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Outline 
Part 1: 
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Brute force solution and examples of the results 
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Invasive Species Management in River 
Networks 

Tamarisk: invasive tree from the 
Middle East 
 Has invaded over 3 million acres in 

the western United States 
 Out-competes native vegetation for 

water 
 Reduces biodiversity 

 

What is the best way to manage 
a spatially-spreading organism? 

 

3 C.C. Shock, Oregon State University 



Existing Approaches in Natural 
Resource Economics 
Model one-dimensional “landscape” 
Spread is only to nearest neighbors 
State variables only consider the presence/absence of the 

invading species 
 Ignore competition between native and invader 
 Ignore “propagule pressure” (relative abundance and germination 

success of seeds from different species) 
Resulting optimal policies construct “barriers” to contain the spread 

 
Some work on more realistic models, but only by replacing 

stochastic transitions with expectations and treating the system as 
deterministic. 
 
Opportunity to advance the field by providing better MDP tools! 
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Markov Decision Process 
Tree-structured river network 
Each edge 𝑒𝑒 ∈ 𝐸𝐸 has 𝐻𝐻 “sites” where a 

tree can grow. 
Each site can be 
 {empty, occupied by native, occupied by 

invasive} 
 # of states is 3𝐸𝐸𝐸𝐸 

Management actions 
Each edge: {do nothing, eradicate, plant, 

restore (=eradicate + plant)} 
 # of actions is 4𝐸𝐸 

𝑒𝑒1 𝑒𝑒2 

𝑒𝑒3 
𝑒𝑒4 

𝑒𝑒5 

n 
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Dynamics and Objective 
Dynamics: 
 In each time period 
 Natural death 
 Seed production 
 Seed dispersal (preferentially downstream) 
 Seed competition to become established 
 Couples all edges because of spatial spread 
 Inference is intractable 

 
Objective: 
Minimize expected discounted costs 

(cost of invasion + cost of management) 
Subject to annual budget constraint  

 
 

𝑒𝑒1 𝑒𝑒2 

𝑒𝑒3 
𝑒𝑒4 

𝑒𝑒5 

n 
n 

t 
n n 
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Computational Approach 
Transition function can be represented as DBN 
Exact inference in intractable (because we must consider 

competition from all seeds that arrive at a given slot) 
Sampling is easy 

 
For each (𝑠𝑠,𝑎𝑎), draw enough samples to estimate 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) 

with sufficient accuracy 
Then apply value iteration to solve the MDP 
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Examples of the Results 
Optimal policy in an edge depends on 

the state of other edges 
Case 1: Optimal action is to 

ERADICATE and then PLANT at the 
“middle” level 
Case 2: Optimal action is to 

ERADICATE and then PLANT in the 
top left 

Reason? 
 In Case 2, we already have a partial 

barrier, so there is budget available 
to plant natives in the top level to 
protect against eradication failure 
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Case 1 

Case 2 



Example of Results (2) 
Exogenous arrivals change the policy 
 seeds of the invader arrive uniformly at 

random across the landscape (e.g., 
dropped by birds, transported by fishermen) 

With no exogenous arrivals, if the 
starting state has an invaded edge, then 
the optimal policy just performs 
ERADICATE 
 If there are exogenous arrivals, it 

performs RESTORE.  
 In general, under exogenous arrivals, 

the optimal policy works harder to fill the 
landscape with native species as a 
preventative measure 
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Example of Results (3) 
Prevention is Cheaper than Recovery 
 In an empty river system with exogenous 

arrivals, the optimal policy PLANTs native 
species starting upstream and working 
downstream (if necessary) 
This is much cheaper than waiting until an 

invasion arrives and then fighting it via 
ERADICATION 
Why: Budget constraints make it impossible to 

