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Outline 
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 Two Cultures of Machine Learning 

 Probabilistic Graphical Models 

 Non-Parametric Discriminative Models 

 Advantages and Disadvantages of Each 

 Representing conditional probability distributions using 

non-parametric machine learning methods 

 Logistic regression (Friedman) 

 Conditional random fields (Dietterich, et al.) 

 Latent variable models (Hutchinson, et al.) 

 Ongoing Work 

 Conclusions 



 

 

 

 

 

 

 Joint probability distribution is the product of the 

individual node distributions 

 𝑃 𝑋1, 𝑋2, 𝑌1, 𝑌2 = 𝑃 𝑋1 𝑃 𝑋2 𝑃 𝑌1 𝑋1 𝑃(𝑌2|𝑋1, 𝑋2) 

 

Probabilistic Graphical Models 

 Nodes: Random variables 

 𝑋1, 𝑋2, 𝑌1, 𝑌2 

 Edges: Direct probabilistic dependencies  

 𝑃 𝑌1 𝑋1 , 𝑃(𝑌2|𝑋1, 𝑋2) 

 
𝑌2 

𝑋1 𝑋2 

𝑌1 
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Probabilistic Graphical Models (2) 

 Can be learned from training data, even when some of the 
random variables are unobserved (latent or missing) 
 Mixture models (e.g., Gaussian mixture models) 

 Train with EM, gradient descent, or MCMC 

 

 Can represent dynamical processes (Markov models, Dynamic 
Bayesian Networks) 

 

 Provide probabilistic predictions 
 Useful for integrating into larger systems 

 

 Provide a powerful language for designing and expressing 
models of complex systems 
 Useful for capturing background knowledge 
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Probabilistic Graphical Models (3) 

 How should the conditional 
probability distributions be 
represented? 

 Conditional Probability Tables 
(CPTs) with one parameter for 
each combination of values 



2𝑁

2
 parameters 

 

𝑿𝟏 𝑿𝟐 𝒀𝟏 𝑷(𝒀𝟏|𝑿𝟏, 𝑿𝟐) 

0 0 0 1 − 𝛼 

0 0 1 𝛼 

0 1 0 1 − 𝛽 

0 1 1 𝛽 

1 0 0 1 − 𝛾 

1 0 1 𝛾 

1 1 0 1 − 𝛿 

1 1 1 𝛿 
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Probabilistic Graphical Models (3) 

 How should the conditional 
probability distributions be 
represented? 

 Log-linear models (logistic 
regression) 

log
𝑃 𝑌1 = 1 𝑋1, 𝑋2

𝑃 𝑌1 = 0 𝑋1, 𝑋2
= 

 

         𝛼′ + 𝐼 𝑋1 = 1 𝛽′ + 𝐼[𝑋2 = 1]𝛾′  

 

 expit 𝑢 = 1/(1 + exp(−𝑢))  

 

 𝑁 parameters 

 

𝑿𝟏 𝑿𝟐 𝒀𝟏 𝑷(𝒀𝟏|𝑿𝟏, 𝑿𝟐) 

0 0 0 1 − expit 𝛼′ 

0 0 1 expit 𝛼′ 

0 1 0 1 − expit(𝛼′+𝛾′) 

0 1 1 expit(𝛼′+𝛾′) 

1 0 0 1 − expit(𝛼′+𝛽′) 

1 0 1 expit(𝛼′+𝛽′) 

1 1 0 1 − expit(𝛼′+𝛽′ + 𝛾′) 

1 1 1 expit 𝛼′ + 𝛽′ + 𝛾′ 
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Advantages and Disadvantages of 

Parametric Representations 

Advantages Disadvantages 

 Each parameter has a meaning 

 

 Supports statistical hypothesis 

testing: “Does 𝑋1 influence 𝑌1?” 

 𝐻0: 𝛽′ = 0 

 𝐻𝑎: 𝛽′ ≠ 0 

 Model has fixed complexity 

 Will typically either under-fit or over-

fit the data 

 Designer must decide about 

interactions, non-linearities, etc. etc. 

