
Machine Learning for Ecological 

Science and Environmental Policy 

Tom Dietterich, Rebecca Hutchinson, Dan Sheldon 

Oregon State University 

JCC 2012 Tutorial 1 



The Distinguished Speakers Program  

is made possible by 

For additional information, please visit http://dsp.acm.org/ 

JCC 2012 Tutorial 2 

http://dsp.acm.org/


Introduction 
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 Ecological Science 

 Processes governing the function 

and structure of ecosystems 

 Flows of energy and nutrients 

 Sunlight, water, carbon, nitrogen, 

phosphorus 

 Species distribution and interaction 

 Reproduction, Dispersal, Migration, 

Invasion 

 Competition, Food Webs, Mutualism 

 Non-equilibrium systems: Continual 

disturbance and system resilience 

 Many species depend on disturbances 

Wikipedia; http://www.plantbio.uga.edu/~chris/wind.html 



Introduction 
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 Environmental Policy 

 Natural resource management 

 Fisheries 

 Forestry 

 Water resources (rivers, aquifers, 

estuaries) 

 Conservation biology 

 Reserves and conservation 

easements 

 Endangered species 

 Endangered ecosystems 

 Invasive species management 

 



Data  Models  Policies 
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 Data Acquisition 

 Sensor Placement 

 Data Interpretation 

 Model Fitting 

 Species Distribution Models 

 Dynamical Models 

 Policy Optimization 

 MDPs 

 POMDPs 

 Network cascades 

Data 

Integration 

Data 
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Optimization 

Sensor 

Placement 

Policy 

Execution 



Unique Aspects 
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 Heterogeneity 
 Physical quantities (nutrients, temperature, wind) 

 Organisms and species (viruses, bacteria, fungi, plants, animals) 

 Spatial Scale (inside a single organism, watershed, continent, planet) 

 Hidden dynamics 
 Virtually all interactions are not directly observed 

 Observations are noisy and incomplete 

 Most movement (dispersal, migration) is not directly observed 

 Non-stationary dynamics: climate change, land-use change, evolution 

 Optimization wrt learned dynamic models 
 Large spatio-temporal MDPs 

 Essential POMDPs 

 Need for robust solutions 
 poorly-modeled dynamics 

 politics 



Goals for the Tutorial 
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 Review the primary data sources, model types, and 

machine learning and optimization problems that arise in 

ecological science and environmental policy 

 Provide examples of current optimization and machine 

learning work in each of these areas 

 Point out open problems and opportunities for additional 

research 

 Provide pointers to data sets and relevant literature 



Outline 
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 Data Acquisition 
 Sensors:  Physical sensors, human 

observers, repurposing data from other 
sources 

 Data interpretation: Extracting signals 
from data 

 Ecological Models 
 Species Distribution Models 

 Dynamical Models: Dispersal, Migration, 
Invasion, Climate Change 

 Policy Optimization 
 Conservation: Reserve design, 

Network design 

 Invasive species: Eradication, 
restoration, monitoring 

 Fisheries: Managing harvest levels 

 

Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Sensor 

Placement 

Policy 

Execution 



Part 1: Data Acquisition 
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 Data Sources 

 Instruments placed in the environment: 

 Weather stations: temperature, wind direction, wind 

speed, solar radiation, relative humidity, snow depth, 

precipitation 

 Stream gauging stations: water flow rate, temperature, 

height 

 Isotope and dye studies: Carbon, Nitrogen, 

Phosphorous 

 RFID tags: Fish 

 Radio collars: mammals and birds 

 Acoustic monitoring 

 Birds, insects, bats, whales 

atstrack.com biomark.com 

Se
n
so

rS
co

p
e
 

wildlifeacoustics.com 



Data Acquisition: Human Observation 
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 Trapping and identification 

 Insect traps: emergence, 

malaise, UV light 

 Electro-fishing 

 Kick nets 

 Volunteers 

 Bird sightings 

 Whale observations 

 



Data Acquisition: Repurposing Data 

Gathered for Other Purposes 
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 Repurposing information gathered 

for other purposes 

 Fish catch data 

 Doppler weather radar 

 



Data Acquisition: Remote Sensing 
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 Satellite-borne Sensors 

 Landsat 7 

 15m resolution;  whole planet coverage every 16 days 

 MODIS 

 250m-1km resolution; whole planet coverage every 1-2 days 



Sensor Placement 
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 Where should we place sensors to 

gain the best information for... 

 improving our models 

 improving our policies 

 guiding policy execution 

 

 Related questions in ML 

 Active Learning 

 Exploration in Reinforcement 

Learning 

 Optimal POMDP policies 

Data 
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Basic Case: Spatial Sensor Placement for 

Real-Valued Function 𝑓  [Krause, et al., 2008] 
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 Examples:  Temperature, Rainfall, Nutrient 

Density, Pollutant Density 

 Goal:  At each time 𝑡, we will observe the 

sensor readings (at the chosen locations) and 

estimate the complete spatial map of the 

target function 𝑓 

 Given: 

 Initial model or initial set of observations 

 Budget: # of sensors 𝑘 

 Find: 

 Locations at which to put the sensors in order 

to best estimate the function at future times 

 



Approach 

15 

 Discretize space: 
 Let S be a set of points (𝑠1, … , 𝑠𝑁) 

 where sensors can be placed 

 where we will make predictions 

 Assume joint Gaussian 

 (𝑓 𝑠1 , … , 𝑓 𝑠𝑁 )~Norm 𝝁, 𝚺  

 where 𝝁 has dimension 𝑁 and 

 𝚺 has dimension 𝑁 × 𝑁 

 Use the initial observations to 
estimate 𝚺 

 Choose an objective function 𝐽(𝐴) 
for evaluating the quality of a set of 
sensor locations 𝐴 

 Formulate an optimization problem 
to choose a set 𝐴 ⊂ 𝑆 of size 𝑘 that 
optimizes 𝐽(𝐴).  

