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Outline

» Two Cultures of Machine Learning
Probabilistic Graphical Models
Non-Parametric Discriminative Models
Advantages and Disadvantages of Each
» Representing conditional probability distributions using
non-parametric machine learning methods
Logistic regression (Friedman)
Conditional random fields (Dietterich, et al.)

Latent variable models (Hutchinson, et al.)
» Ongoing Work

» Conclusions
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Probabilistic Graphical Models 7

» Nodes: Random variables

X1,X,, Y, Y, Q

» Edges: Direct probabilistic dependencies
P(Y11X1), P(Y2]X1, X2)

o

» Joint probability distribution is the product of the
individual node distributions

P(Xl)XZJ Yll YZ) — P(Xl)P(XZ)P(Yllxl)P(YZ|X11X2)

5 JCC 2012 11/13/2012
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Probabilistic Graphical Models (2) 7

» Can be learned from training data, even when some of the
random variables are unobserved (latent or missing)

Mixture models (e.g., Gaussian mixture models)
Train with EM, gradient descent, or MCMC

» Can represent dynamical processes (Markov models, Dynamic
Bayesian Networks)

» Provide probabilistic predictions
Useful for integrating into larger systems

» Provide a powerful language for designing and expressing
models of complex systems

Useful for capturing background knowledge

6 JCC 2012 11/13/2012
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Probabilistic Graphical Models (3) 7

» How should the conditional X, | X, Yy PYqXyX2)
probability distributions be o 0] o 1—a
represented? 0 0 | a

Conditional Probability Tables 0o | 0 1-p8
(CPTs) with one parameter for 0 | | B
each combination of values
N I 0 0 1—y
—~ parameters | 0 | Y
I I 0 1-6
I I I o)

7 JCC 2012 11/13/2012
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Oregon State
Probabilistic Graphical Models (3) e
» How should the conditional X, | X, v, P(Y4|X1,X5)
probability distributions be o oo 1 — expita’
represented? o o0 | | expit @’
Log-linear models (logistic o 1|0 1 — expit(a’+y’)
regression) 0 | | expit(a’+7)
logP(YjL = 11X, X5) = I 0| O 1 — expit(a’+p’)
P(Y; = 0[X,X3) _
| 0 | | expit(a’+p’)
a' +1[X; =1]p" +1[X; = 1]y | | 0 | 1—expit(a’+B" +7)
| | | expita’ + B’ + v’

expitu = 1/(1 + exp(—u))

N parameters

8 JCC 2012 11/13/2012



Advantages and Disadvantages of usu
Parametric Representations

Advantages Disadvantages
» Each parameter has a meaning » Model has fixed complexity
Will typically either under-fit or over-
o : fit the dat
» Supports statistical hypothesis I. = e .
testing:“Does X; influence Y;?” > Designer must decide about
Hy: B = 0 interactions, non-linearities, etc. etc.
0- -
H:B' +0 Wrong decisions lead to highly biased
0

models and invalidate hypothesis tests
Correlated variables cause trouble

Difficult for problems with many
features

» Data must be transformed to match
the parametric form
Discretized

Square root or log transforms

JCC 2012 11/13/2012



Fundamental Theorem of Statistical U
Learning 00

» Three-way tradeoff
amount of data

complexity of the model

n=500

prediction accuracy

accuracy

» To achieve optimum
accuracy, model complexity
should be tuned to the
amount of data

“Structural Risk
Minimization” (Vapnik)

model complexity

10 JCC 2012 11/13/2012
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Flexible Machine Learning Models

» SupportVector Machines

» Classification and
Regression Trees @

n=500

accuracy

» Key advantage: Can tune
the complexity of the
model to the complexity
of the data

model complexity

Il JCC 2012 11/13/2012



Another Advantage: USU
Interactions and Nonlinearities
» SVMs:

