Challenges for Machine Learning in Computational Sustainability

Tom Dietterich Oregon State University In collaboration with Postdocs: Rebecca Hutchinson, Dan Sheldon, Mark Crowley Graduate Students: Majid Taleghan, Kim Hall, Liping Liu Economist: H. Jo Albers and the Cornell Lab of Ornithology

The**Cornell**Lab of Ornithology

Sustainable Management of the Earth's Ecosystems

The Earth's Ecosystems are complex

- We have failed to manage them in a sustainable way
 - Example:
 - Species extinction rate of mammals \approx 10-100 times historical rates
 - Mammalian populations are dropping rapidly worldwide

1. We did not think about ecosystems as a management or control problem

2. Our knowledge of function and structure is inadequate

 Optimal management requires spatial planning over horizons of 100+ years

Computer Science can help!

1. We did not think about ecosystems as a management or control problem

Outline

Illustrative Research Challenges for each stage Drill down on three projects at Oregon State University Discussion: What are the distinctive aspects of computational sustainability problems?

Example Research Challenges Data Acquisition

Data Acquisition

Africa is very poorly sensed

 Only a few dozen weather stations reliably report data to WMO (blue points in map)

Project TAHMO (tahmo.org)

- TU-DELFT & Oregon State University
- Design a complete meteorology sensor station at a cost of EUR 200
- Deploy 20,000 such stations across Africa
- Where should sensors be placed?
 - Accuracy of reconstructed fields for precipitation, temperature, relative humidity, wind, etc.
 - Robustness to sensor failure, station loss

Data Interpretation

- Insect identification for population counting
- Raw data: image
- Interpreted data: Could dat
- Challenge: Fine-Grain

Species	Count
Limne	3
Taenm	15
Asiop	4
Epeor	25
Camel	19
Cla	12
Cerat	21

Data Integration

- Virtually all ecosystem prediction problems require integrating heterogeneous data sources
 - Landsat (30m; monthly)
 - Iand cover type
 - MODIS (500m; daily/weekly)
 - Iand cover type
 - Census (every 10 years)
 - human population density
 - Interpolated weather data (15 mins)
 - rain, snow, solar radiation, wind speed & direction, humidity
- Challenge:
 - Learn from heterogeneous data
 - without losing fine-grained information
 - without losing uncertainty in the data

Landsat NDVI: <u>http://ivm.cr.usgs.gov/viewer/</u>

NIPS 2012

Model Fitting

- Species Distribution Models
 - create a map of the distribution of a species
- Meta-Population Models
 - model a set of patches with local extinction and colonization
- Migration and Dispersal Models
 - model the trajectory and timing of movement

Challenges

- The variables of interest are all latent
 - Latent distribution of species
 - Latent dynamics
- The data are very messy

State of the Art: STEM Model of Bird Species Distribution

slide courtesy of Daniel Fink

Policy Optimization

Challenges

- Long time horizons (100+ years)
- The system model is uncertain, so the optimization needs to be robust to this uncertainty
- The state of the system covers large spatial regions (scales exponentially in region size)
- System dynamics only available via simulation or sampling

State of the Art: Reserve Design from a Species Distribution Model

Observations

12/5/2012

Leathwick et al, 2008

State of the Art: Reserve Design from a Species Distribution Model

Observations

Fitted Model

Disregarding costs to fishing industry

Full consideration of costs to fishing industry

Leathwick et al, 2008

Policy Execution

Repeat

Observe Current State

Choose and Execute Action

 Need to continually improve our models and update our policies

- Challenge: We must start taking actions while our models are still very poor.
 - How can we make our models robust to both the "known unknowns" (our known uncertainty) and the "unknown unknowns" (things we will discover in the future)

Drill Down: Three Projects at Oregon State

- Species Distribution Modeling with Imperfect Observations
 - Explicit Observation Models
 - Flexible Latent Variable Models
- Models of Bird Migration
 - Collective Graphical Models
- Policy Optimization
 - Controlling Invasive Species
 - Algorithms for Large Spatial MDPs

Project eBird www.ebird.org

- Volunteer Bird Watchers
 - Stationary Count
 - Travelling Count
- Time, place, duration, distance travelled
- Species seen
 - Number of birds for each species or 'X' which means ≥ 1
- Checkbox: This is everything that I saw
- 8,000-12,000 checklists per day uploaded

Species Distribution Modeling from Citizen Science Data:

eBird data issues
imperfect detection
variable expertise
sampling bias

Tom Auer http://geocommons.com/maps/137230

Imperfect Detection

Pai Problem: Some birds are hidden ant birds hide on different visits

Multiple Visits to the Same Sites

		Detection History		
Site	True occupancy (latent)	Visit 1 (rainy day, 12pm)	Visit 2 (clear day, 6am)	Visit 3 (clear day, 9am)
A (forest, elev=400m)	1	0	1	1
B (forest, elev=500m)	1	0	1	0
C (forest, elev=300m)	1	0	0	0
D (grassland, elev=200m)	0	0	0	0

Occupancy-Detection Model

MacKenzie, et al, 2002

 $Z_i \sim P(Z_i|X_i)$: Species Distribution Model $P(Z_i = 1|X_i) = o_i = F(X_i)$ "occupancy probability"

 $Y_{it} \sim P(Y_{it}|Z_i, W_{it})$: Observation model $P(Y_{it} = 1|Z_i, W_{it}) = Z_i d_{it}$ $d_{it} = G(W_{it})$ "detection probability"

