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Defining Anomaly Detection 
Data 𝑥𝑥𝑖𝑖 𝑖𝑖=1

𝑁𝑁 , each 𝑥𝑥𝑖𝑖 ∈ ℜ𝑑𝑑 
Mixture of “nominal” points and “anomaly” points 
Anomaly points are generated by a different 
generative process than the nominal points 
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Three Settings 
Supervised 
Training data labeled with “nominal” or “anomaly” 
Clean 
Training data are all “nominal”, test data may be 

contaminated with “anomaly” points. 
Unsupervised 
Training data consist of mixture of “nominal” and “anomaly” 

points 
 I will focus on this case 
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Well-Defined Anomaly Distribution 
Assumption 
WDAD: the anomalies are drawn from a well-defined 
probability distribution 
example: repeated instances of known machine failures 

 
The WDAD assumption is often risky 
adversarial situations (fraud, insider threats, cyber security) 
diverse set of potential causes (novel device failure modes) 
user’s notion of “anomaly” changes with time (e.g., anomaly 

== “interesting point”) 
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Strategies for  
Unsupervised Anomaly Detection 
Let 𝛼𝛼 be the fraction of training points that are anomalies 
Case 1: 𝛼𝛼 is large (e.g., > 5%) 
 Fit a 2-component mixture model 
 Requires WDAD assumption 
 Mixture components must be identifiable 
 Mixture components cannot have large overlap in high density regions 

Case 2: 𝛼𝛼 is small (e.g., 1%, 0.1%, 0.01%, 0.001%) 
Anomaly detection via Outlier detection 
 Does not require WDAD assumption 
 Will fail if anomalies are not outliers (e.g., overlap with nominal density; 

tightly clustered anomaly density) 
 Will fail if nominal distribution has heavy tails 
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Benchmarking Study 
[Andrew Emmott] 

Most AD papers only evaluate on a few datasets 
Often proprietary or very easy (e.g., KDD 1999) 
Research community needs a large and growing 
collection of public anomaly benchmarks 
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Benchmarking Methodology 
Select data sets from UC Irvine repository 
>= 1000 instances 
classification or regression 
<= 200 features 
numerical features (discrete features ignored) 
no missing values (mostly) 
Choose one or more classes to be “anomalies”; the 
rest are “nominals” 
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Selected Data Sets 
Steel Plates Faults 
Gas Sensor Array Drift 
Image Segmentation 
Landsat Satellite 
Letter Recognition 
OptDigits 
Page Blocks 
Shuttle 
Waveform 
Yeast 
Abalone 
Communities and Crime 
Concrete Compressive Strength 
Wine 
Year Prediction 
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Systematic Variation of Relevant 
Aspects 
Point difficulty: How deeply are the anomaly points buried 
in the nominals? 
 Fit supervised classifier (kernel logistic regression) 
Point difficulty: 𝑃𝑃(𝑦𝑦� = "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|𝑥𝑥) for anomaly points 
Relative frequency:  
 sample from the anomaly points to achieve target values of 𝛼𝛼 
Clusteredness:  
 greedy algorithm selects points to create clusters or to create 

widely separated points 
 Irrelevant features 
 create new features by random permutation of existing feature 

values 
Result: 25,685 Benchmark Datasets 
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Metrics 
AUC (Area Under ROC Curve) 
 ranking loss: probability that a randomly-chosen anomaly 

point is ranked above a randomly-chosen nominal point 

 transformed value: log 𝐴𝐴𝐴𝐴𝐴𝐴
1−𝐴𝐴𝐴𝐴𝐴𝐴

 

AP (Average Precision) 
area under the precision-recall curve 
average of the precision computed at each ranked anomaly 

point 

 transformed value: log 𝐴𝐴𝐴𝐴
𝔼𝔼 𝐴𝐴𝐴𝐴

= log 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 
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Algorithms 
Density-Based Approaches 
RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008) 
EGMM: Ensemble Gaussian Mixture Model (our group) 
Quantile-Based Methods 
OCSVM: One-class SVM (Schoelkopf, et al., 1999) 
SVDD: Support Vector Data Description (Tax & Duin, 2004) 
Neighbor-Based Methods 
 LOF: Local Outlier Factor (Breunig, et al., 2000) 
ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008) 
Projection-Based Methods 
 IFOR: Isolation Forest (Liu, et al., 2008) 
 LODA: Lightweight Online Detector of Anomalies (Pevny, 2016) 
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Filtering Out Impossible Benchmarks 
For each algorithm and each benchmark 
Check whether we can reject the null hypothesis that the 

achieved AUC (or AP) is better than random guessing 
 If a benchmark dataset is too hard for all algorithms, then 

we delete it from the benchmark collection 
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Analysis 
Synthetic Control Data Set 
Nominals: standard 𝑑𝑑-dimensional multivariate Gaussian 
Anomalies: uniform in the −4, +4 𝑑𝑑 hypercube 
Linear ANOVA 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ~ 𝑟𝑟𝑟𝑟 + 𝑝𝑝𝑝𝑝 + 𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
 rf: relative frequency 
 pd: point difficulty 
 cl: normalized clusteredness 
 ir: irrelevant features 
 mset: “Mother” set 
 algo: anomaly detection algorithm 

