Challenges for Machine Learning in Computational Sustainability

Tom Dietterich
Oregon State University
In collaboration with
Postdocs: Rebecca Hutchinson, Dan Sheldon, Mark Crowley
Graduate Students: Majid Taleghan, Kim Hall, Liping Liu
Economist: H. Jo Albers
and the Cornell Lab of Ornithology

NIPS 2012
Sustainable Management of the Earth’s Ecosystems

- The Earth’s Ecosystems are complex

- We have failed to manage them in a sustainable way
 - Example:
 - Species extinction rate of mammals ≈ 10-100 times historical rates
 - Mammalian populations are dropping rapidly worldwide

Ceballos & Erhlich, 2002
Why?

1. We did not think about ecosystems as a management or control problem

2. Our knowledge of function and structure is inadequate

3. Optimal management requires spatial planning over horizons of 100+ years
Computer Science can help!

1. We did not think about ecosystems as a management or control problem

2. Our knowledge of function and structure is inadequate

3. Optimal management requires spatial planning over horizons of 100+ years
Computational Sustainability

- The study of computational methods that can contribute to the sustainable management of the earth’s ecosystems

- Data \rightarrow Models \rightarrow Policies
Outline

- Illustrative Research Challenges for each stage
- Drill down on three projects at Oregon State University
- Discussion: What are the distinctive aspects of computational sustainability problems?
Example Research Challenges

Data Acquisition

- Africa is very poorly sensed
 - Only a few dozen weather stations reliably report data to WMO (blue points in map)
- Project TAHMO (tahmo.org)
 - TU-DELFT & Oregon State University
 - Design a complete meteorology sensor station at a cost of EUR 200
- Deploy 20,000 such stations across Africa
- Where should sensors be placed?
 - Accuracy of reconstructed fields for precipitation, temperature, relative humidity, wind, etc.
 - Robustness to sensor failure, station loss
Data Interpretation

- Insect identification for population counting
- Raw data: image
- Interpreted data: Count by species
- Challenge: Fine-Grained Image Classification

<table>
<thead>
<tr>
<th>Species</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limne</td>
<td>3</td>
</tr>
<tr>
<td>Taenm</td>
<td>15</td>
</tr>
<tr>
<td>Asiop</td>
<td>4</td>
</tr>
<tr>
<td>Epeor</td>
<td>25</td>
</tr>
<tr>
<td>Camel</td>
<td>19</td>
</tr>
<tr>
<td>Cla</td>
<td>12</td>
</tr>
<tr>
<td>Cerat</td>
<td>21</td>
</tr>
</tbody>
</table>
Data Integration

- Virtually all ecosystem prediction problems require integrating heterogeneous data sources
 - Landsat (30m; monthly)
 - land cover type
 - MODIS (500m; daily/weekly)
 - land cover type
 - Census (every 10 years)
 - human population density
 - Interpolated weather data (15 mins)
 - rain, snow, solar radiation, wind speed & direction, humidity

- Challenge:
 - Learn from heterogeneous data
 - without losing fine-grained information
 - without losing uncertainty in the data

Landsat NDVI:
http://ivm.cr.usgs.gov/viewer/
Model Fitting

- Species Distribution Models
 - create a map of the distribution of a species
- Meta-Population Models
 - model a set of patches with local extinction and colonization
- Migration and Dispersal Models
 - model the trajectory and timing of movement

Challenges

- The variables of interest are all latent
 - Latent distribution of species
 - Latent dynamics
- The data are very messy
State of the Art: STEM Model of Bird Species Distribution

Indigo Bunting

slide courtesy of Daniel Fink
Policy Optimization

- Challenges
 - Long time horizons (100+ years)
 - The system model is uncertain, so the optimization needs to be robust to this uncertainty
 - The state of the system covers large spatial regions (scales exponentially in region size)
 - System dynamics only available via simulation or sampling

Leathwick et al, 2008
State of the Art: Reserve Design from a Species Distribution Model

Leathwick et al, 2008
State of the Art: Reserve Design from a Species Distribution Model

Leathwick et al, 2008

Observations

Fitted Model
Disregarding costs to fishing industry

Full consideration of costs to fishing industry

Leathwick et al, 2008
Policy Execution

- Repeat
 - Observe Current State
 - Choose and Execute Action

- Need to continually improve our models and update our policies

- Challenge: We must start taking actions while our models are still very poor.
 - How can we make our models robust to both the “known unknowns” (our known uncertainty) and the “unknown unknowns” (things we will discover in the future)
Drill Down: Three Projects at Oregon State

- Species Distribution Modeling with Imperfect Observations
 - Explicit Observation Models
 - Flexible Latent Variable Models