ERADICATE everywhere at once, which 
allows the invader to spread quickly. Then it 
can only be slowly eliminated by repeated 
ERADICATE actions 
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Summary 
MDP tools can have a big impact in helping ecosystem 

managers discover and analyze optimal management 
policies 
Simulator-defined MDPs are a natural way to deal with 

intractable transition models 
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Outline 
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Motivating application: Invasive Species in a River Network 
Brute force solution and examples of the results 
Part 2: 
Minimizing simulator calls  
 Policy Evaluation 
 Policy Optimization 
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More Challenging Setting 
Extremely expensive simulators from ecosystem 
management problems 
Drawing one sample from these simulators can take 
more time than performing value iteration on the 
whole MDP(!) 
We want to minimize the number of calls to the 
simulator 
We want PAC bounds on the optimality of the policy 
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Policy Evaluation 
Given:  
An MDP 𝑆𝑆,𝐴𝐴,𝑃𝑃,𝑅𝑅, 𝛾𝛾 ;   
  𝑅𝑅 𝑠𝑠,𝑎𝑎 ∈ 0,𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ; 𝛾𝛾 ∈ (0,1) 
A starting state 𝑠𝑠0 
A fixed policy 𝜋𝜋 
A simulator 𝐹𝐹: 𝑆𝑆 × 𝐴𝐴 ↦ 𝑅𝑅 × 𝑆𝑆 that samples as 
 𝑅𝑅 𝑠𝑠,𝑎𝑎   ; deterministic 
 𝑠𝑠′ ∼ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎  
A sampling budget 𝐵𝐵 
Find: 
A tight confidence interval on 𝑉𝑉𝜋𝜋 𝑠𝑠0  

Notation: 
 Δ𝑉𝑉𝜋𝜋 𝑠𝑠0 = 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝜋𝜋 𝑠𝑠0 − 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋 (𝑠𝑠0) is the width of the confidence 

interval 
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Confidence Interval Methods 
Global (full-trajectory) Methods 
Hoeffding Bound: GCV(H) 
Empirical Bernstein Bound: GCV(B) 
Local (extended value iteration) Methods 
Hoeffding Bound: LCVI(H) 
EBB:LCVI(B) 
Weissman Multinomial Confidence Region: LCVI(W) 
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Confidence Interval Methods 
Global methods 
Choose a depth 𝐻𝐻 
Draw 𝑁𝑁 = ⌊𝐵𝐵 𝐻𝐻⁄ ⌋ trajectories. Let 𝑣𝑣𝑖𝑖 be cumulative 

discounted return from trajectory 𝑖𝑖 

𝑉𝑉� 𝑠𝑠0 = 1
𝑁𝑁
∑ 𝑣𝑣𝑖𝑖𝑁𝑁
𝑖𝑖=1  be the average of these values 

Compute the confidence interval from 𝑣𝑣1, … , 𝑣𝑣𝑁𝑁  
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Global Hoeffding Bound 
(Hoeffding, 1963) 

𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠0 = 𝑉𝑉� 𝑠𝑠0 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
log 2/𝛿𝛿
2𝑁𝑁

+ 𝛾𝛾𝐻𝐻𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠0 = 𝑉𝑉� 𝑠𝑠0 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
log 2/𝛿𝛿
2𝑁𝑁

  

 
𝛾𝛾𝐻𝐻𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum possible reward we lose by 
truncating the trajectory at depth 𝐻𝐻 
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Global Empirical Bernstein Bound 
(Audibert, Munos, Szepesvari, 2009) 

𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠0 = 𝑉𝑉� 𝑠𝑠0 + 2𝑉𝑉𝑉𝑉𝑉𝑉� 𝑠𝑠0 log 3/𝛿𝛿
𝑁𝑁

+ 3𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 log 3/𝛿𝛿
𝑁𝑁

+ 𝛾𝛾𝐻𝐻𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠0 = 𝑉𝑉� 𝑠𝑠0 − 2𝑉𝑉𝑉𝑉𝑉𝑉� 𝑠𝑠0 log 3 𝛿𝛿⁄
𝑁𝑁

− 3𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 log 3/𝛿𝛿
𝑁𝑁

  