 Place sensors at points 𝐴 

JCC 2012 Tutorial 



What Criterion to Optimize? 
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 Estimate the amount of 

information that the chosen 

points tell us about the not-

chosen points 

 𝐼 𝑋𝐴; 𝑋𝑆\A  = “mutual 

information” 

 

 𝐽 𝐴 = 𝐼 𝑋𝐴; 𝑋𝑆\A  will be 

our “objective function” 

 Choose 𝐴 to maximize 𝐽(𝐴) 

𝐴 𝑆\𝐴 



What Criterion to Optimize? 
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 Rationale: 

 empirical:  gives good results 

 computational: easy to compute for Gaussian distributions 

 analytical:  objective is sub-modular 

 Greedy Algorithm with provable bounds 

 

 Submodularity: 

 𝐽 is submodular if for all 𝐴 ⊆ 𝐴′ and all 𝑎 ∈ 𝑆\A′,  
𝐽 𝐴 ∪ 𝑎 − 𝐽 𝐴 ≥ 𝐽 𝐴′ ∪ 𝑎 − 𝐽(𝐴′) 

“diminishing returns of adding 𝑎” 

 
𝐴 

𝐴′ 

{𝑎} 

{𝑎} 

𝐽 
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Greedy Algorithm 

18 

 Input: 

 Sites: 𝑆 

 Number of sensors: 𝑘 

 Estimated covariance matrix of joint Gaussian:  𝚺 

 Output: sensor locations 𝐴 ⊂ 𝑆, 𝐴 = 𝑘 

 begin 

 𝐴 ← ∅ 

 for 𝑗 = 1 to 𝑘 do 

 𝑎∗ ← argmax
𝑎∈𝑆\A

  𝐽(𝐴 ∪ 𝑎 ) 

 𝐴 ← 𝐴 ∪ 𝑎∗  

 end 
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Analytical Bound 

19 

 Monotonicity assumption:  
∀ 𝑎 ∈ 𝑆\A    𝐽 𝐴 ∪ 𝑎 > 𝐽 𝐴 + 𝜖 

 

 Let 𝐴  be the greedy solution and 𝐴∗ be 

the optimal solution 

𝐽 𝐴 ≥ 1 −
1

𝑒
𝐽 𝐴∗ − 𝑘𝜖  

 1 −
1

𝑒
≈ 0.632 

 

 Assumption will hold if 𝑆 is discretized 

sufficiently finely 
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Experimental Accuracy 
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 Theoretical bound is 63.2% 

of optimal 

 Greedy algorithm is closer 

to 95% of optimal in this 

case 

Intel Berkeley Temperature Sensors 
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Data Interpretation 
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 Extracting high level 

interpretation from low-level 

sensor data 

 Example I:  Arthropod Population 

Counting 

 Example 2:  Finding Swallow Roosts 

in Doppler Weather Radar 

Data 
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Data 
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Policy 
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Execution 



Arthropod Population Surveys 
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 Arthropods are a powerful data 
source 
 Found in virtually all environments 

 streams, lakes, oceans, soils, birds, mammals 

 Provide valuable information on 
ecosystem function 
 Standard tool for evaluating stream health 

in EPA biomonitoring and stream 
restoration efforts 

 Problem: Identification is time-
consuming and requires hard-to-find 
expertise 

 Solution: Combine robotics, computer 
vision, and machine learning to 
automate classification and population 
counting 



OSU BugID Project 
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 Human technician gathers 

field sample 

 Semi-automated image 

capture 

 Automated classification 

w
w

w
.e

p
a.

go
v 



Computer Vision Challenge:  

Fine-Grained Classification 
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 Challenges: 

 Many classes 

 Subtle differences between 

classes 

 Wide variety of poses 

 Substantial size and 

appearance variation within 

class 



Hypotheses 
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 Fine-grained classification requires 

 High-resolution images 

 Non-uniform extraction of information from the image 

 

 Existing object recognition methods 

 Break image into set of patches 

 Extract a fixed number of bits from each patch  

 e.g., via vector quantization, filter banks, PCA, etc. 

 Classify image using extracted information 

 

 



Patch 

Classifier 

A “Variable Resolution” Method for Object 

Recognition 
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 Stacked Patch Classifiers 

 Learn a classifier that tries to classify the whole image using 

detailed information from a single patch 

 Combine the single-patch classifications into a classification for 

the whole image 

[Martinez, et al, 2009] 
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Results on STONEFLY9 Dataset 
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 Variable resolution method is much more accurate 

Configuration Error Rate 

Fixed resolution method 16.1% 

Stacked Patch Classifier   5.6% 



EPT54: 54 Species of Freshwater 

Macroinvertebrates 
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 Stacked Patch Classifier: 74.3% Correct  
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Rejection Rate 

Open Problems 
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 Rejection:  

 Maximize recall subject to high 

precision 

 Detect and reject novel (i.e., 

unknown to the classifier) 

species 

 Scale to thousands of species 

 Hierarchical loss functions 

 Order, Family, Genus, Species 

 Classify as finely as possible 

while bounding error rate 



Tracking Tree Swallow Roosts 

Using NEXRAD Radar 
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The Dream 

 Automatic detection of roosts 
at continent-scale on daily basis 
 Data gathering and repurposing 

 

 Unprecedented view of species 
distribution 
 Spatial coverage 

 Temporal resolution 

 

 Analyze results to learn about 
 Roost biology 

 Migration patterns 

 Climate change 
 Data archived since 1991 

Source: NOAA 

33 

[Winkler, 2006] 
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Machine Learning Pipeline (1) 
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 Primary goal: data reduction 

 High recall 

 Many false positives 

Step 1: Fast  

Unsupervised 

Detector 

Radar scans 

(terabytes) 

Candidate 

roosts 



Machine Learning Pipeline (2) 
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Step 2: 

Supervised 

Classifier 

 Shape features 

 Biology features (velocity, habitat, weather, etc.) 

Candidate 

roosts 

Detections 



Machine Learning Pipeline (3) 
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Step 3: 

Sequence 

assembly 

(Multiple Target 

tracking) 

Roost 1 

Roost n 

Detections 

(all frames) Sequences 

… 

 Motivation:  

 Improve detection by using temporal context 

 Extract high-level information such as duration, maximum size, etc. 



Progress: Machine Learning 
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 Steps 1 and 2 
 Primarily shape features to-date 

 High precision for roosts with “perfect appearance” 

 Variability in appearance is challenging  low recall 

100 positive examples Top 100 predicted roosts 

(shape features + SVM) 



Initial Results 
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 filter: simple “matched 

filter” based on 

average appearance 

 HOG and HOG+VR: 

learned classifier for 

single images 

 seq: combining a 

sequence of images 0 0.2 0.4 0.6 0.8
0
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Progress: Ecology 
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 Locating roosts 

 Identifying roosts in radar images 

 Labeling efforts 

 Estimate ground location within a 
few km 

 Previously difficult task 

 15+ roosts located in 2010-2011 

 Oregon, Florida, Louisiana 

 

 Analysis of labeled data 

 Understand regional patterns 

 Roost growth dynamics  

 Very predictable 

 Potential species ID from radar! 

