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Outline 
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 Two Cultures of Machine Learning 

 Probabilistic Graphical Models 

 Non-Parametric Discriminative Models 

 Advantages and Disadvantages of Each 

 Representing conditional probability distributions using 

non-parametric machine learning methods 

 Logistic regression (Friedman) 

 Conditional random fields (Dietterich, et al.) 

 Latent variable models (Hutchinson, et al.) 

 Ongoing Work 

 Conclusions 



 

 

 

 

 

 

 Joint probability distribution is the product of the 

individual node distributions 

 𝑃 𝑋1, 𝑋2, 𝑌1, 𝑌2 = 𝑃 𝑋1 𝑃 𝑋2 𝑃 𝑌1 𝑋1 𝑃(𝑌2|𝑋1, 𝑋2) 

 

Probabilistic Graphical Models 

 Nodes: Random variables 

 𝑋1, 𝑋2, 𝑌1, 𝑌2 

 Edges: Direct probabilistic dependencies  

 𝑃 𝑌1 𝑋1 , 𝑃(𝑌2|𝑋1, 𝑋2) 

 
𝑌2 

𝑋1 𝑋2 

𝑌1 
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Probabilistic Graphical Models (2) 

 Can be learned from training data, even when some of the 
random variables are unobserved (latent or missing) 
 Mixture models (e.g., Gaussian mixture models) 

 Train with EM, gradient descent, or MCMC 

 

 Can represent dynamical processes (Markov models, Dynamic 
Bayesian Networks) 

 

 Provide probabilistic predictions 
 Useful for integrating into larger systems 

 

 Provide a powerful language for designing and expressing 
models of complex systems 
 Useful for capturing background knowledge 
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Probabilistic Graphical Models (3) 

 How should the conditional 
probability distributions be 
represented? 

 Conditional Probability Tables 
(CPTs) with one parameter for 
each combination of values 



2𝑁

2
 parameters 

 

𝑿𝟏 𝑿𝟐 𝒀𝟏 𝑷(𝒀𝟏|𝑿𝟏, 𝑿𝟐) 

0 0 0 1 − 𝛼 

0 0 1 𝛼 

0 1 0 1 − 𝛽 

0 1 1 𝛽 

1 0 0 1 − 𝛾 

1 0 1 𝛾 

1 1 0 1 − 𝛿 

1 1 1 𝛿 
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Probabilistic Graphical Models (3) 

 How should the conditional 
probability distributions be 
represented? 

 Log-linear models (logistic 
regression) 

log
𝑃 𝑌1 = 1 𝑋1, 𝑋2

𝑃 𝑌1 = 0 𝑋1, 𝑋2
= 

 

         𝛼′ + 𝐼 𝑋1 = 1 𝛽′ + 𝐼[𝑋2 = 1]𝛾′  

 

 expit 𝑢 = 1/(1 + exp(−𝑢))  

 

 𝑁 parameters 

 

𝑿𝟏 𝑿𝟐 𝒀𝟏 𝑷(𝒀𝟏|𝑿𝟏, 𝑿𝟐) 

0 0 0 1 − expit 𝛼′ 

0 0 1 expit 𝛼′ 

0 1 0 1 − expit(𝛼′+𝛾′) 

0 1 1 expit(𝛼′+𝛾′) 

1 0 0 1 − expit(𝛼′+𝛽′) 

1 0 1 expit(𝛼′+𝛽′) 

1 1 0 1 − expit(𝛼′+𝛽′ + 𝛾′) 

1 1 1 expit 𝛼′ + 𝛽′ + 𝛾′ 
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Advantages and Disadvantages of 

Parametric Representations 

Advantages Disadvantages 

 Each parameter has a meaning 

 

 Supports statistical hypothesis 

testing: “Does 𝑋1 influence 𝑌1?” 

 𝐻0: 𝛽′ = 0 

 𝐻𝑎: 𝛽′ ≠ 0 

 Model has fixed complexity 

 Will typically either under-fit or over-

fit the data 

 Designer must decide about 

interactions, non-linearities, etc. etc. 