Assess the algo effect while controlling for all other 
factors 
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Algorithm Comparison 
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More Analysis 
In a forthcoming paper, we provide much more detail 
Mixed-effects model 
Validation of the importance of each factor 
Robustness of each algorithm to the factors 
Impact of different factors (descending order) 
Choice of data set 
Relative frequency 
Algorithm 
Point difficulty  
 Irrelevant features 
Clusteredness 
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Scenario: Explaining a Candidate 
Anomaly to an Analyst 
Need to persuade the 
expert that the candidate 
anomaly is real 
Idea:  
Expose one feature value at 

a time to the expert  
Provide appropriate 

visualization tools 
“Sequential Feature 
Explanation” 
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Sequential Feature Explanation (SFE) 
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Sequential Feature Explanation (SFE) 
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Sequential Feature Explanation (SFE) 
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Sequential Feature Explanation (SFE) 
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Sequential Feature Explanation (SFE) 
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Sequential Feature Explanation (SFE) 
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Sequential Feature Explanation (SFE) 
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Sequential Feature Explanation (SFE) 
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Threshold 



Sequential Feature Explanation (SFE) 
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Performance Metric: Minimum Feature Prefix (MFP). Minimum number 
of features that must be revealed for the analyst to become confident that 
a candidate anomaly is a true anomaly. In this example MFP = 4. 

Threshold 



Algorithms for Constructing Sequential 
Feature Explanations [Amran Siddiqui] 

Let 𝑆𝑆 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑  be the anomaly score for the vector 
𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑑𝑑) 
Assume we have an algorithm that can compute a 
marginal score for any subset of the dimensions 
Easy for EGMM, RKDE (score is − log𝑃𝑃�(𝑥𝑥)) 
Four Algorithms: 
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Algorithms 
 Independent Marginal 
 Compute 𝑆𝑆(𝑥𝑥𝑗𝑗) for each feature 𝑗𝑗 
 Order features highest 𝑆𝑆 𝑥𝑥𝑗𝑗  first 

Sequential Marginal 
 Let 𝐿𝐿 = 〈〉 be the sequence of features chosen so far 
 Compute 𝑆𝑆(𝐿𝐿 ∪ 𝑥𝑥𝑗𝑗) for all 𝑗𝑗 ∉ 𝐿𝐿 
 Add the feature 𝑗𝑗 to 𝐿𝐿 that maximizes 𝑆𝑆(𝐿𝐿 ∪ 𝑥𝑥𝑗𝑗) 

 Independent Dropout 
 Let 𝑅𝑅 be the set of all features 
 Compute 𝑆𝑆 𝑥𝑥𝑅𝑅∖{𝑗𝑗}  for each feature 𝑗𝑗 (delete one feature) 
 Sort features lowest 𝑆𝑆 𝑥𝑥𝑅𝑅∖{𝑗𝑗}  first 

Sequential Dropout 
 Let 𝐿𝐿 = 〈〉 be the sequence of features chosen so far 
 Let 𝑅𝑅 be the set of features not yet chosen 
 Repeat: Add the feature 𝑗𝑗 ∈ 𝑅𝑅 to 𝐿𝐿 that minimizes 𝑆𝑆(𝑥𝑥𝑅𝑅∖ 𝑗𝑗 ) 
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Experimental Evaluations 
(1) OSU Anomaly Benchmarks 
Datasets: 10,000 benchmarks derived from 7 UCI 
datasets 
Anomaly Detector: Ensemble of Gaussian Mixture 
Models (EGMM) 
Simulated Analysts: Regularized Random Forests 
(RRFs) 
Evaluation Metric: mean minimum feature prefix 
(MMFP) = average number of features revealed on 
outliers before the analyst is able to make a decision 
(exonerate vs. open investigation) 
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Results (EGMM + Explanation Method) 
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Results  
(Oracle Detector + Explanation Methods) 
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Experimental Evaluations 
(2) KDD 1999 (Computer Intrusion) 
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Incorporating 
Expert Feedback [Shubhomoy Das] 

Expert labels the best 
candidate 
Label is used to update the 
anomaly detector 

38 

Data 

Anomaly 
Detection 

Best 
Candidate 

Convince 
Expert? 