 
Here  

𝑉𝑉𝑉𝑉𝑉𝑉� 𝑠𝑠0 =
1
N
� 𝑣𝑣𝑖𝑖 − 𝑉𝑉� 𝑠𝑠0

2
𝑁𝑁

𝑖𝑖=1

 

Key idea is that if the variance is small, this can be 
tighter 
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Extended Value Iteration with the 
Local Hoeffding Bound 
(Even-Dar, Mannor, Mansour 2003,2006) 
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At each state 𝑠𝑠 

𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑠𝑠′)
𝑠𝑠′

+ 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
log 2|𝑆𝑆|/𝛿𝛿
2𝑁𝑁(𝑠𝑠)

 

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑠𝑠′)
𝑠𝑠′

− 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
log 2|𝑆𝑆|/𝛿𝛿
2𝑁𝑁(𝑠𝑠)

 

Perform value iteration on these formulas. The bounds on 𝑠𝑠0 
give the desired confidence interval 



Extended VI with EBB 
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At each state 𝑠𝑠 
𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠

= 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑠𝑠′)
𝑠𝑠′

+
2𝑉𝑉𝑉𝑉𝑉𝑉� 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠 log 3|𝑆𝑆|/𝛿𝛿

𝑁𝑁(𝑠𝑠)

+
3𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 log 3|𝑆𝑆|/𝛿𝛿

𝑁𝑁(𝑠𝑠)
 

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠

= 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑠𝑠′)
𝑠𝑠′

−
2𝑉𝑉𝑉𝑉𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� 𝑠𝑠 log 3 𝑆𝑆 𝛿𝛿⁄

𝑁𝑁 𝑠𝑠

−
3𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 log 3|𝑆𝑆|/𝛿𝛿

𝑁𝑁(𝑠𝑠)
 

Perform value iteration on these formulas. The bounds on 𝑠𝑠0 
give the desired confidence interval 



Weissman L1 Confidence Interval 
on the Multinomial Distribution 
(Weissman et al., 2003) 

Given the counts 𝑁𝑁 𝑠𝑠, 𝑠𝑠′  for state 𝑠𝑠, compute 
𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 = 𝑁𝑁 𝑠𝑠,𝑠𝑠′

𝑁𝑁 𝑠𝑠
 

Define a confidence interval 
𝐶𝐶𝐶𝐶 𝑁𝑁, 𝛿𝛿 = 𝑃𝑃� 𝑃𝑃� ⋅ 𝑠𝑠 − 𝑃𝑃� ⋅ 𝑠𝑠 1 < 𝜔𝜔}  

where 

𝜔𝜔 =
2 log(2 𝑆𝑆 −2) − log 𝛿𝛿/|𝑆𝑆|

𝑁𝑁 𝑠𝑠
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Extended VI with Weissman 
Multinomial Confidence Interval 
(Strehl & Littman, 2004; 2008) 
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𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾max
𝑃𝑃�∈𝐶𝐶𝐶𝐶

�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑠𝑠′)
𝑠𝑠′

 

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾min
𝑃𝑃�∈𝐶𝐶𝐶𝐶

�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑠𝑠′)
𝑠𝑠′

 



Given a fixed budget 𝐵𝐵 how should 
trials be allocated? 

For global methods, the only question is the sampling horizon 
𝐻𝐻 
There is no closed form, but 𝐻𝐻 can be determined by solving 

a simple iteration 
Example: For global Hoeffding bound method: 

𝐻𝐻 =
1
2 ln ln 2

𝛿𝛿 −
1
2 ln2𝐵𝐵 − ln ln 1

𝜆𝜆
ln 𝜆𝜆

−
ln𝐻𝐻

2 ln 𝜆𝜆
 

Similar but more complex iteration for EBB 
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Optimal Horizon 𝐻𝐻 
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Width of the confidence interval for the 
starting state Δ𝑉𝑉(𝑠𝑠0);   [𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 1] 
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Allocation of Samples for Extended 
Value Iteration Methods: LCVI(H) 
Let 𝜇𝜇𝜋𝜋(𝑠𝑠) be the occupancy measure 