 Wrong decisions lead to highly biased 

models and invalidate hypothesis tests 

 Correlated variables cause trouble 

 Difficult for problems with many 

features 

 Data must be transformed to match 

the parametric form 

 Discretized 

 Square root or log transforms 

11/13/2012 JCC 2012 
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Fundamental Theorem of Statistical 

Learning 
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 Three-way tradeoff 

 amount of data 

 complexity of the model 

 prediction accuracy 

 

 To achieve optimum 

accuracy, model complexity 

should be tuned to the 

amount of data 

 “Structural Risk 

Minimization” (Vapnik) 

model complexity 
ac

cu
ra

cy
 

n=500 

n=1000 



Flexible Machine Learning Models 

11/13/2012 JCC 2012 11 

 Support Vector Machines 

 Classification and 

Regression Trees 

 

 Key advantage: Can tune 

the complexity of the 

model to the complexity 

of the data model complexity 
ac

cu
ra

cy
 

n=500 

n=1000 



Another Advantage: 

Interactions and Nonlinearities 
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 SVMs: 
 Polynomial kernels capture 

interactions and polynomial 
nonlinearities 

 Gaussian kernels capture 
nonlinearities, however, interactions 
are embedded in the distance 
function (typically Euclidean) 

 

 Classification and regression trees 
 Interactions are captured by the if-

then-else structure of the tree 

 Nonlinearities are approximated by 
piecewise constant functions 

𝑋1 ≥ 3 

𝑋2 ≥ 0 𝑋2 ≥ 0 

𝑌1 = 
−5 

𝑌1 = 
3 

𝑌1 = 
8 

𝑌1 = 
1 

𝑌1 = −5 ⋅ 𝐼 𝑋1 ≥ 3, 𝑋2 ≥ 0 + 3 ⋅ 𝐼 𝑋1 ≥ 3, 𝑋2 < 0 + 
           8 ⋅ 𝐼 𝑥1 < 3, 𝑋2 ≥ 0 + 1 ⋅ 𝐼(𝑋1 < 3, 𝑋2 < 0) 



Tree-Based Methods 

Advantages Disadvantages 
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 Flexible Model Complexity 

 Controlled by depth of tree 

 Can handle discrete, 
ordered, and continuous 
variables 

 No normalization or rescaling 
needed 

 Can handle missing values 

 Proportional distribution 

 Surrogate splits 

 Best “off the shelf” method 
(Breiman) 

 Poor probability estimates 

 Do not support 

hypothesis testing 

 Cannot handle latent 

variables 

 High variance, which can 

be addressed by 

 Boosting 

 Bagging 

 Randomization 

 



Can we combine the best of both? 

Probabilistic Graphical 

Models 

Non-Parametric Tree 

Methods 
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 Probabilistic semantics 

 Structured by background 

knowledge 

 Latent variables and 

dynamic processes 

 Tunable model complexity 

 No need for data scaling 

and preprocessing 

 Discrete, ordered, or 

continuous values 

 



Existing Efforts 
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 Dependency Networks 

 Heckerman et al. (JMLR 2000): 

 Bayesian network where each 𝑃(𝑋|𝑌) is a decision tree (with 

multinomial output probabilities) 

 Trained to maximize pseudo-likelihood 

 Requires all variables to be observed 

 RKHS embeddings of probabilities distributions 

 Song, Gretton & Guestrin (AISTATS 2011) 

 Tree-structured graphical model (undirected) 

 No explicit latent variables 

 Bayesian semi-parametric methods 

 Dirichlet processes (Blei, Jordan, et al.) 

 

 



Outline 
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 Two Cultures of Machine Learning 

 Probabilistic Graphical Models 

 Non-Parametric Discriminative Models 

 Advantages and Disadvantages of Each 

 Representing conditional probability distributions using 

non-parametric machine learning methods 

 Logistic regression (Friedman) 

 Conditional random fields (Dietterich, et al.) 

 Latent variable models (Hutchinson, et al.) 