 Wrong decisions lead to highly biased 

models and invalidate hypothesis tests 

 Correlated variables cause trouble 

 Difficult for problems with many 

features 

 Data must be transformed to match 

the parametric form 

 Discretized 

 Square root or log transforms 

11/13/2012 JCC 2012 
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Fundamental Theorem of Statistical 

Learning 
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 Three-way tradeoff 

 amount of data 

 complexity of the model 

 prediction accuracy 

 

 To achieve optimum 

accuracy, model complexity 

should be tuned to the 

amount of data 

 “Structural Risk 

Minimization” (Vapnik) 

model complexity 
ac

cu
ra

cy
 

n=500 

n=1000 



Flexible Machine Learning Models 
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 Support Vector Machines 

 Classification and 

Regression Trees 

 

 Key advantage: Can tune 

the complexity of the 

model to the complexity 

of the data model complexity 
ac

cu
ra

cy
 

n=500 

n=1000 



Another Advantage: 

Interactions and Nonlinearities 
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 SVMs: 
 Polynomial kernels capture 

interactions and polynomial 
nonlinearities 

 Gaussian kernels capture 
nonlinearities, however, interactions 
are embedded in the distance 
function (typically Euclidean) 

 

 Classification and regression trees 
 Interactions are captured by the if-

then-else structure of the tree 

 Nonlinearities are approximated by 
piecewise constant functions 

𝑋1 ≥ 3 

𝑋2 ≥ 0 𝑋2 ≥ 0 

𝑌1 = 
−5 

𝑌1 = 
3 

𝑌1 = 
8 

𝑌1 = 
1 

𝑌1 = −5 ⋅ 𝐼 𝑋1 ≥ 3, 𝑋2 ≥ 0 + 3 ⋅ 𝐼 𝑋1 ≥ 3, 𝑋2 < 0 + 
           8 ⋅ 𝐼 𝑥1 < 3, 𝑋2 ≥ 0 + 1 ⋅ 𝐼(𝑋1 < 3, 𝑋2 < 0) 



Tree-Based Methods 

Advantages Disadvantages 
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 Flexible Model Complexity 

 Controlled by depth of tree 

 Can handle discrete, 
ordered, and continuous 
variables 

 No normalization or rescaling 
needed 

 Can handle missing values 

 Proportional distribution 

 Surrogate splits 

 Best “off the shelf” method 
(Breiman) 

 Poor probability estimates 

 Do not support 

hypothesis testing 

 Cannot handle latent 

variables 

 High variance, which can 

be addressed by 

 Boosting 

 Bagging 

 Randomization 

 



Can we combine the best of both? 

Probabilistic Graphical 

Models 

Non-Parametric Tree 

Methods 
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 Probabilistic semantics 

 Structured by background 

knowledge 

 Latent variables and 

dynamic processes 

 Tunable model complexity 

 No need for data scaling 

and preprocessing 

 Discrete, ordered, or 

continuous values 

 



Existing Efforts 
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 Dependency Networks 

 Heckerman et al. (JMLR 2000): 

 Bayesian network where each 𝑃(𝑋|𝑌) is a decision tree (with 

multinomial output probabilities) 

 Trained to maximize pseudo-likelihood 

 Requires all variables to be observed 

 RKHS embeddings of probabilities distributions 

 Song, Gretton & Guestrin (AISTATS 2011) 

 Tree-structured graphical model (undirected) 

 No explicit latent variables 

 Bayesian semi-parametric methods 

 Dirichlet processes (Blei, Jordan, et al.) 

 

 



Outline 
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 Two Cultures of Machine Learning 

 Probabilistic Graphical Models 

 Non-Parametric Discriminative Models 

 Advantages and Disadvantages of Each 

 Representing conditional probability distributions using 

non-parametric machine learning methods 

 Logistic regression (Friedman) 

 Conditional random fields (Dietterich, et al.) 

 Latent variable models (Hutchinson, et al.) 

