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Data  Models  Policies 

Managing Earth’s ecosystems is a control problem 

We need 

A model of the “plant” 

An optimal controller 

 

Our research: 

Machine learning methods for modeling ecosystem 

dynamics from data 

Approximate Stochastic Dynamic Programming algorithms 

for creating optimal controllers 
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Outline 

Model of the plant 

Towards a Dynamical Model of Bird Migration 

Optimal control 

Managing wildfire in Eastern Oregon 

Managing invasive plant species in the US Intermountain 

West 
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Bird Distribution and Migration 

Management: 
 Many bird populations are declining 

 Predicting aircraft-bird interactions 

 Siting wind farms 

 Night-time lighting of buildings (esp. skyscrapers) 

 How will climate change affect bird migration and survival? 

 

Science: 

What is the migration decision making policy for each species 
 When to start migrating? 

 How far to fly each night? 

 When to stop over and for how long? 

 When to resume flying? 

 What route to take? 
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Why bird migration is poorly 

understood 

It is difficult to observe 

Takes place at continental scale (and beyond) 

 Impossible for the small number of professional 

ornithologists to collect enough observations 

Very few birds have been individually tracked 
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What Data Are Available? 

Birdwatcher count data: eBird.org 

Doppler weather radar 

Night flight calls 
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eBird Data 
Bird watchers record their observations in a 

database through eBird.org. 

 “Citizen Science” 

Dataset available for analysis 

Features 
 LOTS of data! 

 ~3 million observations reported last May 

 All bird species (~3,000) 

 Year-round 

 Continent-scale 

Challenges 
 Variable quality observations  

 No systematic sampling design 
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Doppler Weather Radar 
 Weather radar detects migrating birds 

ICGG 2012 

 Can estimate total 

biomass 

 No species information 

 Archived data available 

back to 1995 
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Night Flight Calls 

 Many species of migrating birds emit flight 

calls that can be identified to species or 

species group 

 New project at Cornell to roll out a large 

network of recording stations 

 Automated detection and classification 

 DTW kernel 

 Damoulas, et al, 2010 

 Results on 5 species 

 Clean recordings 
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Bird Migration Modeling 

Given observations from ebird, radar, flight calls 

Reconstruct migration behavior 

 

Given observations + weather forecast 

Predict migration behavior for next 24 hours, next 5 days 
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Machine Learning Challenge 

Migration most naturally described at level of 

individual behavior, but we can only observe 

population-level statistics 

We need a modeling technique to link the two 

 

Our Approach: Collective Graphical Models 
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Modeling Approach 

Place a grid of cells over North America 

State of a bird at time 𝑡 = cell it occupies at time 𝑡 

 

 

 

 

 

 

 

 Aggregate data: does not track individual birds 
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Hidden Markov Model 

Let 𝑛𝑡
𝑠(𝑖) be the number of species 𝑠 in cell 𝑖 at time 𝑡 

Let 𝒏𝑡
𝑠 be a vector of 𝑛𝑠

𝑡(𝑖) across all cells 𝑖 = 1, … , 𝑁 

HMM dynamics: 𝑃(𝒏𝑡
𝑠|𝒏𝑡−1

𝑠 , 𝐱t) 

 𝑃(𝑛𝑡
𝑠(𝑖)|𝒏𝑡

𝑠, 𝒙𝑡) is the probability distribution of the number of 

birds in cell 𝑖 at time 𝑡 given the locations of the birds in all 

previous cells in the previous time step 𝑡 − 1 

 𝒙𝑡 is a vector of attributes describing system inputs (weather, 

temperature, wind, vegetation) that influence bird behavior 

HMM observations: eBird counts, radar, acoustic detections 
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Diagram of the Migration Model 
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 Species 𝑠 

 Observers 𝑜 

 Sites 𝑖 

 Acoustic stations 𝑘 

 Radar sites 𝑣 
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HMM with added features 
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Computational Challenge 

Inference in this HMM is intractable 

Population size > 5 Billion 

Solution: Gibbs Sampling over the “bird flows” in the 

HMM 

Sheldon & Dietterich (NIPS 2011) presents a fast 

Gibbs sampler that takes time independent of the 

population size 
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Results  
 Running time 

 

 

 

 

 

 

 

 

 

 

 

 Running time independent of population size 

 Previous best: exponential 
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Bird Migration Summary 