 Ongoing Work 

 Conclusions 



Representing 𝑃(𝑌|𝑋) using boosted 

regression trees 
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 Friedman: Gradient Tree Boosting (2000;  Annals of 

Statistics, 2011) 

 Consider logistic regression: 

 log
𝑃 𝑌=1

𝑃 𝑌=0
= 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝐽𝑋𝐽 

 𝐷 = 𝑋𝑖 , 𝑌𝑖
𝑖=1

𝑁
 are the training examples 

 Log likelihood: 

 𝐿𝐿 𝛽 =   𝑌𝑖 log 𝑃 𝑌 = 1 𝑋𝑖; 𝛽 + 1 − 𝑌𝑖 log𝑃 𝑌 = 0 𝑋𝑖; 𝛽𝑖  

 

 



Fitting logistic regression via gradient 

descent 
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 Let 𝛽0 = 𝑔0 = 𝟎 

 For ℓ = 1, … , 𝐿 do 

 Compute 𝑔ℓ = 𝛻𝛽𝐿𝐿 𝛽  
𝛽=𝛽ℓ−1 

 𝑔ℓ = gradient w.r.t.  𝛽 

 𝛽ℓ ≔ 𝛽ℓ−1 + 𝜂ℓ𝑔
ℓ  take a step of size 𝜂ℓ in direction of 

gradient 

 

 Final estimate of 𝛽 is 

 𝛽𝐿 = 𝑔0 + 𝜂1𝑔1 + ⋯ + 𝜂𝐿𝑔
𝐿 

 



Functional Gradient Descent 

Boosted Regression Trees 
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 Breiman (1996), Friedman (2000), Mason et al. (NIPS 1999): Fit a 
logistic regression model as a weighted sum of regression trees: 

 

log
𝑃 𝑌 = 1

𝑃 𝑌 = 0
= 𝑡𝑟𝑒𝑒0(𝑋) + 𝜂1𝑡𝑟𝑒𝑒1(𝑋) + ⋯ + 𝜂𝐿𝑡𝑟𝑒𝑒𝐿(𝑋) 

 

 

 When “flattened” this gives a log linear model with complex 
interaction terms 



L2-Tree Boosting Algorithm 
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 Let 𝐹0 𝑋 = 𝑓0(𝑋) = 𝟎 be the zero function 

 For ℓ = 1, … , 𝐿 do 

 Construct a training set Sℓ = 𝑋𝑖 , 𝑌 𝑖
𝑖=1

𝑁
  

 where 𝑌  is computed as 

 𝑌 𝑖 =
𝜕𝐿𝐿 𝐹

𝜕𝐹
 
𝐹=𝐹ℓ−1 𝑋𝑖

      // how we wish 𝐹 would change at 𝑋𝑖 

 Let 𝑓ℓ = regression tree fit to 𝑆ℓ 

 𝐹ℓ ≔ 𝐹ℓ−1 + 𝜂ℓ𝑓
ℓ 

 The step sizes 𝜂ℓ are the weights computed in boosting 

 This provides a general recipe for learning a conditional 
probability distribution for a Bernoulli or multinomial 
random variable 



L2-TreeBoosting can be applied to any 

fully-observed directed graphical model 
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 𝑃(𝑌1|𝑋1) as sum of trees 

 𝑃(𝑌2|𝑋1, 𝑋2) as sum of trees 

 

 What about undirected graphical 

models? 
𝑌2 

𝑋1 𝑋2 

𝑌1 



Tree Boosting for Conditional Random 

Fields 
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 Conditional Random Field 
(Lafferty et al., 2001) 

 𝑃(𝑌1, … , 𝑌𝑇|𝑋1, … , 𝑋𝑇) 

 Undirected graph over the 
𝑌’s conditioned on the 𝑋’s. 

 Φ(𝑌𝑡−1, 𝑌𝑡 , 𝑋)  = log linear 
model 

 

 

𝑌2 𝑌1 𝑌𝑇 … 

𝑋2 𝑋1 𝑋𝑇 … 

 Dietterich, Hao, Ashenfelter (JMLR 2008; ICML 2004) 

 Fit Φ(𝑌𝑡−1, 𝑌𝑡 , 𝑋) using tree boosting 

 A form of automatic feature discovery for CRFs 

 

 



Experimental Results 
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All differences statistically significant  p<0.005 or better 



Tree Boosting for Latent Variable Models 
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 Both Friedman’s L2-TreeBoosted logistic regression and 

our L2-TreeBoosted CRFs assumed that all variables were 

observed in the training data 

 

 Can we extend Tree Boosting to latent variable graphical 

models? 