 Ongoing Work 

 Conclusions 



Representing 𝑃(𝑌|𝑋) using boosted 

regression trees 
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 Friedman: Gradient Tree Boosting (2000;  Annals of 

Statistics, 2011) 

 Consider logistic regression: 

 log
𝑃 𝑌=1

𝑃 𝑌=0
= 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝐽𝑋𝐽 

 𝐷 = 𝑋𝑖 , 𝑌𝑖
𝑖=1

𝑁
 are the training examples 

 Log likelihood: 

 𝐿𝐿 𝛽 =   𝑌𝑖 log 𝑃 𝑌 = 1 𝑋𝑖; 𝛽 + 1 − 𝑌𝑖 log𝑃 𝑌 = 0 𝑋𝑖; 𝛽𝑖  

 

 



Fitting logistic regression via gradient 

descent 
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 Let 𝛽0 = 𝑔0 = 𝟎 

 For ℓ = 1, … , 𝐿 do 

 Compute 𝑔ℓ = 𝛻𝛽𝐿𝐿 𝛽  
𝛽=𝛽ℓ−1 

 𝑔ℓ = gradient w.r.t.  𝛽 

 𝛽ℓ ≔ 𝛽ℓ−1 + 𝜂ℓ𝑔
ℓ  take a step of size 𝜂ℓ in direction of 

gradient 

 

 Final estimate of 𝛽 is 

 𝛽𝐿 = 𝑔0 + 𝜂1𝑔1 + ⋯ + 𝜂𝐿𝑔
𝐿 

 



Functional Gradient Descent 

Boosted Regression Trees 
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 Breiman (1996), Friedman (2000), Mason et al. (NIPS 1999): Fit a 
logistic regression model as a weighted sum of regression trees: 

 

log
𝑃 𝑌 = 1

𝑃 𝑌 = 0
= 𝑡𝑟𝑒𝑒0(𝑋) + 𝜂1𝑡𝑟𝑒𝑒1(𝑋) + ⋯ + 𝜂𝐿𝑡𝑟𝑒𝑒𝐿(𝑋) 

 

 

 When “flattened” this gives a log linear model with complex 
interaction terms 



L2-Tree Boosting Algorithm 
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 Let 𝐹0 𝑋 = 𝑓0(𝑋) = 𝟎 be the zero function 

 For ℓ = 1, … , 𝐿 do 

 Construct a training set Sℓ = 𝑋𝑖 , 𝑌 𝑖
𝑖=1

𝑁
  

 where 𝑌  is computed as 

 𝑌 𝑖 =
𝜕𝐿𝐿 𝐹

𝜕𝐹
 
𝐹=𝐹ℓ−1 𝑋𝑖

      // how we wish 𝐹 would change at 𝑋𝑖 

 Let 𝑓ℓ = regression tree fit to 𝑆ℓ 

 𝐹ℓ ≔ 𝐹ℓ−1 + 𝜂ℓ𝑓
ℓ 

 The step sizes 𝜂ℓ are the weights computed in boosting 

 This provides a general recipe for learning a conditional 
probability distribution for a Bernoulli or multinomial 
random variable 



L2-TreeBoosting can be applied to any 

fully-observed directed graphical model 
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 𝑃(𝑌1|𝑋1) as sum of trees 

 𝑃(𝑌2|𝑋1, 𝑋2) as sum of trees 

 

 What about undirected graphical 

models? 
𝑌2 

𝑋1 𝑋2 

𝑌1 



Tree Boosting for Conditional Random 

Fields 
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 Conditional Random Field 
(Lafferty et al., 2001) 

 𝑃(𝑌1, … , 𝑌𝑇|𝑋1, … , 𝑋𝑇) 

 Undirected graph over the 
𝑌’s conditioned on the 𝑋’s. 

 Φ(𝑌𝑡−1, 𝑌𝑡 , 𝑋)  = log linear 
model 

 

 

𝑌2 𝑌1 𝑌𝑇 … 

𝑋2 𝑋1 𝑋𝑇 … 

 Dietterich, Hao, Ashenfelter (JMLR 2008; ICML 2004) 

 Fit Φ(𝑌𝑡−1, 𝑌𝑡 , 𝑋) using tree boosting 

 A form of automatic feature discovery for CRFs 

 

 



Experimental Results 
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Tree Boosting for Latent Variable Models 
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 Both Friedman’s L2-TreeBoosted logistic regression and 

our L2-TreeBoosted CRFs assumed that all variables were 

observed in the training data 

 

 Can we extend Tree Boosting to latent variable graphical 

models? 

