Why not?
 - The other methods (ABOD, LODA, LOF, EGMM, RKDE) are very similar to each other.
- Sequential Feature Explanations provide a well-defined and objectively measurable method for anomaly explanation.
- Expert Feedback can be incorporated into LODA via a modified Accuracy-at-the-Top algorithm with good results.
- PAC-RPAD theory may account for the rapid learning of many anomaly detection algorithms.