 

 Motivating application: Species Distribution Modeling 



Species Distribution Modeling 

25 

Observations 

11/13/2012 JCC 2012 Leathwick et al, 2008 



Species Distribution Modeling 
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Observations Fitted Model 
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Disregarding costs  

to fishing industry 

Full consideration of costs  

to fishing industry 

Leathwick et al, 2008 
11/13/2012 JCC 2012 



Wildlife Surveys with Imperfect Detection 

28 

Problem 1: We don’t observe everywhere Problem 2: Some birds are hidden Partial Solution: Multiple visits: Different birds hide on different visits 

11/13/2012 JCC 2012 



Multiple Visit Data 

29 

Detection History 

 

Site 

True occupancy 

(latent) 

Visit 1 

(rainy day, 

12pm) 

Visit 2 

(clear day, 6am) 

Visit 3 

(clear day, 9am) 

A  

(forest, 

elev=400m) 

 

1 

 

0 

 

1 

 

1 

B  

(forest, 

elev=500m) 

 

1 

 

0 

 

1 

 

0 

C  

(forest, 

elev=300m) 

 

1 

 

0 

 

0 

 

0 

D  

(grassland, 

elev=200m) 

 

0 

 

0 

 

0 

 

0 
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𝑑13 𝑑12 

Probabilistic Model with Latent Variable 𝑍 
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  𝑋1 

  𝑍1= 1 

  𝑤11   𝑤12   𝑤13 

  𝑦11= 0   𝑦12= 1   𝑦13= 1 

(rain, 12pm) (clear, 6am) (clear, 9am) 

(forest, 400m) 

𝑜1 

𝑑11 

  𝑋4 

  𝑍4= 0 

  𝑤41   𝑤42   𝑤43 

  𝑦41= 0   𝑦42= 0   𝑦43= 0 

(rain, 12pm) (clear, 6am) (clear, 9am) 

(grassland, 200m) 

... 
𝑜4 

𝑑41 𝑑42 𝑑43 

MacKenzie, et al, 2006 

 

JCC 2012 



Occupancy-Detection Model 
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Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

Occupancy 
features (e.g.  
elevation, 
vegetation) 

Detection 
features (e.g.  
time of day, 
effort) 

Observed presence/absence 
Yit | Zi ~ Bern(Zidit) 

True (latent) presence/absence 
Zi ~ Bern(oi) 

Probability of occupancy 
(function of Xi) 

Probability of detection 
(function of Wit) 

Sites 

Visits 

MacKenzie, et al, 2006 

 



Parameterizing the model 

Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

𝑧𝑖~𝑃(𝑧𝑖|𝑥𝑖): Species Distribution Model 

 𝑃 𝑧𝑖 = 1 𝑥𝑖 = 𝑜𝑖 = 𝐹(𝑥𝑖)  “occupancy probability” 

𝑦𝑖𝑡~𝑃(𝑦𝑖𝑡|𝑧𝑖 , 𝑤𝑖𝑡): Observation model 

 𝑃 𝑦𝑖𝑡 = 1 𝑧𝑖 , 𝑤𝑖𝑡 = 𝑧𝑖𝑑𝑖𝑡 

 𝑑𝑖𝑡 = 𝐺(𝑤𝑖𝑡)  “detection probability” 
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Standard Approach: Log Linear (logistic 

regression) models 
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 log
𝐹 𝑋

1−𝐹 𝑋
= 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝐽𝑋

𝐽 

 log
𝐺 𝑊

1−𝐺 𝑊
= 𝛼0 + 𝛼1𝑊1 + ⋯ + 𝛼𝐾𝑊𝐾 

 Train via EM 

 People tend to use very simple models: 𝐽 = 4, 𝐾 = 2 



Regression Tree Parameterization 
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 log
𝐹 𝑥

1−𝐹 𝑥
= 𝑓0(𝑥) + 𝜌1𝑓1(𝑥)  + ⋯ + 𝜌𝐿𝑓

𝐿(𝑥) 

 log
𝐺 𝑤

1−𝐺 𝑤
= 𝑔0 𝑤 + 𝜂1𝑔1 𝑤 + ⋯ + 𝜂𝐿𝑔

𝐿(𝑤) 

 Perform functional gradient descent on 𝐹 and 𝐺 

 Could also use EM 



Functional Gradient Descent with Latent 

Variables 

 Loss function 𝐿(𝐹, 𝐺, 𝑦) 