𝜇𝜇𝜋𝜋 𝑠𝑠 = 𝔼𝔼 �𝛾𝛾𝑡𝑡𝕀𝕀 𝑠𝑠𝑖𝑖 = 𝑠𝑠
∞

𝑡𝑡=0

𝑠𝑠0,𝜋𝜋  

Theorem. 𝑁𝑁 𝑠𝑠  samples should be allocated to state 𝑠𝑠 to minimize 

Δ𝑉𝑉 𝑠𝑠0 = �𝜇𝜇 𝑠𝑠 𝜋𝜋2𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
ln 2 𝛿𝛿⁄
2𝑁𝑁(𝑠𝑠)

𝑠𝑠

 

Lemma: 𝑁𝑁 𝑠𝑠  samples should be allocated in proportion to 𝜇𝜇𝜋𝜋 𝑠𝑠 2 3⁄  
 
It is interesting that more samples are allocated at deeper states than for 
the global (trajectory-wise) methods, which allocate according to 𝜇𝜇𝜋𝜋 𝑠𝑠 . 
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Allocation of Samples for LCVI(B) 

Samples should be allocated to minimize 

Δ𝑉𝑉 𝑠𝑠0 = �𝜇𝜇 𝑠𝑠
𝑠𝑠

𝑐𝑐1𝑉𝑉𝑉𝑉𝑉𝑉 𝑠𝑠 + 𝑐𝑐1𝑉𝑉𝑉𝑉𝑉𝑉 𝑠𝑠

𝑁𝑁 𝑠𝑠
+

2𝑐𝑐2
𝑁𝑁 𝑠𝑠

 

where 
 𝑐𝑐1 = 2 ln 3 𝑆𝑆 /𝛿𝛿 and 𝑐𝑐2 = 3𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ln 3/𝛿𝛿 
𝑉𝑉𝑉𝑉𝑉𝑉 𝑠𝑠  is an upper bound on the variance of the return at 𝑠𝑠 
𝑉𝑉𝑉𝑉𝑉𝑉 𝑠𝑠  is a lower bound on the variance of the return at 𝑠𝑠 
These can be computed via Extended VI 
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Experimental Comparison 
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MDP Policy Notes 
Riverswim Optimal   
Six Arms Suboptimal   
Comb Lock Optimal some intermediate rewards 
CasinoLand Optimal added stochasticity 
  Edges Slots Policies 
Tamarisk 3 1   
Tamarisk 3 2 

× 
Restore upstream first 

Tamarisk 3 3 Eradicate upstream first 
Tamarisk 5 1 Eradicate leading edge 
Tamarisk 7 1   



Policy Evaluation: Results 
𝛿𝛿 = 0.05; 𝛾𝛾 = 0.95;𝐵𝐵 = 500,000 
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Global 
Bernstein is 
almost always 
best 
 
Local Bernstein 
wins twice and 
is by far the 
best local 
method 
 
 
 



Policy Optimization 
 Idea: Use trajectory-based confidence intervals to gain efficiency 
Challenge 1: As we optimize, the policy changes.  
 How can we compute trajectory-based confidence intervals using samples 

generated from previous policies? 
 Solution: Equivalent Trajectory Method 

 
Challenge 2: To perform policy improvement, we need to compute 
𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠,𝑎𝑎) for off-policy actions 𝑎𝑎.  
 This requires local upper confidence limits for each 𝑄𝑄 𝑠𝑠,𝑎𝑎  
 Solution: Use local (extended value iteration) methods for 𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠,𝑎𝑎) and 

use a trajectory bound for 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠0) 
 

Result: The Local-Global Confidence Value algorithm (LGCV) 
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Policy Optimization 
Local-Global Confidence Value (LGCV) algorithm 
Repeat: 
Draw a minibatch of samples to reduce 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠0) 
and/or increase 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠0) 
Compute 𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠, 𝑎𝑎) via extended value iteration 
(EBB) 
Compute 𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈 𝑠𝑠 ≔ arg max