JCC 2012 Tutorial 
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Summary 
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 Ongoing project 

 A lot of work remains to reach “the dream” 

 Significant opportunity for ML and ecology to develop in 

parallel 



Data Integration 

 Integrating heterogeneous data sources to 
predict when migrating birds will arrive: 
 Landsat (30m; monthly) 

 land cover type 

 MODIS (500m; daily/weekly) 
 land cover type 

 “greening” index 

 Census (every 10 years) 
 human population density 

 housing density and occupation 

 Interpolated weather data (15 mins) 
 rain, snow, solar radiation, wind speed & direction, 

humidity 

 Integrated weather data (daily) 
 warming degree days 

 Digital elevation model (rarely changes) 
 elevation, slope, aspect 
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Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Sensor 

Placement 

Policy 

Execution 



Questions on Part 1? 
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Part 2: Ecological Models 
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Outline 
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 Data Acquisition 
 Sensors:  Physical sensors, human 

observers, repurposing data from other 
sources 

 Data interpretation: Extracting signals 
from data 

 Ecological Models 
 Species Distribution Models 

 Dynamical Models: Dispersal, Migration, 
Invasion, Climate Change 

 Policy Optimization 
 Conservation: Reserve design, Network 

design 

 Invasive species: Eradication, restoration, 
monitoring 

 Fisheries: Managing harvest levels 
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Ecological Models 

 Species Distribution Models 

 Static descriptions of the geographic distribution of a species. 

 Address the fundamental ecological question of why species 

are found where they are. 

 

 Dynamical Models 

 Account for dynamic ecological processes like dispersal, 

migration, population growth, etc. 
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 Yellow-throated vireo 

Example 

46 

Images are from Figure 1 

in Phillips, et al., 2004. 

Presence locations Avg. temperature 

Prediction 



Species Distribution Models (SDM) 

47 

 Prediction Task: 
 Given a feature vector 𝒙 describing a site, predict whether the 

species occurs there 𝑦 ∈ {0,1} 
 

 Standard Supervised Learning 
 Given training examples 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁   
 Learn a predictive model 𝑓 such that 𝑦 = 𝑓(𝑥) 

 

 Purposes: 
 Mapping the current distribution of a species 

 
 Understanding habitat requirements for the species 

 
 Predicting distribution in places where there is no data 

available 

JCC 2012 Tutorial 



SDM: Data 

48 

 Types of 𝑦 
 Presence-only 

 Presence/absence 

 Abundance 
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eBird Data 

 Bird watchers record their observations in a 
database through eBird.org. 

 “Citizen Science” 

 Dataset available for analysis.  (see references) 

 Features 
 38,599 observers; 336,088 locations 

 2.4M checklists; 41.7M observations 

 All bird species (~3,000) 

 Year-round 

 World wide 

 Challenges 
 Variable quality observations  

 No systematic sampling plan 
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SDM: Methods 
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 Envelope Models 

 Bioclim 

 

 Statistical and Machine Learning Models 
 Maxent 

 Generalized Linear Models 

 Generalized Additive Models 

 Multivariate Adaptive Regression Splines 

 Hierarchical Bayesian modeling 

 Boosted regression trees 

 Random forests 

 Genetic algorithms 

…and more! 
JCC 2012 Tutorial 



ML is already having an impact in SDM 

51 

 

 16 methods 

 226 species 

 6 regions 

 

 

 

 

 General result: new(er) statistical and/or machine learning 
methods outperformed older envelope/distance style models. 

JCC 2012 Tutorial 



52 Elith et al, 2006 

Older,  

envelope-style  

models 

Statistical, regression-style models 

Newer,  

machine 

learning-style 

models 
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Leathwick et al, 2008 
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Disregarding costs  

to fishing industry 

Full consideration of costs  

to fishing industry 

Leathwick et al, 2008 



Three SDM Challenges 
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 Presence-only data 

 Extrapolation beyond the training data 

 Imperfect detection of the species on surveys 

 Often lack prior knowledge of the system for model building 

 Observers have variable expertise/biases 
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Challenge #1: Presence-only data 
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 Problem: some data sources only contain records of 

presence (e.g., museum collections) 

 

 Solution: Maximum entropy modeling (Maxent)  

 

Phillips, et al, 2006 



Positive-Only Learning Problem 
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 Given: 

 Training examples 𝑥1, … , 𝑥𝑁 where the species is present 

 These are assumed to be drawn from an unknown probability 

distribution:  𝜋 𝑥 = 𝑃(𝑥|𝑦 = 1) 

 A set of feature functions 𝜙1, … , 𝜙𝐽 such that 𝜙𝑗 𝑥  computes 

the value of the 𝑗th feature of 𝑥.  Let 

Φ 𝑥 = 𝜙1 𝑥 , … , 𝜙𝐽 𝑥 . 

 Find: 

 A good approximation 𝜋  to 𝜋 



Method: The Maximum Entropy Principle 
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 Maximum entropy principle: Among all distributions 
consistent with the data, prefer the distribution of 
maximum entropy 

 Find the maximum entropy distribution subject to 
expectation constraints: 

𝜋 = argmax
𝑞

𝐻(𝑞)  subject to E𝑞 𝜙𝑗 𝑥 =
1

𝑁
 𝜙𝑗(𝑥𝑖)𝑖  ∀𝑗  

 Intuition: 

 The average value of temperature according to the model 
should match the average value of temperature in the data 

 The average value of elevation according to the model should 
match the average value of elevation in the data 

 While making as few additional assumptions as possible 



Solving the Maxent Optimization 

59 

 Step 1: Relax the constraints: 
𝜋 = argmax

𝑞
𝐻(𝑞)  subject to 

Eq 𝜙𝑗 𝑥 −
1

𝑁
 𝜙𝑗(𝑥𝑖)

𝑖

≤ 𝛽𝑗   ∀𝑗 

 Step 2: Assume a parametric form for 𝜋 : 

𝜋 𝑥 =
1

𝑍 𝒘
exp[𝒘 ⋅ Φ 𝒙 ] 

 Step 3: Apply duality methods to show this is equivalent 

to an 𝐿1-regularized linear optimization 

𝒘 = argmax
𝒘

 𝒘 ⋅ Φ 𝑥𝑖

𝑖

−  𝛽𝑗|𝑤𝑗|

𝑗
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Obtaining an SDM 
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 Problem:  We have a model 𝜋  of 𝑃(𝑥|𝑦 = 1) but we want 
a model of 𝑃 𝑦 = 1 𝑥 . 

 Solution:  Apply Bayes’ Rule 
 

𝑃 𝑦 = 1 𝑥 =  
𝑃 𝑥 𝑦 = 1 𝑃(𝑦 = 1)

𝑃(𝑥)
 

 𝑃(𝑦 = 1) is the “abundance”.  It is a constant that is not 
identifiable from presence-only data. 

 𝑃(𝑥) is the “background distribution” of the study area (often 
assumed uniform). 

 Therefore, 

 

𝑃 𝑦 = 1 𝑥 ∝ 𝜋 𝑥  



Creating a Usable Tool 
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 Free software package for SDM 

 http://www.cs.princeton.edu/~schapire/maxent/  

 Has had a huge impact in the ecology literature 

 Provides a rich set of feature types 𝜙𝑡 

 linear 

 quadratic 

 thresholds 

 ramps 

 pairwise products of these 

 Provides default settings for the 𝛽s 

 The method requires tuning a separate 𝛽𝑗 for each feature, which is 

hard to do via cross-validation. 