 𝐹0 = 𝐺0 = 𝑓0 = 𝑔0 = 0 

 For ℓ = 1, … , 𝐿 

 For each site 𝑖 compute  

𝑧 𝑖 = 𝜕𝐿(𝐹ℓ−1 𝑥𝑖 , 𝐺ℓ−1, 𝑦𝑖)/𝜕𝐹ℓ−1 𝑥𝑖  

 Fit regression tree 𝑓ℓ to 𝑥𝑖 , 𝑧 𝑖 𝑖=1
𝑀  

 For each visit 𝑡 to site 𝑖, compute 

𝑦 𝑖𝑡 = 𝜕𝐿 𝐹ℓ−1 𝑥𝑖 , 𝐺ℓ−1 𝑤𝑖𝑡 , 𝑦𝑖𝑡  
/𝜕𝐺ℓ−1 𝑤𝑖𝑡  

 Fit regression tree 𝑔ℓto 𝑤𝑖𝑡, 𝑦 𝑖𝑡 𝑖=1,𝑡=1
𝑀,𝑇𝑖  

 Let 𝐹ℓ = 𝐹ℓ−1 + 𝜌ℓ𝑓
ℓ 

 Let 𝐺ℓ = 𝐺ℓ−1 + 𝜂ℓ𝑔
ℓ 

JCC 2012 Hutchinson, Liu, Dietterich,  AAAI 2011 11/13/2012 35 



Experiment 

 Algorithms: 

 Supervised methods:  

 S-LR: logistic regression from 𝑥𝑖 , 𝑤𝑖𝑡 → 𝑦𝑖𝑡 

 S-BRT: boosted regression trees 𝑥𝑖 , 𝑤𝑖𝑡 → 𝑦𝑖𝑡 

 Occupancy-Detection methods: 

 OD-LR: 𝐹 and 𝐺 logistic regressions 

 OD-BRT: 𝐹 and 𝐺 boosted regression trees 

 Data: 

 12 bird species 

 3 synthetic species 

 3124 observations from New York State, May-July 2006-2008 

 All features rescaled to zero mean, unit variance 
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Features 
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Simulation Study using Synthetic Species 

 Synthetic Species 2: 𝐹 and 𝐺 nonlinear 

log
𝑜𝑖

1 − 𝑜𝑖
= −2 𝑥𝑖

1
2

+ 3 𝑥𝑖
2

2
− 2𝑥𝑖

3
 

log
𝑑𝑖𝑡

1 − 𝑑𝑖𝑡
= exp(−0.5𝑤𝑖𝑡

4
) + sin(1.25𝑤𝑖𝑡

1
+ 5) 
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Predicting 
Occupancy 

 

Synthetic 

Species 2 

40 



Partial Dependence Plot 

Synthetic Species 1 

 OD-BRT has 

the least bias 

11/13/2012 

41 
Distance of survey 



Partial Dependence Plot 

Synthetic Species 3 

 OD-BRT has 

the least bias 

and correctly 

captures the bi-

modal detection 

probability 

11/13/2012 
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Partial 

Dependence 

Plot 

Blue Jay vs. 

Time of Day 
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43 Time of Day 



Partial 

Dependence 

Plot 

Blue Jay vs. 

Duration of 

Observation 

11/13/2012 
44 

Effort in Hours 



Open Problems 
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 Sometimes the OD model finds trivial solutions 

 Detection probability = 0 at many sites, which allows the Occupancy 
model complete freedom at those sites 

 Occupancy probability constant (0.2) 

 

 Log likelihood for latent variable models suffers from local 
minima 

 Proper initialization? 

 Proper regularization? 

 Posterior regularization? 

 

 How much data do we need to fit this model? 

 Can we detect when the model has failed? 

11/13/2012 



Outline 
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 Two Cultures of Machine Learning 

 Probabilistic Graphical Models 

 Non-Parametric Discriminative Models 

 Advantages and Disadvantages of Each 

 Representing conditional probability distributions using 

non-parametric machine learning methods 

 Logistic regression (Friedman) 

 Conditional random fields (Dietterich, et al.) 

 Latent variable models (Hutchinson, et al.) 