Launch Investigation 

yes 

no 



Idea: Learn to reweight LODA 
projections 
LODA 
Π1, … ,Π𝑀𝑀 set of 𝑀𝑀 sparse random projections 
 𝑓𝑓1, … , 𝑓𝑓𝑀𝑀 corresponding 1-dimensional density estimators 
 𝑆𝑆 𝑥𝑥 = 1

𝑀𝑀
∑ − log 𝑓𝑓𝑚𝑚(𝑥𝑥)𝑚𝑚   average “surprise” 

Parameter 𝜏𝜏: quantile corresponding to number of cases 
analyst can label 
Goal: Learn to reweight the projections so that all known 
anomalies are above quantile 𝜏𝜏 and all known nominals 
are ranked below quantile 𝜏𝜏 
Method: Modification of Accuracy-at-the-Top algorithm 
(Boyd, Mohri, Cortes, Radovanovic, 2012) 
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Experimental Setup 
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Algorithms 
Baseline: No learning; order cases highest 𝑆𝑆(𝑥𝑥) first 
Random: order cases at random 
AAD: Our method 
AI2: Veeramachaneni, et al. (CSAIL TR).  
SSAD: Semi-Supervised Anomaly Detector (Görnitz, 
et al., JAIR 2013) 
 

41 



Results: KDD 1999 
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Results: Abalone 
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Results: ANN-Thyroid-1v3 
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Results: Mammography 
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Summary:  
Incorporating Expert Feedback 
This can be very successful with LODA 
Even when the expert labels the initial candidates as 

“nominal” 
AAD is doing implicit feature selection 
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Towards a Theory of Anomaly 
Detection [Siddiqui, et al.; UAI 2016] 

Existing theory on sample complexity 
Density Estimation Methods:  
 Exponential in the dimension 𝑑𝑑 

Quantile Methods (OCSVM and SVDD): 
 Polynomial sample complexity 

 
Experimentally, many anomaly detection algorithms 
learn very quickly (e.g., 500-2000 examples) 
New theory: Rare Pattern Anomaly Detection 
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Pattern Spaces 
A pattern ℎ:ℜ𝑑𝑑 → {0,1} is an indicator function for a 
measurable region in the input space 
Examples: 
 Half planes 
 Axis-parallel hyper-rectangles in −1,1 𝑑𝑑 

A pattern space ℋ is a set of patterns (countable or 
uncountable) 
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Rare and Common Patterns 
Let 𝜇𝜇 be a fixed measure over ℜ𝑑𝑑 
 Typical choices:  
 uniform over −1, +1 𝑑𝑑 
 standard Gaussian over ℜ𝑑𝑑 

𝜇𝜇(ℎ) is the measure of the pattern defined by ℎ 
Let 𝑝𝑝 be the “nominal” probability density defined on ℜ𝑑𝑑 
(or on some subset) 
𝑝𝑝(ℎ) is the probability of pattern ℎ 
A pattern ℎ is 𝜏𝜏-rare if  

𝑓𝑓 ℎ =
𝑝𝑝 ℎ
𝜇𝜇 ℎ

≤ 𝜏𝜏 

Otherwise it is 𝜏𝜏-common 
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Rare and Common Points 
A point 𝑥𝑥 is 𝜏𝜏-rare if there exists a 𝜏𝜏-rare ℎ such that 
ℎ 𝑥𝑥 = 1 
Otherwise a point is 𝜏𝜏-common 
 
Goal: An anomaly detection algorithm should output 
all 𝜏𝜏-rare points and not output any 𝜏𝜏-common points 
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PAC-RPAD 
Algorithm 𝒜𝒜 is PAC-RPAD with parameters 𝜏𝜏, 𝜖𝜖, 𝛿𝛿 if 
for any probability density 𝑝𝑝 and any 𝜏𝜏, with 
probability 1 − 𝛿𝛿 over samples drawn from 𝑝𝑝, 𝒜𝒜 
draws a sample from 𝑝𝑝 and detects all 𝜏𝜏-outliers and 
rejects all (𝜏𝜏 + 𝜖𝜖)-commons in the sample 
 
𝜖𝜖 allows the algorithm some margin for error 
If a point is between 𝜏𝜏-rare and 𝜏𝜏 + 𝜖𝜖 -common, the 
algorithm can treat it arbitrarily 

52 



RAREPATTERNDETECT 
Draw a sample of size 𝑁𝑁(𝜖𝜖, 𝛿𝛿) from 𝑝𝑝 
Let 𝑝̂𝑝(ℎ) be the fraction of sample points that satisfy 
ℎ 