 Defaults are based on tuning for 6 datasets from Elith, et al. [2006] 

 

http://www.cs.princeton.edu/~schapire/maxent/


 Yellow-throated vireo 

Example 

62 

Images are from Figure 1 

in Phillips, et al., 2004. 

Presence locations Avg. ann. temperature 

Maxent prediction 



Challenge #2: Extrapolation 
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 Problem: at continental scale, learned models may 

extrapolate too far and make mistakes 

 

 Fink, et al., 2010: “Spatiotemporal exploratory models for 

broad-scale survey data” 

 

Fink, et al, 2010  
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Winter Distribution 

Tree Swallow  

Winter Distribution Analysis  

 

(Tachycineta bicolor) 

eBird Bagged 
Decision Trees 

Wetland Coverage > 5% 

 “Wetland” should really be “Wetland at time 𝑡” 

 Lack of data for northern US in winter time (people don’t go bird 

watching in the snow) 

slide courtesy of Daniel Fink 



STEM: Ensemble Method 
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 Idea:  

 Slice space and time into 

hyperrectangles:  

 latitude x longitude x time 

called “stixels” 

 Train a classifier on the data 

inside each stixel 

 To predict at a new point 𝑥 

at a given place 𝑙𝑜𝑐(𝑥) and 

time 𝑡(𝑥), vote the 

predictions of all classifiers 

whose stixel contains 

(𝑙𝑜𝑐 𝑥 , 𝑡 𝑥 ) 

Fink, et al, 2010  

𝑙𝑜𝑐(𝑥) 

𝑡(𝑥) 



Key Idea 
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 Because each classifier is only asked to predict within its 

stixel, it will never extrapolate beyond the stixel 



STEM SDM: Solitary Sandpiper 

slide courtesy of Daniel Fink 
67 



STEM SDM: Indigo Bunting   

slide courtesy of Daniel Fink 



Challenge #3: Imperfect Detection 
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 Problem: many species are hard to detect even when 

present, so their data contain false negatives 

 

 Solution:  

 visit each site several times 

 use a hierarchical model to describe the data collection 

process explicitly and correct for false zeros 

MacKenzie, et al, 2006 

 



Wildlife Surveys with Imperfect Detection 

70 

Problem 1: We don’t observe everywhere Problem 2: Some birds are hidden Partial Solution: Multiple visits: Different birds hide on different visits 
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Multiple Visit Data 
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Detection History 

 

Site 

True occupancy 

(latent) 

Visit 1 

(rainy day, 

12pm) 

Visit 2 

(clear day, 6am) 

Visit 3 

(clear day, 9am) 

A  

(forest, 

elev=400m) 

 

1 

 

0 

 

1 

 

1 

B  

(forest, 

elev=500m) 

 

1 

 

0 

 

1 

 

0 

C  

(forest, 

elev=300m) 

 

1 

 

0 

 

0 

 

0 

D  

(grassland, 

elev=200m) 

 

0 

 

0 

 

0 

 

0 
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𝑑13 𝑑12 

Probabilistic Model with Latent Variable 𝑍 
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  𝑋1 

  𝑍1= 1 

  𝑤11   𝑤12   𝑤13 

  𝑦11= 0   𝑦12= 1   𝑦13= 1 

(rain, 12pm) (clear, 6am) (clear, 9am) 

(forest, 400m) 

𝑜1 

𝑑11 

  𝑋4 

  𝑍4= 0 

  𝑤41   𝑤42   𝑤43 

  𝑦41= 0   𝑦42= 0   𝑦43= 0 

(rain, 12pm) (clear, 6am) (clear, 9am) 

(grassland, 200m) 

... 
𝑜4 

𝑑41 𝑑42 𝑑43 

MacKenzie, et al, 2006 
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Occupancy Model 

Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

Covariates of  
occupancy 
(e.g.  
elevation, 
vegetation) 

Covariates of  
detection (e.g.  
time of day, 
effort) 

Observed presence/absence 
Yit | Zi ~ Bern(Zidit) 

True (latent) presence/absence 
Zi ~ Bern(oi) 

Probability of occupancy 
(function of Xi, a) 

Probability of detection 
(function of Wit, b) 

Sites 

Visits 

MacKenzie, et al, 2006 

 



Typical Parameterization 

74 74 74 

 

MacKenzie, et al, 2006 

 Model selection:  

 construct models including different sets of occupancy 

and detection covariates 

 evaluate fit with AIC 

 hypothesis tests/confidence intervals 

log
𝑜𝑖

1 − 𝑜𝑖
= 𝐹 𝑋𝑖 = 𝛼 ⋅ 𝑋𝑖 

log
𝑑𝑖𝑡

1 − 𝑑𝑖𝑡
= 𝐺 𝑊𝑖𝑡 = 𝛽 ⋅ 𝑊𝑖𝑡 



Imperfect Detection +  

Lack of Prior Knowledge 

75 

 Problem: occupancy models require parametric 

assumptions too rigid for exploratory modeling of big 

data sets 

 

 Solution: incorporate flexible models into the model 

while maintaining hierarchical structure to account for 

imperfect detection 

Hutchinson, et al, 2011 



Integrating regression trees 
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 Fit with functional gradient descent [Friedman, 2001] 

 On each iteration:  
 compute pseudo-targets (gradient of loss at each data point) 

 grow another tree to predict pseudo-targets 

 compute a weight for the tree and add to ensemble 

 Maximizes log-likelihood of occupancy model 

Hutchinson, et al, 2011 

log
𝑜𝑖

1 − 𝑜𝑖
= 𝐹 𝑋𝑖 =  𝜌𝑗

𝑜
𝑡𝑟𝑒𝑒𝑗

𝑜
𝑋𝑗

𝐽

𝑗=1

 

log
𝑑𝑖𝑡

1 − 𝑑𝑖𝑡
= 𝐺 𝑊𝑖𝑡 =  𝜌𝑗

𝑑
𝑡𝑟𝑒𝑒𝑗

𝑑
(𝑊𝑖𝑡)

𝐽

𝑗=1
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Synthetic Species 

built from eBird 

covariates (with  

non-linearities) 

 

S = supervised, with no 

latent structure  

(left column) 

 

OD = occupancy 

model structure  

(right column) 

 

LR = linear  

(top row) 

 

BRT = tree-based  

(bottom row) 

Hutchinson, et al, 2011 JCC 2012 Tutorial 



Imperfect Detection + Variable Expertise 
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 Problem: expert and novice observers contributing 

observations to citizen science data generate different 

mistakes/biases 

 

 Solution: extend occupancy models so that observer 

expertise affects the detection model 

Yu, et al, 2010 



Extending Occupancy Models 
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Yit Zi 

i=1,…,M 

Xi Wit 

oi 
dit,fit 

t=1,…,T 

j=1,…,N 

vj Observer 

covariates 

Expert/novice observer Expertise probability (function of U) 

Observers 

d’it,f’it 

Ej Uj 

Yu, et al, 2010 
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Hard-to-detect 

birds 

Common birds 

Yu, et al, 2010 



A few SDM Challenges 
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 Presence-only data 

 Predictor-response relationships are non-stationary 

 Imperfect detection of the species on surveys 

 Often lack prior knowledge of the system for model building 

 Observers have variable expertise/biases 

 Sampling bias 

 Extrapolation (e.g. under climate change) 

 Evaluation strategies 

 Estimating temporal trends directly 

 More biologically-realistic models 

 Multi-species models 

 Models of abundance (instead of presence/absence) 
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Sampling Bias 

 eBird participants tend to stay close to home. 