Polynomial kernels capture
interactions and polynomial
nonlinearities

Gaussian kernels capture
nonlinearities, however, interactions
are embedded in the distance

function (typically Euclidean) @ @

» Classification and regression trees

Interactions are captured by the if-
then-else structure of the tree

Nonlinearities are approximated by
piecewise constant functions

8 -I(x;<3,X,>0)+1-1(X; <3,X,<0)

12 JCC 2012 11/13/2012



Tree-Based Methods

Advantages

» Flexible Model Complexity
Controlled by depth of tree
» Can handle discrete,

ordered, and continuous
variables

No normalization or rescaling
needed

» Can handle missing values
Proportional distribution
Surrogate splits

» Best “off the shelf” method
(Breiman)

13
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Disadvantages

» Poor probability estimates

» Do not support
hypothesis testing

» Cannot handle latent
variables

» High variance, which can
be addressed by

Boosting

Bagging
Randomization

JCC 2012 11/13/2012
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Can we combine the best of both? Oresn 3tate

Probabilistic Graphical Non-Parametric Tree

Models Methods

» Probabilistic semantics » Tunable model complexity

» Structured by background » No need for data scaling
knowledge and preprocessing

» Latent variables and Discrete, ordered, or
dynamic processes continuous values

14 JCC 2012 11/13/2012
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Existing Efforts 7

» Dependency Networks
Heckerman et al. (JMLR 2000):

Bayesian network where each P(X|Y) is a decision tree (with
multinomial output probabilities)

Trained to maximize pseudo-likelihood

Requires all variables to be observed

» RKHS embeddings of probabilities distributions
Song, Gretton & Guestrin (AISTATS 2011)

Tree-structured graphical model (undirected)

No explicit latent variables

» Bayesian semi-parametric methods

Dirichlet processes (Blei, Jordan, et al.)

15 JCC 2012 11/13/2012



Outline

4
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» Representing conditional probability distributions using

non-parametric machine learning methods
Logistic regression (Friedman)
Conditional random fields (Dietterich, et al.)

Latent variable models (Hutchinson, et al.)
» Ongoing Work

» Conclusions

16 JCC 2012
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Representing P(Y|X) using boosted USU
regression trees

» Friedman: Gradient Tree Boosting (2000; Annals of
Statistics, 201 1)

» Consider logistic regression:

P(Y=1)
logp(yzO) — :80 + ,81X1 + -+ B]X]

D ={(x}, Yi)}livzl are the training examples

Log likelihood:
LL(B) = %;Y'log P(Y = 1|X B) + (1 - Y*)log P(Y = 0|X"; §)

|7 JCC 2012 11/13/2012



Fitting logistic regression via gradient 08“
descent e

» Let f¥ = g0 =
» For{ =1, ..,L do

Compute ge = VBLL(’B)LB:,B{)_l

g¢ = gradient w.rt.

Bt =B +n,g9° take a step of size 1, in direction of
gradient

» Final estimate of (5 is
pt=9"+mg' +-+mn.g"

18 JCC 2012 11/13/2012



Functional Gradient Descent ﬂsu
Boosted Regression Trees

» Breiman (1996), Friedman (2000), Mason et al. (NIPS 1999): Fit a
logistic regression model as a weighted sum of regression trees:

P(Y =1)

logP(Y —) = tree(X) + nitreel(X) + -+ ntreet (X)

» When “flattened” this gives a log linear model with complex
interaction terms

19 JCC 2012 11/13/2012
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L2-Tree Boosting Algorithm

» Let FO(X) = fY(X) = 0 be the zero function
» For{ =1, ..,L do

Construct a training set S* = {(Xi, Yi)}livzl

where Y is computed as
i = OLL(P)
OF Ip=ft-1(x%)

Let f* = regression tree fit to S*

Ft = Ft=1 4 p,f?
» The step sizes 71, are the weights computed in boosting
» This provides a general recipe for learning a conditional

probability distribution for a Bernoulli or multinomial
random variable

/I how we wish F would change at X'

20 JCC 2012 11/13/2012



L2-TreeBoosting can be applied to any USU
fully-observed directed graphical model