- Models of Bird Migration
 - Collective Graphical Models

- Policy Optimization
 - Controlling Invasive Species
 - Algorithms for Large Spatial MDPs
Project eBird
www.ebird.org

- Volunteer Bird Watchers
 - Stationary Count
 - Travelling Count
- Time, place, duration, distance travelled
- Species seen
 - Number of birds for each species or ‘X’ which means ≥ 1
- Checkbox: This is everything that I saw

- 8,000-12,000 checklists per day uploaded
Species Distribution Modeling from Citizen Science Data:

- eBird data issues
 - imperfect detection
 - variable expertise
 - sampling bias
 - ...

Tom Auer http://geocommons.com/maps/137230
Imperfect Detection

Problem: Some birds are hidden. Different birds hide on different visits.
Multiple Visits to the Same Sites

<table>
<thead>
<tr>
<th>Site</th>
<th>True occupancy (latent)</th>
<th>Visit 1 (rainy day, 12pm)</th>
<th>Visit 2 (clear day, 6am)</th>
<th>Visit 3 (clear day, 9am)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (forest, elev=400m)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B (forest, elev=500m)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C (forest, elev=300m)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D (grassland, elev=200m)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Occupancy-Detection Model

$Z_i \sim P(Z_i|X_i)$: Species Distribution Model

$P(Z_i = 1|X_i) = o_i = F(X_i)$ “occupancy probability”

$Y_{it} \sim P(Y_{it}|Z_i, W_{it})$: Observation model

$P(Y_{it} = 1|Z_i, W_{it}) = Z_i d_{it}$

$d_{it} = G(W_{it})$ “detection probability”

Standard Approach: Log Linear (logistic regression) models

- \(\log \frac{F(X_i)}{1-F(X_i)} = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_J X_{iJ} \)

- \(\log \frac{G(W_{it})}{1-G(W_{it})} = \alpha_0 + \alpha_1 W_{it1} + \cdots + \alpha_K W_{itK} \)

- Fit via maximum likelihood
Results on Synthetic Species with Nonlinear Dependencies

- Predictions exhibit high variance because model cannot fit the nonlinearities well
A Flexible Predictive (non-Latent) Model

- Predict the observation y_{it} from the combination of occupancy covariates x_i and detection covariates w_{it}

- Boosted Regression trees
 \[
 \log \frac{P(Y_{it}=1|X_i,W_{it})}{P(Y_{it}=0|X_i,W_{it})} = \beta_1 tree_1(X_i,W_{it}) + \ldots + \beta_L tree_L(X_i,W_{it})
 \]
 - Fitted via functional gradient descent (Friedman, 2001, 2010)

- Model complexity is tuned to the complexity of the data
 - Number of trees
 - Depth of each tree
Predictive Model Results

- Systematically biased because it does not capture the latent occupancy
 - Underestimates occupancy at occupied sites to fit detection failures
- Much lower variance than the Occupancy-Detection model, because it can handle the non-linearities
Two Approaches: Summary

Probabilistic Graphical Models

- Advantages
 - Supports latent variables

- Disadvantages
 - Hard to use
 - Model must be carefully designed
 - Data must be transformed to match model assumptions
 - Model has fixed complexity so either under-fits or over-fits

Flexible Nonparametric Models

- Advantages
 - Model complexity adapts to data complexity
 - Easy to use “off-the-shelf”

- Disadvantages
 - Do not support latent variables
The Dream

Probabilistic Graphical Models

Flexible Nonparametric Models

Flexible Nonparametric Probabilistic Models
A Simple Idea:
Parameterize F and G as boosted trees

- $\log \frac{F(X)}{1-F(X)} = f^0(X) + \rho_1 f^1(X) + \cdots + \rho_L f^L(X)$
- $\log \frac{G(W)}{1-G(W)} = g^0(W) + \eta_1 g^1(W) + \cdots + \eta_L g^L(W)$
- Perform functional gradient descent in F and G

See also...
- Kernel logistic regression
- Non-parametric Bayes
- RKHS embeddings of probability distributions
Results: OD-BRT
(Hutchinson, Liu & Dietterich, AAAI 2010)

- Occupancy probabilities are predicted very well
Handling Variable Expertise

Expertise probability (function of U) Expert/novice observer

Observer covariates

U_j v_j F_j

$j = 1, \ldots, N$

Observers

X_i o_i Z_i

Y_{it} d_{it}, f_{it} d'_{it}, f'_{it}

$t = 1, \ldots, T$

$i = 1, \ldots, M$
Expert vs. Novice Differences

Average Difference in True Detection Probability

- Blue Jay
- White-breasted Nuthatch
- Northern Cardinal
- Great Blue Heron
- Brown Thrasher
- Blue-headed Vireo
- Northern Rough-winged Swallow
- Wood Thrush