 How can we make good predictions uniformly across the 
U.S.? 

82 

Cardinals
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Inappropriate Extrapolation 

83 http://data.prbo.org/cadc2/index.php?page=climate-change-distribution 

Model  

learned  

with data  

from  

1992-2007 

Applied to  

conditions  

projected  

for 2070,  

according  

to IPCC  

scenarios 



A few SDM Challenges 
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 Presence-only data 

 Predictor-response relationships are non-stationary 

 Imperfect detection of the species on surveys 

 Often lack prior knowledge of the system for model building 

 Observers have variable expertise/biases 

 Sampling bias 

 Extrapolation (e.g. under climate change) 

 Evaluation strategies 

 Estimating temporal trends directly 

 More biologically-realistic models 

 Multi-species models 

 Models of abundance (instead of presence/absence) 
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Ecological Models (part 2): 

Dynamical Models 
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Dynamical Models 

 Dynamics are Central to Ecology 
 Population growth, animal movement, 

predator/prey interaction, evolutionary game 
theory,  etc. 

 

 We will look at two particular models of 
broad-scale population dynamics 
 Bird migration 

 Metapopulations 

 

 Primary motivation: treat species 
distributions explicitly as spatiotemporal 
processes 
 Foundation for prediction about future 

outcomes 

 In contrast with SDMs 
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Dynamical Model #1: Bird Migration 
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 Motivation: eBird demonstrates clear migration patterns (but without a dynamical 
model) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Unique opportunity to extract quantitative knowledge about migration 



Challenges Extracting Migration Knowledge  

 

 Migration is a latent process 

 eBird data and SDM predictions are static 

 Each observation/prediction for particular place and time 

 We see a sequence of snapshots 

 

 Observations are noisy and incomplete 

 

 Migration most naturally described at level of individual 

behavior, but we can only observe population-level statistics 

 Lack of modeling techniques to link the two 
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Overview: Collective Hidden Markov Models 
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 Generative model for population 
data from individual behavior 

 

1. Define migration model for 
individual bird 
 Markov chain on grid cells 

2. Generate routes for each 
individual in population 
 Assume birds are iid 

3. Derive population statistics at 
each time step 
 Transition counts: # birds that fly 

between each pair of grid cells 

 Location counts: # birds in each 
grid cell 

Transition counts 

(hidden) 
Location counts 

(observed) 

Routes of 

individual birds 



Overview: Collective Hidden Markov Models 
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  𝑋1   𝑋2   𝑋𝑇 … 
Individual model: 

Markov chain on grid cells 

  𝑋1
𝑚   𝑋2

𝑚   𝑋𝑇
𝑚 … 

𝑚 = 1, … , 𝑀 

Population model:  

iid copies of individual model 

  𝐧1,2   𝐧2,3   𝐧𝑇−1,𝑇 … 
Marginalize out individuals: 

chain-structured model on 

sufficient statistics  

Transition 

counts 

…   𝐧1   𝐧2   𝐧3   𝐧𝑇 

Add observations: location counts 



Results 
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 Reconstruction by network flow techniques 

 Use to visualize bird migration 

 E.g. Ruby-throated Hummingbird 

Northbound 

March 5 

Southbound 

October 1 
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Extensions 

 Collective Graphical Models [Sheldon & Dietterich, NIPS 2011] 

 Substantial generalization of modeling ideas 

 Parameter learning 

 

 BirdCast Project (http://birdcast.info)  

 Joint project with Cornell Lab of Ornithology 

 Apply these ideas to forecast bird migration at continent-scale 

 Data: eBird + radar + acoustic + weather 
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http://birdcast.info/


Dynamical Model #2: Metapopulations 

 Dynamics of spatially disjoint populations 

 Butterflies in alpine meadows 

 Birds in a fragmented forest 
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Metapopulation = population of populations 
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Basic Components 

 A network of habitat patches 

 Dynamics models 

 Local population dynamics in each patch 

 Interaction between patches (dispersal/colonization) 
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Metapopulation Background 

 Extremely important models in ecology 

 

 Thousands of articles dating from1960s with many 

modeling variations 

 Originally mathematical models for idealized landscapes 

 E.g. equidistant patches 

 Move to applied models, real landscapes 

 

 Importance: formal basis for reasoning about the effects 

of habitat configuration on species persistence 
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SPOM: Stochastic Patch Occupancy Model 

 Patches are occupied or unoccupied 

 Two types of stochastic events: 

 Local extinction: occupied  unoccupied 

 Colonization: unoccupied  occupied (from neighbor) 

 Independence among all events 

Time 1 Time 2 
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SPOM Probability Model 

 𝑘 

 𝑗 

 𝑖 

 𝑗 

𝑝𝑖𝑗 

1 − 𝛽𝑗 

𝑡 − 1 𝑡 

 𝑙 

 𝑖 

 𝑘 

 𝑙 
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 To determine occupancy of patch 𝑗 at 
time 𝑡 
 For each occupied patch 𝑖 ≠ 𝑗 from time 

𝑡 − 1, flip coin with probability 𝑝𝑖𝑗  to see 
if 𝑖 colonizes 𝑗 

 If 𝑗 is occupied at time 𝑡 − 1, flip a coin 
with probability 1 − 𝛽𝑗  to determine 
survival (non-extinction) 

 If any of these events occurs, 𝑗 is occupied 

 

 Parameters: 
 𝑝𝑖𝑗 : colonization probability 

 𝛽𝑗 : extinction probability 

 functions of patch-size, inter-patch 
distance, etc. 
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𝑝𝑖𝑗 



SPOM as Dynamic Bayes Net (DBN) 

Xj
t 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

98 

 Let 𝑋𝑗
𝑡 = 0 or 1 be occupancy of patch 𝑗 at time 𝑡 

Pr 𝑋𝑗
𝑡 = 1 𝐗1, … , 𝐗t−1 = Pr (𝑋𝑗

𝑡 = 1|𝐗𝑡−1) 
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SPOM Fitting 
 Major advance in practical utility of SPOMs was ability to fit to survey data 