Let 𝑓𝑓 ℎ = 𝑝𝑝� ℎ
𝜇𝜇 ℎ

 be the estimated rareness of ℎ 

A query point 𝑥𝑥𝑞𝑞 is declared to be an anomaly if there 
exists a pattern ℎ ∈ ℋ such that ℎ 𝑥𝑥𝑞𝑞 = 1 and 
𝑓𝑓 ℎ ≤ 𝜏𝜏. 
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Results 
Theorem 1: For any finite pattern space ℋ, 
RAREPATTERNDETECT is PAC-RPAD with sample 
complexity  

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

log ℋ + log
1
𝛿𝛿

 

Theorem 2: For any pattern space ℋ with finite VC 
dimension 𝒱𝒱ℋ, RAREPATTERNDETECT is PAC-RPAD 
with sample complexity  

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

𝒱𝒱ℋ log
1
𝜖𝜖2

+ log
1
𝛿𝛿

 

54 



Examples of PAC-RPAD ℋ 
half spaces 
axis-aligned hyper-rectangles 
stripes (equivalent to LODA’s histogram bins) 
ellipsoids 
ellipsoidal shells (difference of two ellipsoidal level 
sets) 
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Isolation RPAD (aka Pattern Min) 
Grow an isolation forest 
Each tree is only grown to depth 𝑘𝑘 
Each leaf defines a pattern ℎ 
𝜇𝜇 is the volume (Lebesgue measure) 
Compute 𝑓𝑓(ℎ) for each leaf 
Details 
Grow the tree using one sample 
Estimate 𝑓𝑓 using a second sample 
Score query point(s) 
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Results: Shuttle 

PatternMin is consistently better for 𝑘𝑘 > 1 
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RPAD Conclusions 
The PAC-RPAD theory seems to capture the 
behavior of algorithms such as IFOREST 
It is easy to design practical RPAD algorithms 
Theory requires extension to handle sample-
dependent pattern spaces ℋ 
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Summary 
Outlier Detection can perform unsupervised or clean anomaly 

detection when the relative frequency of anomalies, 𝛼𝛼 is small 
Algorithm Benchmarking 
 The Isolation Forest is a robust, high-performing algorithm 
 The OCSVM and SVDD methods do not perform well on AUC and AP. 

Why not? 
 The other methods (ABOD, LODA, LOF, EGMM, RKDE) are very similar 

to each other 
Sequential Feature Explanations provide a well-defined and 

objectively measurable method for anomaly explanation 
Expert Feedback can be incorporated into LODA via a 

modified Accuracy-at-the-Top algorithm with good results 
PAC-RPAD theory may account for the rapid learning of many 

anomaly detection algorithms 
 

61 


	Anomaly Detection:�Principles, Benchmarking, Explanation, and Theory
	Outline
	Defining Anomaly Detection
	Three Settings
	Well-Defined Anomaly Distribution Assumption
	Strategies for �Unsupervised Anomaly Detection
	Outline
	Benchmarking Study�[Andrew Emmott]
	Benchmarking Methodology
	Selected Data Sets
	Systematic Variation of Relevant Aspects
	Metrics
	Algorithms
	Filtering Out Impossible Benchmarks
	Analysis
	Algorithm Comparison
	More Analysis
	Outline
	Scenario: Explaining a Candidate Anomaly to an Analyst
	Sequential Feature Explanation (SFE)
	Sequential Feature Explanation (SFE)
	Sequential Feature Explanation (SFE)
	Sequential Feature Explanation (SFE)
	Sequential Feature Explanation (SFE)
	Sequential Feature Explanation (SFE)
	Sequential Feature Explanation (SFE)
	Sequential Feature Explanation (SFE)
	Sequential Feature Explanation (SFE)
	Algorithms for Constructing Sequential Feature Explanations [Amran Siddiqui]
	Algorithms
	Experimental Evaluations�(1) OSU Anomaly Benchmarks
	Results (EGMM + Explanation Method)
	Results �(Oracle Detector + Explanation Methods)
	Experimental Evaluations�(2) KDD 1999 (Computer Intrusion)
	Outline
	Incorporating�Expert Feedback [Shubhomoy Das]
	Idea: Learn to reweight LODA projections
	Experimental Setup
	Algorithms
	Results: KDD 1999
	Results: Abalone
	Results: ANN-Thyroid-1v3
	Results: Mammography
	Summary: �Incorporating Expert Feedback
	Outline
	Towards a Theory of Anomaly Detection [Siddiqui, et al.; UAI 2016]
	Pattern Spaces
	Rare and Common Patterns
	Rare and Common Points
	PAC-RPAD
	RarePatternDetect
	Results
	Examples of PAC-RPAD ℋ
	Isolation RPAD (aka Pattern Min)
	Results: Shuttle
	RPAD Conclusions
	Summary