Common birds

Hard-to-detect birds

Yu, et al, 2010
Drill Down: Three Projects at Oregon State

- Species Distribution Modeling with Imperfect Observations
 - Explicit Observation Models
 - Flexible Latent Variable Models

- Models of Bird Migration
 - Collective Graphical Models

- Policy Optimization
 - Controlling Invasive Species
 - Algorithms for Large Spatial MDPs
BirdCast: Understanding and Forecasting Bird Migration

- Available data:
 - eBird observations
 - NEXRAD weather radar
 - acoustic monitoring stations
 - weather data
 - weather forecast

- Goals:
 - predict spatial distribution of each species 24- and 48-hours in advance
 - understand what factors drive bird migration
 - wind speed and direction?
 - temperature?
 - relative humidity?
 - absolute or relative timing?
 - food availability?
Modeling Goal: Spatial Hidden Markov Model

- Define a grid over the US
- Let n_i^t be the number of birds in cell i at time t
- Learn a probability transition matrix that depends on the features
 - wind, temperature, time, etc.
Problem: We have only aggregate data

- The data we wish we had:
 - tracks of individual birds

- The data we have:
 - ebird: aggregate counts of anonymous birds
 - radar: birds per km3 summed over all species
 - ...

12/5/2012
Solution: Collective Graphical Models

Individual model:
Markov chain on grid cells

Population model:
iid copies of individual model

Derive aggregate observations
Solution: Collective Graphical Models (2)

Derive aggregate observations

Marginalize out individuals: chain-structured model on sufficient statistics

Note: MAP estimates of n_{ij} are sufficient statistics of the individual model
We don’t need to reconstruct individual tracks to fit the individual model
Inference in Collective Graphical Models (Sheldon & Dietterich, NIPS 2011)

- **Model Fitting via EM**
 - Requires sampling from $P(n_{t,t+1} | n_1, ..., n_T)$
 - Posterior distribution of “flows” through the HMM trellis
- **Fast Gibbs Sampler** that respects Kirchoff’s laws
 - Running time is independent of population size

![Graph showing comparison between VE, MCMC, and exact methods](image)

- Best exact method (cubic in M)
- Our method (to 2% relative error)
The Migration Model

- Species s
- Observers o
- Sites i
- Acoustic stations k
- Radar sites v

Species s through eBird, acoustic, and radar

\[
\begin{align*}
\mathbf{n}_t^s & \quad \text{birds} \\
x_t^s(i, o) & \\
y_{t,t+1}^s(k) & \\
z_{t,t+1}(v) & \quad \text{radar}
\end{align*}
\]

\[
\begin{align*}
\mathbf{n}_{t,t+1}^s & \quad s = 1, \ldots, S \\
a_{t,t+1}(k) & \\
r_{t,t+1}(v) & \\
\end{align*}
\]

\[
\begin{align*}
o = 1, \ldots, O(i, t) \\
s = 1, \ldots, S \\
i = 1, \ldots, L \\
s = 1, \ldots, S \\
k = 1, \ldots, K \\
v = 1, \ldots, V
\end{align*}
\]
With Added Covariates

\[
\text{With Added Covariates}
\]

\[
\begin{align*}
\mathbf{n}_t^s & = \mathbf{n}_{t, t+1}^s, \\
x_t^s(i, o) & = \mathbf{a}_{t, t+1}(k), \\
y_t^s(k) & = \mathbf{r}_{t+1}(v), \\
z_t^s(v) & = \mathbf{x}_t^s(1, o), \\
o & = 1, \ldots, O(i, t), \\
s & = 1, \ldots, S, \\
i & = 1, \ldots, L, \\
k & = 1, \ldots, K, \\
v & = 1, \ldots, V.
\end{align*}
\]
Drill Down: Three Projects at Oregon State

- Species Distribution Modeling with Imperfect Observations
 - Explicit Observation Models
 - Flexible Latent Variable Models

- Models of Bird Migration
 - Collective Graphical Models

- Policy Optimization
 - Controlling Invasive Species
 - Algorithms for simulator-defined MDPs
Invasive Species Management in River Networks

- Tamarisk: invasive tree from the Middle East
 - Out-competes native vegetation for water
 - Reduces biodiversity

- What is the best way to manage a spatially-spreading organism?
Markov Decision Process