 Given:  Occupancy vectors 𝐗1, 𝐗2, … , 𝐗𝑇 

 Find: Parameters Θ for colonization and extinction models 

 

 Hanski [1994] gave heuristic approach based on equilibrium properties of 
metapopulation 
 

 Moilanen [1999] 
 Maximum likelihood approach 

𝐿 Θ = 𝑝 𝐗1; Θ  𝑝(𝐗𝑡|𝐗𝑡−1; Θ)

𝑇

𝑡=2

 

 Easy in principle 

 Likelihood easy to evaluate 

 Small parameter space 
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Challenge: Missing Data 

 Field data is sparse and messy 
 Surveys conducted in non-consecutive time steps 

 Some patches are not surveyed 

= observed values 

   (either present  

or absent) 
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Fitting by Data Augmentation 
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 Key step: fill in missing data by sampling from distribution 

of missing data given observed data 

 Maximum-likelihood approach of Moilanen [1999] 

 Bayesian approach of  Ter Braak and Etienne [2003] 

 



ML Opportunity 
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 Improved methods for fitting? 

 

 Key step is inference in P(missing | observed) 
 I.e., inference in DBN with metapopulation structure 

 Approximate inference techniques 

 

 Importance of inference: 

... 

Fitting Prediction 

?? 
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Connections to Network Cascades 

 Models for diffusion in (social) networks 
 Spread of information, behavior, disease, etc. 

 

 Independent cascade model 
 Each individual passes information to friends independently with 

specified probability 

 

[Goldenberg, Libai, Muller 2001][Kempe, Kleinberg, Tardos 2003] 
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Metapopulation = Cascade 
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• SPOM dynamics are a cascade in the layered graph 

representing patches over time 
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Metapopulation = Cascade 
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• SPOM dynamics are a cascade in the layered graph 

representing patches over time 
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Metapopulation = Cascade 
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• SPOM dynamics are a cascade in the layered graph 

representing patches over time 
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𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 

𝑝𝑖𝑗 
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Metapopulation = Cascade 
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• SPOM dynamics are a cascade in the layered graph 

representing patches over time 
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𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 

𝑝𝑖𝑗 

𝑝𝑗𝑗 

𝑝𝑗𝑘 
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ML connection: Social Network Inference 

 Recent work in ML community to learn cascade models 

 Network is hidden 

 Observe infection times of nodes 

 

 Maximum-likelihood estimation by convex optimization 

 [Myers and Leskovec, 2010] 

 [Gomez-Rodriguez et al., 2011] 

 

 Applicability to SPOM fitting? 

 Model differences 

 Layered vs. non-layered graph 

 Time model 

 Much different parameterization 
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Coffee Break 
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Part 3: Policy Optimization 
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Outline 
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 Data Acquisition 

 Sensors:  Physical sensors, human observers, 
repurposing data from other sources 

 Data interpretation: Extracting signals from data 

 Ecological Models 

 Species Distribution Models 

 Dynamical Models: Dispersal, Migration, 
Invasion, Climate Change 

 Policy Optimization 

 Conservation: Reserve design, Network design 

 Invasive species: Eradication, restoration, 
monitoring 

 Fisheries: Managing harvest levels 

 

Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Sensor 

Placement 

Policy 

Execution 



Optimal Policies for Environmental 

Management 
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 One-shot problems 

 Network design 

 Reserve design 

 

 Sequential decision-making problems (known as “Active 

Management”) 

 Fisheries management 

 Fire management 

 Invasive species management 

 Reserve design and conservation easements over time 

 

 Most problems are really sequential decision-making problems 



Distinctive Aspects 
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 Optimizing an objective computed using a learned model of the 
system 

 Generalization of reinforcement learning 

 

 Models are typically very bad 

 Doak, et al. 2008: Ecological Surprises 

 “Surprises are common and extreme” 

 Costs and benefits may be highly uncertain and non-stationary 

 Multiple objectives:  Harvest + Species Viability 

 Need solutions that are robust to misspecified models 

 

 Large state and action spaces 

 Spatial models 



Plan 
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 Reserve Design for the Endangered Red Cockaded 

Woodpecker 

 One-shot design problem 

 Optimal Policies for Managing Fisheries 

 Markov Decision Problem with analytical characterization of 

the optimal policy 

 Managing Wildfire in Eastern Oregon 

 Large Spatial Markov Decision Problem (MDP) 

 Optimal Management of Difficult-to-Observe Invasive 

Species 

 Small Partially-Observable MDP (POMDP) 



SPOM Optimization: 

Reserve Design for Endangered Species 

 Given a limited budget to purchase additional patches, which 

should you buy? 

Red-cockaded 

woodpecker 

(endangered) 
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Key Observation 

 By viewing SPOM dynamics as a network cascade in the 

layered graph, we can formulate the conservation 

problem as a cascade optimization problem 
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Insight #1: Objective as Network Connectivity 

 Conservation objective: maximize expected # occupied 
patches at time T 
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targets 

Live edges 

Occupied patches = nodes reachable by live edges 
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Insight #2: Management as Network Building 

 Conserving parcels adds nodes and (stochastic) edges to 
the network 

Parcel 1 

Parcel 2 

Initial 

network 
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Insight #2: Management as Network Building 

 Conserving parcels adds nodes to the network 

Parcel 1 

Parcel 2 

Initial 

network 
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Insight #2: Management as Network Building 

 Conserving parcels adds nodes to the network 

Parcel 1 

Parcel 2 

Initial 

network 
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Solution Strategy 

121 

1. Assume we own all parcels. 
Run multiple simulations of 
bird propagation 

2. Join all of those simulations 
into a single giant graph 

 Goal of maximizing expected # of 
occupied patches at time 𝑇 is 
approximated by # of reachable 
patches in the giant graph 

3. Define a set of variables 
𝑥1, 𝑥2 … , one for each parcel 

that we can buy 

4. Solve a mixed integer program 
to decide which 𝑥 variables are 
0 and which are 1 
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𝑥1 

𝑥1 

𝑥1 

𝑥2 

𝑥2 

𝑥2 



Why This Works 
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 Using the simulation on the whole graph, it is easy to 

compute the results for any purchased subgraph 

𝑥1 = 1 

𝑥2 = 1 

Initial 

network 



Sample Average Approximation (SAA) 
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 Generic approach to convert stochastic problem to deterministic 
problem:  
 

max
𝑋

𝐸𝑌 𝑓 𝑋, 𝑌       
              

      max
𝑋

1

𝑁
 𝑓 𝑋, 𝑌𝑖

𝑁

𝑖=1

 

 
 𝑋: decision variable 

 𝑌: random variable 

 𝑌1, … , 𝑌𝑁: realizations of 𝑌 

 

 Nice properties 
 Converges to true optimum as 𝑁 → ∞ 

 Error bounds 
 

 Can we solve the sample average problem? 
 