» P(Y1|X;) as sum of trees

» P(Y,|X1,X>) as sum of trees Q

» What about undirected graphical

models? 6

21 JCC 2012 11/13/2012



Tree Boosting for Conditional Random USU

Fields o D
Y’s conditioned on the X's.
Fit ®(Y;_1,Y:, X) using tree boosting

» Conditional Random Field
(Lafferty et al.,2001)
O(Y;_1,Y, X) =log linear
A form of automatic feature discovery for CRFs

P(Yy, ... Y| X, .., X7)
Undirected graph over the é
model
» Dietterich, Hao, Ashenfelter (JMLR 2008; ICML 2004)

22 JCC 2012 11/13/2012



Experimental Results
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Tree Boosting for Latent Variable Models

» Both Friedman’s L2-TreeBoosted logistic regression and
our L2-TreeBoosted CRFs assumed that all variables were
observed in the training data

» Can we extend Tree Boosting to latent variable graphical
models?

» Motivating application: Species Distribution Modeling

24 JCC 2012 11/13/2012
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Species Distribution Modeling Oregon State

UNIVERSITY

Observations

250

Kilometers

25 S Leathwick et al, 2008 JCC 2012 11132012



Species Distribution Modeling oussu

UNIVERSITY

Observations Fitted Model

Kilometers

26 S Leathwick et al, 2008 ' JCC 2012 11/13/2012



Conservation
ranking
I O-10%

I 10-20%
] 20-50%
1> 50%

Disregarding costs Full consideration of costs
to fishing industry to fishing industry

27 Leathwick et al, 2008 JCC 2012 11/13/2012
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Multiple Visit Data

Site

True occupancy
(latent)

Visit |
(rainy day,
|2pm)

Visit 2
(clear day, 6am)

Visit 3

(clear day, 9am)

N
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A
(forest,
elev=400m)

B
(forest,
elev=500m)

C
(forest,
elev=300m)

D
(grassland,
elev=200m)

29

JCC 2012
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(forest, 400m) (grassland, 200m)

(rain, 12pm) (clear, 6am) (clear, 9am) (rain, 12pm) (clear, 6am) (clear, 9am)

» 30 MacKenzie, et al, 2006 JCC 2012 1171372012
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OCCUpanCy—DetGCthn MOdel Oreggnél:gts
Occupancy
features (e.g. Detection
elevation, Probability of occupancy Probability of detection features (e.g.
vegetation) (function of X,) (function of W) time of day,
effort)

dit

t=1,..., T4 Visits
i=1,...,M< Sites
True (latent) presence/absence Observed presence/absence
Z .~ Bern(o) Y. | Z,~ Bern(zd.)
31 MacKenzie, et al, 2006 JCC 2012 1171312012
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Parameterizing the model Oregon State

O;
Oz

z;~P(z;|x;): Species Distribution Model

P(z; = 1|x;) = 0; = F(x;) “occupancy probability”
Vit~P (Vit|z;, wir): Observation model

P(yir = 1z, wy) = z;d;;

d;s = G(w;:) “detection probability”

32 JCC 2012 11/13/2012



Standard Approach: Log Linear (logistic USU
regression) models 7

4 log FI(:)E) — BO + ,Ble + .-+ IB]X]

cw) 1 K
4 logl_G(W) = + a1W + + CZKW
» Train via EM

» People tend to use very simple models: ] = 4, K = 2

33 JCC 2012 11/13/2012
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Regression Tree Parameterization

F(x)

 log T8 = FO(x) 4 pu () + o+ puf ()
G(w)
» log 1—Gvgw) =g°W) +n g W) + -+ 9" (W)

» Perform functional gradient descent on F and G
» Could also use EM

34 JCC 2012 11/13/2012



Functional Gradient Descent with Latent USU
Variables

» Loss function L(F, G,y)
r FO=6"=f"=g"=0
» For=1,..,L

35

For each site i compute

Z = OL(F* ™1 (x), G~ %, y;) JOF = (xy)
Fit regression tree f* to {(x;, Z;)}I~,
For each visit t to site i, compute