 

 Motivating application: Species Distribution Modeling 



Species Distribution Modeling 

25 

Observations 

11/13/2012 JCC 2012 Leathwick et al, 2008 



Species Distribution Modeling 
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Observations Fitted Model 
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Disregarding costs  

to fishing industry 

Full consideration of costs  

to fishing industry 

Leathwick et al, 2008 
11/13/2012 JCC 2012 



Wildlife Surveys with Imperfect Detection 

28 

Problem 1: We don’t observe everywhere Problem 2: Some birds are hidden Partial Solution: Multiple visits: Different birds hide on different visits 
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Multiple Visit Data 

29 

Detection History 

 

Site 

True occupancy 

(latent) 

Visit 1 

(rainy day, 

12pm) 

Visit 2 

(clear day, 6am) 

Visit 3 

(clear day, 9am) 

A  

(forest, 

elev=400m) 

 

1 

 

0 

 

1 

 

1 

B  

(forest, 

elev=500m) 

 

1 

 

0 

 

1 

 

0 

C  

(forest, 

elev=300m) 

 

1 

 

0 

 

0 

 

0 

D  

(grassland, 

elev=200m) 

 

0 

 

0 

 

0 

 

0 
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𝑑13 𝑑12 

Probabilistic Model with Latent Variable 𝑍 
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  𝑋1 

  𝑍1= 1 

  𝑤11   𝑤12   𝑤13 

  𝑦11= 0   𝑦12= 1   𝑦13= 1 

(rain, 12pm) (clear, 6am) (clear, 9am) 

(forest, 400m) 

𝑜1 

𝑑11 

  𝑋4 

  𝑍4= 0 

  𝑤41   𝑤42   𝑤43 

  𝑦41= 0   𝑦42= 0   𝑦43= 0 

(rain, 12pm) (clear, 6am) (clear, 9am) 

(grassland, 200m) 

... 
𝑜4 

𝑑41 𝑑42 𝑑43 

MacKenzie, et al, 2006 
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Occupancy-Detection Model 
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Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

Occupancy 
features (e.g.  
elevation, 
vegetation) 

Detection 
features (e.g.  
time of day, 
effort) 

Observed presence/absence 
Yit | Zi ~ Bern(Zidit) 

True (latent) presence/absence 
Zi ~ Bern(oi) 

Probability of occupancy 
(function of Xi) 

Probability of detection 
(function of Wit) 

Sites 

Visits 

MacKenzie, et al, 2006 

 



Parameterizing the model 

Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

𝑧𝑖~𝑃(𝑧𝑖|𝑥𝑖): Species Distribution Model 

 𝑃 𝑧𝑖 = 1 𝑥𝑖 = 𝑜𝑖 = 𝐹(𝑥𝑖)  “occupancy probability” 

𝑦𝑖𝑡~𝑃(𝑦𝑖𝑡|𝑧𝑖 , 𝑤𝑖𝑡): Observation model 

 𝑃 𝑦𝑖𝑡 = 1 𝑧𝑖 , 𝑤𝑖𝑡 = 𝑧𝑖𝑑𝑖𝑡 

 𝑑𝑖𝑡 = 𝐺(𝑤𝑖𝑡)  “detection probability” 
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Standard Approach: Log Linear (logistic 

regression) models 
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 log
𝐹 𝑋

1−𝐹 𝑋
= 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝐽𝑋

𝐽 

 log
𝐺 𝑊

1−𝐺 𝑊
= 𝛼0 + 𝛼1𝑊1 + ⋯ + 𝛼𝐾𝑊𝐾 

 Train via EM 

 People tend to use very simple models: 𝐽 = 4, 𝐾 = 2 



Regression Tree Parameterization 
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 log
𝐹 𝑥

1−𝐹 𝑥
= 𝑓0(𝑥) + 𝜌1𝑓1(𝑥)  + ⋯ + 𝜌𝐿𝑓

𝐿(𝑥) 

 log
𝐺 𝑤

1−𝐺 𝑤
= 𝑔0 𝑤 + 𝜂1𝑔1 𝑤 + ⋯ + 𝜂𝐿𝑔

𝐿(𝑤) 

 Perform functional gradient descent on 𝐹 and 𝐺 

 Could also use EM 



Functional Gradient Descent with Latent 

Variables 

 Loss function 𝐿(𝐹, 𝐺, 𝑦) 