𝑎𝑎
𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠,𝑎𝑎  ∀𝑠𝑠 

Compute 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈 𝑠𝑠0  via a trajectory-wise bound using 
equivalent trajectories 
Terminate when 
       𝛥𝛥𝛥𝛥 𝑠𝑠0 = 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠0 − 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠0 ≤ 0.1 × 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 
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Equivalent Trajectories 

Given:  
a set of previously-drawn samples 𝑁𝑁 𝑠𝑠,𝑎𝑎  for 
states 𝑠𝑠 ∈ 𝑆𝑆 and actions 𝑎𝑎 ∈ 𝐴𝐴 
 a policy 𝜋𝜋 
Find: 
a horizon 𝐻𝐻 
an equivalent number of trajectories 𝑇𝑇 
such that a trajectory-wise confidence interval is 
valid 
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Thought Experiment 
Select 𝐻𝐻 (somehow) 
Estimate 𝑃𝑃� 𝑠𝑠′ 𝑠𝑠,𝜋𝜋(𝑠𝑠)  from the samples 
Set 𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) ≔ 𝑁𝑁(𝑠𝑠,𝜋𝜋(𝑠𝑠)) for all 𝑠𝑠 
Set 𝑇𝑇 = 0 the number of trajectories 
Repeat until 𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) = 0 
 𝑠𝑠 ≔ 𝑠𝑠0 
 ℎ ≔ 0 
while ℎ < 𝐻𝐻 do 
 𝑠𝑠′~𝑃𝑃� 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑠𝑠  draw a sample 
 𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) ≔ 𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) − 1 
 if (𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) < 0) return(𝑇𝑇) 
 𝑠𝑠 ≔ 𝑠𝑠′;ℎ ≔ ℎ + 1 
 𝑇𝑇 ≔ 𝑇𝑇 + 1 
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Computed 𝔼𝔼 𝑇𝑇  via stratified MDP 

Select 𝐻𝐻 
Define an unrolled MDP 
states: (𝑠𝑠,ℎ) for 𝑠𝑠 ∈ 𝑆𝑆 and ℎ ∈ {1, … ,𝐻𝐻} 
actions: 𝑎𝑎 ∈ 𝐴𝐴 
 transitions 𝑃𝑃 𝑠𝑠′,ℎ + 1 𝑠𝑠,ℎ ,𝑎𝑎 = 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) 
 rewards 𝑅𝑅 𝑠𝑠,ℎ ,𝑎𝑎 = 𝑅𝑅(𝑠𝑠,𝑎𝑎) 

 
Define 𝜌𝜌𝜋𝜋(𝑠𝑠, ℎ) to be the undiscounted occupancy 
measure for this MDP 
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Equivalent Number of Trajectories 
Let 𝑍𝑍𝜋𝜋 𝑠𝑠  be the expected number of visits to state 𝑠𝑠 under 

policy 𝜋𝜋 for trajectories of length 𝐻𝐻 

𝑍𝑍𝜋𝜋 𝑠𝑠 = �𝜌𝜌𝜋𝜋(𝑠𝑠,ℎ)
𝐻𝐻−1

ℎ=0

 

Easily computed by dynamic programming along with 𝑉𝑉𝜋𝜋 and the 
variance 𝑉𝑉𝑉𝑉𝑟𝑟𝜋𝜋 
 

Let the equivalent number of trajectories be 

𝑇𝑇𝜋𝜋 = min
𝑠𝑠

𝑁𝑁 𝑠𝑠,𝜋𝜋 𝑠𝑠
𝑍𝑍𝜋𝜋 𝑠𝑠

 

𝑠𝑠 is the state that gives the tightest constraint on the number of 
trajectories 
 

Claim: 𝑇𝑇𝜋𝜋 = 𝔼𝔼 𝑇𝑇  
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Computing the Horizon 𝐻𝐻 

Let 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = log𝛾𝛾
𝜖𝜖 1−𝛾𝛾
2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