 



Results 
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Upper bound! 
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Results 

Upper bound! 
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Results 
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Upper bound! 

 Greedy baselines from 

related submodular cascade 

optimization problems 

 [Kempe et al. 2003] 

 [Leskovec et al. 2007] 

 

 Our problem is not 

submodular 

 Why is greedy 

performing well? 
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Conservation Strategies 

129 

 

 Both approaches build 

outward from source 

 Greedy buys best patches next 

to currently-owned patches 

 Optimal solution builds toward 

areas of high conservation 

potential 

 

 In this case, the two 

strategies are very similar 
Conservation 

Reservoir 

Source population 
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A Harder Instance 

Move the conservation reservoir so it is more remote.  
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Conservation Strategies 

Greedy 

Baseline 

SAA Optimum 

 (our approach) 

$150M $260M $320M 

Build outward 

from sources 

Path-building (goal-setting) 131 JCC 2012 Tutorial 



Future Challenges 

 The real world is complex 

 Competing objectives 

 Multiple species 

 Competing uses of the land 

 Model dynamics 

 Learn the SPOM 

 Include interactions among multiple species 

 competition for nesting sites 

 predation 

 Markov Decision Processes (MDPs) 

 Buy some patches each year based on annual budgets 

 Make future purchases depending on where the birds actually go 
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Fishery Management [Ermon et al. 2010] 

 How to sustainably exploit a renewable and economically 

valuable resource such as forest or fishery? 
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International commission 
decides each year’s harvest 
(total allowable catch) 

Pacific Halibut Fishery 
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MDP Formulation 

 State variable 

 𝑥: stock (population size) 

 

 Actions 

 Harvest amount ℎ in each year  

 

 Reward model 

 Fixed cost 𝐾 when ℎ > 0 

 Per-unit harvest cost 

 More $$ when fish are scarce 

 Per-unit market price 𝑝 

 Discount rate for future reward 
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𝑥 (stock) 

Unit 

harvest 

cost 



MDP Formulation (2) 

 Dynamics 

 Growth function 𝑓 (post-harvest) 

  

𝑥𝑡+1 = 𝑓 𝑥𝑡 − ℎ𝑡 , 𝑤𝑡  

 

 

 

 Idea: 𝑤𝑡 captures stochasticity or modeling uncertainty 

 

 State transition model 

 𝑥 → 𝑓 𝑥 − ℎ, 𝑤  with probability 𝑝(𝑤) 

stock harvest input from nature 
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Population Dynamics 

 

 

 Beverton-Holt Model 

𝑥𝑡+1 = 𝑓 𝑠𝑡 , 𝑤𝑡 = 1 − 𝑚 𝑠𝑡 + 𝑤𝑡

𝑟0𝑠𝑡

1 + 𝑠𝑡/𝑀
 

Post-harvest 

stock 
Mortality 

“Shock” 

from nature 

Growth rate 

Capacity 

limitation 
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Population Dynamics 

 Fit to historical data (𝑤 = 1) 
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Robust Optimization 

 Traditional MDP approach 

 Maximize expected total discounted reward 

 

 Their approach:  “Game against Nature” 

 Nature chooses 𝑤 adversarially 

 Maximize worst-case total discounted reward 

 

 Advantages: 

 Avoid catastrophic outcomes such as collapse of fishery 

 Don’t need fine-grained model for 𝑝(𝑤) 

 Only specify allowable range of 𝑤 

JCC 2012 Tutorial 138 



Main Result 

 Analytical characterization of optimal policy 
 For a general class of growth and economic models, optimal policy is 

of S-s type 

 

 

 

 

 

 

 

 

 Proof based on mathematical notion of K-concavity [Scarf 1960] 

 From inventory control problems in economics and operations 
research 

𝑈 

𝐿 

harvest 

growth 

 
Stock > 𝑈    Harvest down to 𝐿 
 
Stock ≤ 𝑈  Let grow until 𝑈 
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Pacific Halibut Results 

 Reanalysis of 1975-2007 data 

 Fitted growth model 

 Worst-case environmental inputs 

 

 Optimal policy involves periodic 

closures of fishery 

 Maintain supply by rotating 

closures 

 

 More revenue than baselines 

 Historical revenue 

 Current IPHC policy (Constant 

Proportional Policy; CPP) 
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Important Themes for Environmental Policy 

 Synergy between economic reward and ecosystem stability 
 Why no over-exploitation? 

 Protect future value of fishery 

 Cost to harvest scarce stock 

 Cautionary notes 
 Barriers to over-exploitation are not intrinsic 

 High discount rate  prioritize present reward too much 

 Technology improvements  cheaper to harvest 

 Models often wrong or missing important side-effects 

 

 Robust optimization 
 Prevents catastrophic outcomes (within modeling framework) 

 Is worst-case too severe? 
 Extension to broader class of risk-sensitive objectives [Ermon et al. IJCAI, 

2011] 
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Managing Wildfire in Eastern Oregon 
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 Natural state (hypothesized): 
 Large Ponderosa Pine trees with 

open understory 

 Frequent “ground fires” that 
remove understory plants (grasses, 
shrubs) but do not damage trees 

 

 Fires have been suppressed since 
1920s 
 Large stands of Lodgepole Pine 

 Heavy accumulation of fuels in 
under-story 

 Large catastrophic fires that kill all 
trees and damage soils 

 Huge firefighting costs and lives 
lost 

 



Formulation as an MDP 
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 Divide landscape into 4000 Management 
Units 

 10-Year time step 

 State of each MU: 

 Age of trees  

 {0-9, 10-19, 20-29, 30-39, 40-49} 

 Amount of fuel  

 {none, low, medium, high, very high} 

 25 possible combinations 

 254000 possible states for the landscape 

 

 Actions in each MU each decade 

 Do nothing 

 Fuel treatment (costs money) 

 Harvest trees (makes money, but increases 
fuel) 

 Harvest + Fuel 

 44000 possible actions over landscape 

 

 

Study area in Deschutes National Forest 



Game Against “Neutral” Nature 
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 For each time step t 

 Our turn: 

 Observe current state 𝑠𝑡 (i.e., 
state of all MUs) 

 Choose action vector 𝑎𝑡 

 Execute the actions in the MUs 

 Nature’s turn: 

 Stochastically ignite and burn 
fires on the landscape 
(Implemented by ignition model 
+ fire spread model) 

 Grow trees and fuel 
(Implemented by forest growth 
model) 

 

 