- Tree-structured river network
 - Each edge \(e \in E \) has \(H \) “sites” where a tree can grow.
 - Each site can be
 - \{empty, occupied by native, occupied by invasive\}
 - \# of states is \(3^{EH} \)

- Management actions
 - Each edge: \{do nothing, eradicate, restore, eradicate+restore\}
 - \# of actions is \(4^E \)
Dynamics and Objective

- **Dynamics:**
 - In each time period
 - Natural death
 - Seed production
 - Seed dispersal (preferentially downstream)
 - Seed competition to become established
 - Couples all edges because of spatial spread
 - Inference is intractable

- **Objective:**
 - Minimize expected discounted costs (sum of cost of invasion plus cost of management)
 - Subject to annual budget constraint
Algorithm DDV

- Goal: Compute PAC-optimal policy while minimizing simulator calls
- Explicit representation of the MDP (Transition matrix and Q table)
- Confidence intervals $Q_{lower}(s, a)$ and $Q_{upper}(s, a)$
- Confidence interval on $V(s_0)$
- Upper bound on discounted state occupancy probability $\mu_{upper}(s)$
 - $\mu^\pi(s) = \sum_t \gamma^t P(s^t = s|s^0 = s_0, \pi)$
- Measure of uncertainty:
 - $\Delta V(s_0) = V_{upper}(s_0) - V_{lower}(s_0)$
Algorithm DDV

- Exploration heuristic:
 - Exploring \((s, a_2)\) will cause a local reduction in
 \[\Delta Q(s, a_2) = Q_{\text{upper}}(s, a_2) - Q_{\text{lower}}(s, a_2)\]
 - The impact of this on \(\Delta V(s_0)\) can be approximated by
 \[\mu_{\text{upper}}(s)[\Delta Q(s, a_1) - \Delta Q'(s, a_1)]\]
 - Explore the \((s, a)\) that maximizes
 \[\mu_{\text{upper}}(s)[\Delta Q(s, a) - \Delta Q'(s, a)]\]
Results on “RiverSwim” benchmark

- Comparison with Strehl & Littman (2008) Model-Based Interval Estimation (MBIE)
- DDV reduces the uncertainty in $V(s_0)$ much faster than MBIE
 - note log scale
- Both algorithms have PAC guarantees
Published Rule of Thumb Policies for Invasive Species Management

- **Triage Policy**
 - Treat most-invaded edge first
 - Break ties by treating upstream first

- **Leading edge**
 - Eradicate along the leading edge of invasion

- **Chades, et al.**
 - Treat most-upstream invaded edge first
 - Break ties by amount of invasion

- **DDV**
 - Our PAC solution
Cost Comparisons: Rule of Thumb Policies vs. DDV

Total Costs

<table>
<thead>
<tr>
<th></th>
<th>Triage</th>
<th>Shades</th>
<th>Leading Edge</th>
<th>DDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs</td>
<td>390</td>
<td>370</td>
<td>400</td>
<td>270</td>
</tr>
</tbody>
</table>

12/5/2012 NIPS 2012 51
Summary

- Data → Models → Policies

- Three projects at Oregon State:
 - Species Distribution Modeling with Imperfect Observations
 - Flexible Latent Variable Models
 - Models of Bird Migration
 - Collective Graphical Models
 - Policy Optimization
 - Algorithms for simulator-defined MDPs
Distinctive Characteristics of Sustainability Problems

- Goal is typically to encourage or prevent spatial spread
 - Encourage spread of endangered species
 - Manage spread of fire
 - Prevent spread of diseases and invasive species
 - Over long time horizons
 - Resulting MDPs are immense
 - Dynamics are typically available only via a simulator

- Data are extremely noisy, heterogeneous, and incomplete
 - Need to learn latent process dynamical models from this data

- Optimization is based on learned models
 - Need to be robust to incorrect models
 - Need to be robust to the unknown unknowns
 - Risk sensitive:
 - avoid species extinctions
 - avoid catastrophic fires
Computational Sustainability

- There are many opportunities for computing to contribute to sustainable ecosystem management

- There are many challenging machine learning research problems to be solved

- Institute for Computational Sustainability: http://www.computational-sustainability.org/
Thank-you

- Rebecca Hutchinson, Liping Liu: Boosted Regression Trees in OD models
- Dan Sheldon: Collective Graphical Models
- Steve Kelling, Andrew Farnsworth, Wes Hochachka, Daniel Fink: BirdCast
- H. Jo Albers, Kim Hall, Majid Taleghan, Mark Crowley: Tamarisk
- Carla Gomes for spearheading the Institute for Computational Sustainability

- National Science Foundation Grants 0705765, 0832804, and 0905885
Questions?