Vit = aL(Fg_l(xi); G' 1wy, )’it) J0G ™ (wyy)

M,T;

Fit regression tree gto {{w;,, Vie)}io1peq

Let F* = F'=1 + p,f*
Let G = Gt +1n,9°

Hutchinson, Liu, Dietterich, AAAI 2011 JCC 2012
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Experiment

» Algorithms:
Supervised methods:
S-LR: logistic regression from (x;, w;;) = V;;
S-BRT: boosted regression trees (x;, W;;) = V;;
Occupancy-Detection methods:
OD-LR: F and G logistic regressions
OD-BRT: F and G boosted regression trees
» Data:
|2 bird species
3 synthetic species
3124 observations from New York State, May-July 2006-2008

All features rescaled to zero mean, unit variance

36 JCC 2012 11/13/2012
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Oregon State
Features 7
X Human population per sq. mile
X Number of housing units per sq. mile
X 3) Percentage of housing units vacant
X&) Elevation
X6 X191 Percent of surrounding 22,500 hectares

in each of 15 habitat classes from the
National Land Cover Dataset

W Time of day

W) Observation duration

W) Distance traveled during observation
W) Day of year

37 JCC 2012 11/13/2012
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Simulation Study using Synthetic Species

> Synthetic Species 2: F and G nonlinear
[ (1)] _|_3[ (2)] (3)

= exp(—0. 5W ) + sin(1. 25W(1) + 5)

1_dlt

38 JCC 2012 11/13/2012



S-LR

= =
Predicting 2 - 2 -
Occupancy o o
S S
o o o o
. =T =
Synthetic N N
. =T =
Species 2 ] ]
S | | | | | | c | | | | | |
00 02 04 06 0.8 1.0 0.0 02 04 06 08 1.0
True Occupancy Probabilities True Cccupancy Probabilities
S=BRT OD=-BRT
=
o

40

True Occupancy Probabilities True Occupancy Probabilities



Partial Dependence Plot USU
Synthetic Species1 77

S 7 — Thuth

» OD-BRT has T sIR
- OD-LR
the least bias o0 | PR

\
\

0.1

0.0 05 1.0 15 2.0 25 3.0
41
Distance of survey [1/13/2012



Partial Dependence Plot

Synthetic Species 3

» OD-BRT has
the least bias
and correctly
captures the bi-
modal detection
probability

42
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— Truth

---- S-LR
- OD-LR
S-BRT
OD-BRT

—

Time of Day

11/13/2012



. S - ---- s-LR
Partial . opur
Dependence |  ODBRT
Plot e
Blue Jay vs.  ° | s
Time of Day
< L-':-T_j._hﬁ
° | | I | [ | |
-2 -1 0 1 2 3
43 Time of Day
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_ S 7 ---- S-LR
Partial ~w OD-LR
----- - S-BRT -
Dependence OD-BRT -7
Plot o | e
Blue Jay vs.
Duration of |
Observation . IPEATEE
S | AT
° I I I I
0 1 2 3

Effort in Hours
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Open Problems

» Sometimes the OD model finds trivial solutions

Detection probability = 0 at many sites, which allows the Occupancy
model complete freedom at those sites

Occupancy probability constant (0.2)

» Log likelihood for latent variable models suffers from local
Minima
Proper initialization?
Proper regularization?
Posterior regularization?

» How much data do we need to fit this model?
Can we detect when the model has failed?