𝑠𝑡 

𝑎𝑡 

𝑠𝑡+1 

Image: Wei et al, 2008 



Open Problem: Solving This MDP 
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 One-shot Method [Wei, et al., 2008] 

 Run 1000s of simulated fires to generate fire risk map and fire 

propagation graph 

 Formulate and solve Mixed Integer Program to compute 

optimal one-shot solution 

 Challenge:  

 Develop methods that can solve the MDP over long time 

horizons 



Optimal Management of Difficult-to-Observe 

Invasive Species  [Regan et al., 2011] 
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 Branched Broomrape (Orobanche 
ramosa) 

 Annual parasitic plant 

 Attaches to root system of host plant 

 Results in 75-90% reduction in host 
biomass 

 Each plant makes ~50,000 seeds 

 Viable for 12 years 

 Quarantine Area in S. Australia 

 375 farms; 70km x 70km area 

 Transition from eradication to 
management 

 



Formulation as a POMDP: 

Single Farm 
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 States: 
 {Empty, Seeds, Plants & Seeds} 

 Actions: 
 {Nothing, Host Denial, 

Fumigation} 

 Observations: 
 {Absent, Present} 

 Detection probability 𝑑 

 Rewards: 
 Cost(Nothing) <  

Cost(Host Denial) ≪ 
Cost(Fumigation) 

 Objective: 
 20-year discounted reward 

(discount = 0.96) 
State Diagram 
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Optimal MDP Policy 
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 If plant is detected, Fumigate; Else Do Nothing 

 Assumes perfect detection 

www.grdc.com.au 
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Optimal Policy for 𝑑 ≥ 0.5 
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 Same as the Optimal MDP Policy 

Action 

OBSERVATION 

Decision State 

After State 
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0 1 
Fumigate ABSENT 

PRESENT 

Nothing 

ABSENT 

PRESENT 



Optimal Policy for 𝑑 = 0.3 
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Deny Deny 
0 1 

Fumigate ABS 

PRESENT 

ABS 

PRESENT 

2 ABS 16 

PRESENT 

... Nothing 

ABS 

PRESENT 

 Deny Host for 15 years before switching to Nothing 

 For 𝑑 = 0.1, Deny Host for 17 years before switching to 

Nothing 
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Discussion 

152 

 POMDP is exactly solvable because the state space is 

very small 

 Real problem is a spatial meta-population at two scales 

 Within a single farm 

 Among the 375 farms in the quarantine area 

 3375 states 

 Exact solution of large POMDPs is beyond the state of the art 
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Outline 
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 Data Acquisition 

 Sensors:  Physical sensors, human observers, repurposing data 
from other sources 

 Data interpretation: Extracting signals from data 

 Ecological Models 

 Species Distribution Models 

 Dynamical Models: Dispersal, Migration, Invasion, Climate 
Change 

 Policy Optimization 

 Conservation: Reserve design, Network design 

 Invasive species: Eradication, restoration, monitoring 

 Fisheries: Managing harvest levels 

 



Challenges for Machine Learning: 

Sensor Placement/Active Learning  
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 We have... 

 Algorithms for one real-valued quantity 

 assuming stationary correlations, perfect 

observations 

 We need... 

 Algorithms for multiple quantities 

 real-valued: nutrients, temperature, precipitation 

 counts: species abundance for multiple species 

 discrete: species presence/absence for multiple 

species 

 Algorithms that consider dynamics, 

detectability, patchiness (meta-populations) 

 

Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Sensor 

Placement 

Policy 

Execution 



Challenges for Data Interpretation 

JCC 2012 Tutorial 155 

 We have... 

 Algorithms for individual modalities at single 
scales 

 object recognition 

 bioacoustics 

 RFID tags 

 We need... 

 Methods for integrating sensor modalities at 
vastly different scales in space and time 

 data integration at multiple scales 

 joint interpretation (sensor fusion) of multiple 
sensors to improve accuracy of data interpretation 

 Better tools for data management, feature 
definition, visualization, synthetic data generation 
(for debugging and testing) 
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 How do we integrate data from 

multiple temporal and spatial scales 

while retaining all of the detail? 

 Joint modeling of the ecological process 

and the data collection process? 

 Integrate at a small number of scales? 

 Are there general-purpose strategies? 

Can there be general tools? 
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Challenges for Model Fitting 
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 We have... 

 Species Distribution Models for single species 

with partial detectability 

 stationary, non-spatial 

 We need... 

 Species Distribution Models for thousands of 

species 

 model competition, predation, dispersal 

 explicitly spatial 

 Meta-Population Models for multiple species 

 Models that link abiotic quantities (nutrients, 

temperature, precipitation) and biotic quantities 

(species, populations) 
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Challenges for Optimization 
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 We have... 

 One-shot algorithms for meta-populations 
and fires 

 Exact algorithms for modest-sized MDPs 

 Exact algorithms for tiny POMDPs 

 Algorithms that optimize a scalar reward 
in expectation 

 We need... 

 Algorithms for MDP/POMDP planning for 
meta-populations and spatial processes 

 That consider multiple criteria 

 That are robust to mis-specified dynamics 
and rewards 
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Data  Models  Policies: 

Overall Challenges 
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 It isn’t a pipeline 

 We need algorithms that 

integrate/couple all parts of the 

process 

 Learning algorithms should be 

integrated with policy optimization 

 Sensor placement should be sensitive 

to all goals 
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 Links to data, software, and papers available in the 
electronic version of these slides 

 Thank-you’s 
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Data Resources 
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 Species Distribution Models 
 eBird Reference Dataset 3.0 

 http://www.avianknowledge.net/content/features/archive/ebird-reference-
dataset-3-0-released 

 eBird checklist data along with an excellent set of covariates 

 set of suggested analysis problems 

 Fine-Grained Image Classification 
 Oregon State STONEFLY9 dataset 

 http://web.engr.oregonstate.edu/~tgd/bugid/stonefly9/ 

 Oregon State EPT29 dataset 
 http://web.engr.oregonstate.edu/~tgd/bugid/ept29/  

 Caltech/UCSD CUB-200 bird dataset 
 http://www.vision.caltech.edu/visipedia/CUB-200.html 

 Oxford Flower dataset (102 classes) 
 http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html 
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 Meta-Population Models 

 SPOMSIM 

 http://www.helsinki.fi/bioscience/consplan/software/SPOMSIM.html  

 Synthetic Red-Cockaded Woodpecker instances 

 http://www.cs.cornell.edu/~kiyan/rcw/generator.htm 

http://www.helsinki.fi/bioscience/consplan/software/SPOMSIM.html
http://www.helsinki.fi/bioscience/consplan/software/SPOMSIM.html
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Machine Learning Algorithms 
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 Phillips’ Maxent Package 

 http://www.cs.princeton.edu/~schapire/maxent/  

 

http://www.cs.princeton.edu/~schapire/maxent/
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