  (the “𝜖𝜖 horizon time”)  

 
Choose the 𝐻𝐻 in 1, … ,𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚  that maximizes the 
“equivalent budget” 

𝐵𝐵𝑒𝑒 𝐻𝐻 = 𝐻𝐻𝑇𝑇𝜋𝜋 𝐻𝐻  
 
This can be done efficiently by starting with 
𝐻𝐻 = 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and working downwards 
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LGCV is PAC-RL 
Simultaneously, with probability at least 1 − 𝛿𝛿 
𝑉𝑉∗ 𝑠𝑠0 ≤ 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝜋𝜋 𝑠𝑠0   
𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋 𝑠𝑠0 ≤ 𝑉𝑉∗(𝑠𝑠0) 
𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝜋𝜋 𝑠𝑠0 − 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋 𝑠𝑠0 ≤ 𝜖𝜖 by construction 

 

We employ the Even-Dar et al. trick of using 𝛿𝛿𝑡𝑡 ≔
𝛿𝛿

𝑡𝑡 𝑡𝑡+1
 when 

calculating the 𝑡𝑡-th confidence interval.  
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Sample Allocation (Exploration) 
Collect a series of minibatches of size 𝑀𝑀𝑀𝑀 
Let 𝑁𝑁 = ∑ 𝑁𝑁 𝑠𝑠,𝜋𝜋 𝑠𝑠𝑠𝑠  
Choose Local Sampling vs. Global Sampling 
Local Sampling: 

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠 =
𝜇𝜇𝜋𝜋 𝑠𝑠 2 3⁄

∑ 𝜇𝜇𝜋𝜋 𝑠𝑠′ 2 3⁄
𝑠𝑠′

𝑁𝑁 + 𝑀𝑀𝑀𝑀  

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠 − 𝑁𝑁 𝑠𝑠,𝜋𝜋 𝑠𝑠 + 
Global Sampling: 

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠 =
𝜌𝜌𝜋𝜋 𝑠𝑠

∑ 𝜌𝜌𝜋𝜋 𝑠𝑠′𝑠𝑠′
𝑁𝑁 + 𝑀𝑀𝑀𝑀  

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 = 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠 − 𝑁𝑁 𝑠𝑠,𝜋𝜋 𝑠𝑠
+
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Local vs. Global Exploration 
Choose the exploration method (local vs. global) that most 
efficiently shrinks the confidence interval Δ𝑉𝑉(𝑠𝑠0).  
“efficiency” = expected improvement per sample 
Local sampling: ΔΔ𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠0) 
 Use extended VI EBB formula assuming no change in variances 

Global sampling: ΔΔ𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑠𝑠0)  
 Use trajectory-wise EBB formula  assuming no change in variances 

 

Efficiency𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
ΔΔ𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠0
∑ 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛 (𝑠𝑠)𝑠𝑠

 

 

Efficiency𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
ΔΔ𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠0
∑ 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠
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Policy Optimization Experiments 

Methods: 
Fiechter: Samples along trajectories to maximize the total 

shrinkage of local Hoeffding confidence intervals (Fiechter, 
1994) 

DDV:  Local Extended Value Iteration with EBB to greedily 
reduce Δ𝑉𝑉 𝑠𝑠0 .   Extends (Dietterich, Taleghan & Crowley, 2013) 

LGCV: Our new method 
 

Metric: # of samples required to drive ΔV s0 ≤ 0.1 ×
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 with probability 0.95 
Halted at 1 × 107 samples 
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Policy Optimization Results 
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Summary 
New algorithms for Monte Carlo policy evaluation 
Experiments show that in our benchmark problems, 
the Empirical Bernstein Bound is tighter than 
Hoeffding or Weissman 
Trajectory-wise EBB is usually tighter than the bound 

obtained by Extended Value Iteration using a local EBB at 
each state 

New PAC-RL algorithm for MDP planning 
Combines an upper bound based on EVI with local EBB 
And a lower bound based on equivalent trajectories and 

global EBB 
42 
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