 𝐹0 = 𝐺0 = 𝑓0 = 𝑔0 = 0 

 For ℓ = 1, … , 𝐿 

 For each site 𝑖 compute  

𝑧 𝑖 = 𝜕𝐿(𝐹ℓ−1 𝑥𝑖 , 𝐺ℓ−1, 𝑦𝑖)/𝜕𝐹ℓ−1 𝑥𝑖  

 Fit regression tree 𝑓ℓ to 𝑥𝑖 , 𝑧 𝑖 𝑖=1
𝑀  

 For each visit 𝑡 to site 𝑖, compute 

𝑦 𝑖𝑡 = 𝜕𝐿 𝐹ℓ−1 𝑥𝑖 , 𝐺ℓ−1 𝑤𝑖𝑡 , 𝑦𝑖𝑡  
/𝜕𝐺ℓ−1 𝑤𝑖𝑡  

 Fit regression tree 𝑔ℓto 𝑤𝑖𝑡, 𝑦 𝑖𝑡 𝑖=1,𝑡=1
𝑀,𝑇𝑖  

 Let 𝐹ℓ = 𝐹ℓ−1 + 𝜌ℓ𝑓
ℓ 

 Let 𝐺ℓ = 𝐺ℓ−1 + 𝜂ℓ𝑔
ℓ 

JCC 2012 Hutchinson, Liu, Dietterich,  AAAI 2011 11/13/2012 35 



Experiment 

 Algorithms: 

 Supervised methods:  

 S-LR: logistic regression from 𝑥𝑖 , 𝑤𝑖𝑡 → 𝑦𝑖𝑡 

 S-BRT: boosted regression trees 𝑥𝑖 , 𝑤𝑖𝑡 → 𝑦𝑖𝑡 

 Occupancy-Detection methods: 

 OD-LR: 𝐹 and 𝐺 logistic regressions 

 OD-BRT: 𝐹 and 𝐺 boosted regression trees 

 Data: 

 12 bird species 

 3 synthetic species 

 3124 observations from New York State, May-July 2006-2008 

 All features rescaled to zero mean, unit variance 
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Features 
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Simulation Study using Synthetic Species 

 Synthetic Species 2: 𝐹 and 𝐺 nonlinear 

log
𝑜𝑖

1 − 𝑜𝑖
= −2 𝑥𝑖

1
2

+ 3 𝑥𝑖
2

2
− 2𝑥𝑖

3
 

log
𝑑𝑖𝑡

1 − 𝑑𝑖𝑡
= exp(−0.5𝑤𝑖𝑡

4
) + sin(1.25𝑤𝑖𝑡

1
+ 5) 
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Predicting 
Occupancy 

 

Synthetic 

Species 2 

40 



Partial Dependence Plot 

Synthetic Species 1 

 OD-BRT has 

the least bias 

11/13/2012 

41 
Distance of survey 



Partial Dependence Plot 

Synthetic Species 3 

 OD-BRT has 

the least bias 

and correctly 

captures the bi-

modal detection 

probability 

11/13/2012 
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Partial 

Dependence 

Plot 

Blue Jay vs. 

Time of Day 

11/13/2012 

43 Time of Day 



Partial 

Dependence 

Plot 

Blue Jay vs. 

Duration of 

Observation 

11/13/2012 
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Effort in Hours 



Open Problems 
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 Sometimes the OD model finds trivial solutions 

 Detection probability = 0 at many sites, which allows the Occupancy 
model complete freedom at those sites 

 Occupancy probability constant (0.2) 

 

 Log likelihood for latent variable models suffers from local 
minima 

 Proper initialization? 

 Proper regularization? 

 Posterior regularization? 

 

 How much data do we need to fit this model? 

 Can we detect when the model has failed? 

11/13/2012 



Outline 
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 Two Cultures of Machine Learning 

 Probabilistic Graphical Models 

 Non-Parametric Discriminative Models 

 Advantages and Disadvantages of Each 

 Representing conditional probability distributions using 

non-parametric machine learning methods 

 Logistic regression (Friedman) 

 Conditional random fields (Dietterich, et al.) 

 Latent variable models (Hutchinson, et al.) 