 Ongoing Work 

 Conclusions 



Next Steps 

JCC 2012 47 

 Modeling Expertise in Citizen Science 

 From Occupancy (0/1) to Abundance (n) 

 From Static to Dynamic Models 

11/13/2012 



Modeling Expertise in Citizen Science 
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 Project eBird 

 Bird watchers upload checklists to ebird.org 

 8,000-12,000 checklists per day uploaded 

 World-wide coverage 24x365 

 38,599 observers; 336,088 locations 

 2.4M checklists; 41.7M observations 

 All bird species (~3,000) 

 

 [Please volunteer! We need more observers in S. America] 

 

 Wide variation in “birder” expertise 

11/13/2012 



Occupancy/ 

Detectability/ 

Expertise 

Model 

49 

dit Yit Zi 

i=1,…,N 

Xi Wit 

t=1,…,Ti 

Ej 

Uj 

j=1,…,J 

Occupancy Model Detection Model 

Expertise Model 

expertise 

features 

expert/ 

novice 
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First Results 

 eBird data for May and June (peak detectability period) for 
NYState 

 Expertise component trained via supervised learning 

50 

Average AUC on four hard-to-detect bird species

0.50

0.60

0.70

0.80

A
U

C

LR 0.6576 0.7976 0.6575 0.6579

OD 0.6920 0.8055 0.6609 0.6643

ODE 0.6954 0.8325 0.6872 0.6903

Brown Thrasher
Blue-headed 

Vireo

Northern Rough-

winged Swallow
Wood Thrush

Average AUC on four common bird species

0.50

0.60

0.70

0.80

A
U

C

LR 0.6726 0.6283 0.6831 0.6641

OD 0.6881 0.6262 0.7073 0.6691

ODE 0.7104 0.6600 0.7085 0.6959

Blue Jay
White-breasted 

Nuthatch

Northern 

Cardinal

Great Blue 

Heron

Jun Yu, Weng-Keen Wong, Rebecca Hutchinson (2010). Modeling Experts and Novices 

in Citizen Science Data. ICDM 2010. 
11/13/2012 JCC 2012 



New Project: BirdCast 
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 Goal: Continent-wide bird 

migration forecasting 

 Additional data sources: 

 Doppler weather radar 

 Night flight calls 

 Wind observations (assimilated 

to wind forecast model) 



BirdCast Model: 
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 𝑛𝑡
𝑠(𝑐) = # of birds of species 𝑠 

at cell 𝑐 and time 𝑡. 

 𝒘𝑡 = weather variables (wind, 

temperature, precipitation) 

 𝑥𝑡
𝑠(𝑖, 𝑜) = eBird count for visit 

𝑜 at site 𝑖 species 𝑠 and time 𝑡 

 𝑦𝑡,𝑡+1
𝑠 (𝑘) = # of flight calls for 

species 𝑠 at site 𝑘 on the night 

(𝑡, 𝑡 + 1) 

 𝑧𝑡,𝑡+1 = # of birds (all species) 

observed at radar 𝑣 on night 

𝑡, 𝑡 + 1  

 

 Occupancy changes each night 
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𝑧𝑡,𝑡+1
 (𝑣) 

… … 

𝑜 = 1, … , 𝑂(𝑖, 𝑡) 
𝑠 = 1, … , 𝑆 

𝑖 = 1, … , 𝐿 

𝑠 = 1, … , 𝑆 

𝑘 = 1, … , 𝐾 𝑣 = 1, … , 𝑉 

eBird acoustic radar 
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Outline 
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 Two Cultures of Machine Learning 

 Probabilistic Graphical Models 

 Non-Parametric Discriminative Models 

 Advantages and Disadvantages of Each 

 Representing conditional probability distributions using 

non-parametric machine learning methods 

 Logistic regression (Friedman) 

 Conditional random fields (Dietterich, et al.) 

 Latent variable models (Hutchinson, et al.) 

 Ongoing Work 

 Conclusions 



Concluding Remarks 
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 Gradient Tree Boosting can be integrated into 

probabilistic graphical models 

 Fully-observed directed models 

 Conditional random fields 

 Latent variable models 

 When to do this? 

 When you want to condition on a large number of features 

 When you have a lot of data 

 



Combining Two Approaches to  

Machine Learning 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 

Flexible 

Nonparametric 

Probabilistic 

Models 
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• Easier to use 

• More accurate 



Thank-you 

 Adam Ashenfelter, Guo-Hua Hao: TreeBoosting for CRFs 

 Rebecca Hutchinson, Liping Liu: Boosted Regression Trees 

in OD models 

 Weng-Keen Wong, Jun Yu: ODE model 

 Dan Sheldon: Models for Bird Migration 

 Steve Kelling and colleagues at the Cornell Lab of 

Ornithology 
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