Fitting Dynamical Models to Multiple Data Sources 

eBird + radar + night flight calls 

Collective Graphical Models: General Methodology 

Fast Gibbs sampler for CGMs (independent of population 

size) 

 

Stay tuned for BirdCast 

Follow our progress at www.ebird.org  
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Outline 

Model of the plant 

Towards a Dynamical Model of Bird Migration 

Optimal control 

Managing wildfire in Eastern Oregon 

Managing invasive plant species in the US Intermountain 

West 
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Managing Wildfire in Eastern 

Oregon 

ICGG 2012 

 Natural state (hypothesized): 

 Large Ponderosa Pine trees with 

open understory 

 Frequent “ground fires” that remove 

understory plants (grasses, shrubs) 

but do not damage trees 

 

 Fires have been suppressed since 

1920s 

 Large stands of Lodgepole Pine 

 Heavy accumulation of fuels in 

understory 

 Large catastrophic fires that kill all 

trees and damage soils 

 Huge firefighting costs and lives lost 
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Study Area: Deschutes National 

Forest 

ICGG 2012 

 Goal: Return the landscape to its 

“natural” fire regime 

 

 Management Question:  

 LET-BURN: When lightning ignites 

a fire, should we let it burn? 

 

 ~4000 management units 
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LET BURN 

Model of System Dynamics 
 Model of lightning strikes and fire ignitions 

 Model of fire spread (suppressed or not suppressed) 

 Model of fire duration (suppressed or not suppressed) 

 Model of suppression costs 

 Model of forest growth (including fuel accumulation) 

 

 For year = 1, ..., 100 
 For fire = 1, ..., NFires 

 ignite fire 

 decide whether to SUPPRESS or LET BURN  (control input) 

 burn fire 

 Grow vegetation 

 Objective: Expected discounted benefit 
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Expected Benefit of LETBURN 
(Suppress all fires after year 1) 
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Next Steps 

Single Year LETBURN Study: 

Several model improvements 

 Include standard forest harvest policy 

 Include more accurate timber value 

 

100-year Dynamic LETBURN Study 

Needed: Approximate Dynamic Programming algorithms that 

can scale to immense state space 

 4000 management units 

 Each unit in one of 25 states 

 254000 possible states 
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Outline 

Model of the plant 

Towards a Dynamical Model of Bird Migration 

Optimal control 

Managing wildfire in Eastern Oregon 

Managing invasive plant species in the US Intermountain 

West 
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Invasive Species Management in 

River Networks 

Tamarisk: invasive tree from the 

Middle East 

 Out-competes native vegetation for 

water 

 Reduces biodiversity 

 

What is the best way to manage 

a spatially-spreading organism? 
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System Dynamics 

Tree-structured river network 

Each edge has H “sites” where a tree can 

grow. 

Each site can be 

 {empty, occupied by native, occupied by 

invasive} 

 In each time period: 

 Natural death 

 Seed production 

 Seed dispersal (preferentially downstream) 

 Seed competition to become established 

Management actions 

 {do nothing, eradicate, restore, eradicate+restore} 

1 2 

3 

4 

5 
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Economic Model 

Minimize expected discounted costs (sum of cost of invasive 

plus cost of management) 

 

Subject to annual budget constraint  
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Algorithm 

Approximate computation of transition probabilities 

 Exact computation is intractable 

 Compute highly-accurate Monte Carlo estimates from simulator 

 [This is actually the rate-limiting step] 

Exact solution via value iteration 

 Large memory: 14 Billion state-action combinations 
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Rule of Thumb Policies 

(from literature) 

Triage Policy 

 Treat most-invaded edge first 

 Break ties by treating upstream first 

Leading edge 

 Eradicate along the leading edge of the invasion 

Chades, et al.  

 Treat most-upstream invaded edge first 

 Break ties by amount of invasion 

Optimal 

 Our exact solution to the control problem 
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Cost Comparisons: Rule of Thumb 

Policies vs. Optimal 
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Summary 

Model of the plant 

Towards a Dynamical 

Model of Bird Migration 

Optimal control 

Managing wildfire in 

Eastern Oregon 

 

Managing invasive plant 

species in the US 

Intermountain West 

 MCMC algorithm for inference in 

Collective Hidden Markov Mode 

 eBird + radar + acoustics 

 

 

 Approximate Dynamic 

Programming using Monte Carlo 

trials 

 

 Exact Dynamic Program using 

Monte Carlo estimates of 

transition probabilities 
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