 Ongoing Work 

 Conclusions 



Next Steps 
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 Modeling Expertise in Citizen Science 

 From Occupancy (0/1) to Abundance (n) 

 From Static to Dynamic Models 

11/13/2012 



Modeling Expertise in Citizen Science 
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 Project eBird 

 Bird watchers upload checklists to ebird.org 

 8,000-12,000 checklists per day uploaded 

 World-wide coverage 24x365 

 38,599 observers; 336,088 locations 

 2.4M checklists; 41.7M observations 

 All bird species (~3,000) 

 

 [Please volunteer! We need more observers in S. America] 

 

 Wide variation in “birder” expertise 

11/13/2012 



Occupancy/ 

Detectability/ 

Expertise 

Model 

49 

dit Yit Zi 
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First Results 

 eBird data for May and June (peak detectability period) for 
NYState 

 Expertise component trained via supervised learning 
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Average AUC on four hard-to-detect bird species

0.50
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0.80

A
U

C

LR 0.6576 0.7976 0.6575 0.6579

OD 0.6920 0.8055 0.6609 0.6643

ODE 0.6954 0.8325 0.6872 0.6903
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Vireo

Northern Rough-

winged Swallow
Wood Thrush

Average AUC on four common bird species
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LR 0.6726 0.6283 0.6831 0.6641

OD 0.6881 0.6262 0.7073 0.6691

ODE 0.7104 0.6600 0.7085 0.6959
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Northern 
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Jun Yu, Weng-Keen Wong, Rebecca Hutchinson (2010). Modeling Experts and Novices 

in Citizen Science Data. ICDM 2010. 
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New Project: BirdCast 
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 Goal: Continent-wide bird 

migration forecasting 

 Additional data sources: 

 Doppler weather radar 

 Night flight calls 

 Wind observations (assimilated 

to wind forecast model) 



BirdCast Model: 
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 𝑛𝑡
𝑠(𝑐) = # of birds of species 𝑠 

at cell 𝑐 and time 𝑡. 

 𝒘𝑡 = weather variables (wind, 

temperature, precipitation) 

 𝑥𝑡
𝑠(𝑖, 𝑜) = eBird count for visit 

𝑜 at site 𝑖 species 𝑠 and time 𝑡 

 𝑦𝑡,𝑡+1
𝑠 (𝑘) = # of flight calls for 

species 𝑠 at site 𝑘 on the night 

(𝑡, 𝑡 + 1) 

 𝑧𝑡,𝑡+1 = # of birds (all species) 

observed at radar 𝑣 on night 

𝑡, 𝑡 + 1  

 

 Occupancy changes each night 

𝒏𝑡
𝑠 𝒏𝑡,𝑡+1

𝑠  
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𝑠 = 1, … , 𝑆 
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𝑠 (𝑘) 

𝑦𝑡,𝑡+1
𝑠 (𝑘) 

𝑟𝑡,𝑡+1
𝑠 (𝑣) 
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 (𝑣) 

… … 

𝑜 = 1, … , 𝑂(𝑖, 𝑡) 
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𝑖 = 1, … , 𝐿 

𝑠 = 1, … , 𝑆 

𝑘 = 1, … , 𝐾 𝑣 = 1, … , 𝑉 

eBird acoustic radar 
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Outline 
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 Two Cultures of Machine Learning 

 Probabilistic Graphical Models 

 Non-Parametric Discriminative Models 

 Advantages and Disadvantages of Each 

 Representing conditional probability distributions using 

non-parametric machine learning methods 

 Logistic regression (Friedman) 

 Conditional random fields (Dietterich, et al.) 

 Latent variable models (Hutchinson, et al.) 

 Ongoing Work 

 Conclusions 



Concluding Remarks 
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 Gradient Tree Boosting can be integrated into 

probabilistic graphical models 

 Fully-observed directed models 

 Conditional random fields 

 Latent variable models 

 When to do this? 

 When you want to condition on a large number of features 

 When you have a lot of data 

 



Combining Two Approaches to  

Machine Learning 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 

Flexible 

Nonparametric 

Probabilistic 

Models 
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• Easier to use 

• More accurate 



Thank-you 

 Adam Ashenfelter, Guo-Hua Hao: TreeBoosting for CRFs 

 Rebecca Hutchinson, Liping Liu: Boosted Regression Trees 

in OD models 

 Weng-Keen Wong, Jun Yu: ODE model 

 Dan Sheldon: Models for Bird Migration 

 Steve Kelling and colleagues at the Cornell Lab of 

Ornithology 

 

 National Science Foundation Grants 0083292, 0307592, 

0832804, and 0905885 
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