45 JCC 2012 11/13/2012



Outline

4

» Ongoing Work

» Conclusions

46
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Next Steps

» Modeling Expertise in Citizen Science
» From Occupancy (0/1) to Abundance (n)
» From Static to Dynamic Models

47 JCC 2012 11/13/2012
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Modeling Expertise in Citizen Science

» Project eBird
Bird watchers upload checklists to ebird.org
8,000-12,000 checklists per day uploaded
World-wide coverage 24x365
38,599 observers; 336,088 locations
2.4M checklists; 41.7M observations
All bird species (~3,000)

[Please volunteer! Ve need more observers in S.America]

» Wide variation in “birder” expertise

48 JCC 2012 11/13/2012
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Occupancy/ __| Expertise Model Oregon State
DeteCtabllltY/ : expertise
i features
Expertise :
Model i
i expert/
i novice
""" Occupancy Model "“_'_:_:_:_:_:_:_: Detection Model mTmTmees

49 JCC 2012 11/13/2012



First Results

Average AUC on four common bird species

0.80
O 070 -
| T T
<
T
0.60 [
0.50
White-breasted Northern Great Blue
Blue Jay .
Nuthatch Cardinal Heron
OLR 0.6726 0.6283 0.6831 0.6641
OobD 0.6881 0.6262 0.7073 0.6691
I ODE 0.7104 0.6600 0.7085 0.6959

» eBird data for May and |
NYState

AUC

N

Oregon State

UNIVERSITY

Average AUC on four hard-to-detect bird species

T

0.80

0.70 T

0.60

0.50

Brown Thrasher Blue-'headed N?rthern Rough- Wood Thrush
Vireo winged Swallow

OLR 0.6576 0.7976 0.6575 0.6579
0OoD 0.6920 0.8055 0.6609 0.6643
I ODE 0.6954 0.8325 0.6872 0.6903

une (peak detectability period) for

» Expertise component trained via supervised learning

Jun Yu,Weng-Keen Wong, Rebecca Hutchinson (2010). Modeling Experts and Novices

in Citizen Science Data.1CDM 2010.

JCC 2012
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New Project: BirdCast 777

» Goal: Continent-wide bird
migration forecasting

» Additional data sources:
Doppler weather radar

Night flight calls

Wind observations (assimilated
to wind forecast model)

51 JCC 2012 11/13/2012



. =y SU
BlrdcaSt MOdCl: Re;(-)esst;on Oregon State

UNIVERSITY

Trees

ni(c) = # of birds of species s
at cell ¢ and time t.

w; = weather variables (wind,
temperature, precipitation)

x; (i,0) = eBird count for visit
0 at site [ species s and time t

Vit+1 (k) = # of flight calls for

species s at site k on the night
(t,t +1)

Zy 41 = # of birds (all species)

observed at radar v on night
(t,t+1)

Occupancy changes each night

52 JCC 2012 11/13/2012
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Outline

» Two Cultures of Machine Learning
» Probabilistic Graphical Models
» Non-Parametric Discriminative Models
» Advantages and Disadvantages of Each
» Representing conditional probability distributions using
non-parametric machine learning methods
» Logistic regression (Friedman)
» Conditional random fields (Dietterich, et al.)

» Latent variable models (Hutchinson, et al.)
» Ongoing Work

» Conclusions

» 53 JCC 2012 11/13/2012
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Concluding Remarks

» Gradient Tree Boosting can be integrated into
probabilistic graphical models

Fully-observed directed models
Conditional random fields

Latent variable models
» When to do this!?

When you want to condition on a large number of features

When you have a lot of data

54 JCC 2012 11/13/2012



Combining Two Approaches to usu
Machine Learning 7

Probabilistic Flexible

Graphical Nonparametric
Models Models

Flexible * Easier to use
Nonparametric * More accurate

Probabilistic

Models

» 55 JCC 2012 11/13/2012
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Thank-you

» Adam Ashenfelter, Guo-Hua Hao: TreeBoosting for CRFs

» Rebecca Hutchinson, Liping Liu: Boosted Regression Trees
in OD models

» Weng-Keen Wong, Jun Yu: ODE model
» Dan Sheldon: Models for Bird Migration

» Steve Kelling and colleagues at the Cornell Lab of
Ornithology

» National Science Foundation Grants 0083292, 0307592,
0832804, and 0905885
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