NIPS 2012

Standard Approach: Log Linear (logistic regression) models

$$\log \frac{F(X_i)}{1 - F(X_i)} = \beta_0 + \beta_1 X_{i1} + \dots + \beta_J X_{iJ}$$

$$\log \frac{G(W_{it})}{1 - G(W_{it})} = \alpha_0 + \alpha_1 W_{it1} + \dots + \alpha_K W_{itK}$$

Fit via maximum likelihood

Results on Synthetic Species with Nonlinear Dependencies

 Predictions exhibit high variance because model cannot fit the nonlinearities well

A Flexible Predictive (non-Latent) Model

- Predict the observation y_{it} from the combination of occupancy covariates x_i and detection covariates w_{it}
- Boosted Regression trees
 - $\log \frac{P(Y_{it}=1|X_i,W_{it})}{P(Y_{it}=0|X_i,W_{it})} = \beta_1 tree_1(X_i,W_{it}) + \dots + \beta_L tree_L(X_i,W_{it})$
 - Fitted via functional gradient descent (Friedman, 2001, 2010)
- Model complexity is tuned to the complexity of the data
 - Number of trees
 - Depth of each tree

Predictive Model Results

- Systematically biased because it does not capture the latent occupancy
 - Underestimates occupancy at occupied sites to fit detection failures

 Much lower variance than the Occupancy-Detection model, because it can handle the non-linearities

Two Approaches: Summary

Probabilistic Graphical Models

- Advantages
 - Supports latent variables

Disadvantages

- Hard to use
 - Model must be carefully designed
 - Data must be transformed to match model assumptions
- Model has fixed complexity so either under-fits or over-fits

Flexible Nonparametric Models

- Advantages
 - Model complexity adapts to data complexity
 - Easy to use "off-the-shelf"
- Disadvantages
 - Do not support latent variables

The Dream

Probabilistic Graphical Models

Flexible Nonparametric Models

Flexible Nonparametric Probabilistic Models

NIPS 2012

A Simple Idea: Parameterize *F* and *G* as boosted trees

$$\log \frac{F(X)}{1 - F(X)} = f^{0}(X) + \rho_{1}f^{1}(X) + \dots + \rho_{L}f^{L}(X)$$

$$\log \frac{G(W)}{1 - G(W)} = g^{0}(W) + \eta_{1}g^{1}(W) + \dots + \eta_{L}g^{L}(W)$$

Perform functional gradient descent in F and G

See also...

_ / _ _'

- Kernel logistic regression
- Non-parametric Bayes
- RKHS embeddings of probability distributions

Results: OD-BRT (Hutchinson, Liu & Dietterich, AAAI 2010)

 Occupancy probabilities are predicted very well

True Occupancy Probabilities

True Occupancy Probabilities

True Occupancy Probabilities

12/5/2012

Handling Variable Expertise

Expert vs. Novice Differences

33

Drill Down: Three Projects at Oregon State

- Species Distribution Modeling with Imperfect Observations
 - Explicit Observation Models
 - Flexible Latent Variable Models
- Models of Bird Migration
 - Collective Graphical Models
- Policy Optimization
 - Controlling Invasive Species
 - Algorithms for Large Spatial MDPs

BirdCast: Understanding and Forecasting Bird Migration

- Available data:
 - eBird observations
 - NEXRAD weather radar
 - acoustic monitoring stations
 - weather data
 - weather forecast

Goals:

- predict spatial distribution of each species 24- and 48-hours in advance
- understand what factors drive bird migration
 - wind speed and direction?
 - temperature?
 - relative humidity?
 - absolute or relative timing?
 - food availability?

12/5/2012

Modeling Goal: Spatial Hidden Markov Model

- Define a grid over the US
- Let n^t_i be the number of birds in cell i at time t
- Learn a probability transition matrix that depends on the features
 - wind, temperature, time, etc.

Problem: We have only aggregate data

The data we wish we had:tracks of individual birds

The data we have:

- ebird: aggregate counts of anonymous birds
- radar: birds per km³ summed over all species

Solution: Collective Graphical Models

Individual model: Markov chain on grid cells

Population model: iid copies of individual model

Derive aggregate observations

Solution: Collective Graphical Models (2)

Derive aggregate observations

Marginalize out individuals: chain-structured model on sufficient statistics

Note: MAP estimates of \mathbf{n}_{ij} are sufficient statistics of the individual model We don't need to reconstruct individual tracks to fit the individual model

NIPS 2012

Inference in Collective Graphical Models (Sheldon & Dietterich, NIPS 2011)

Model Fitting via EM

- Requires sampling from $P(\boldsymbol{n}_{t,t+1}|\boldsymbol{n}_1, ..., \boldsymbol{n}_T)$
 - posterior distribution of "flows" through the HMM trellis
- Fast Gibbs Sampler that respects Kirchoff's laws
 - running time is independent of population size

Best exact method (cubic in *M*)

Our method (to 2% relative error)

The Migration Model

- Species s
- Observers o
- Sites *i*
- Acoustic stations k
- Radar sites v

With Added Covariates

Drill Down: Three Projects at Oregon State

- Species Distribution Modeling with Imperfect Observations
 - Explicit Observation Models
 - Flexible Latent Variable Models
- Models of Bird Migration
 - Collective Graphical Models
- Policy Optimization
 - Controlling Invasive Species
 - Algorithms for simulator-defined MDPs

Invasive Species Management in River Networks

- Tamarisk: invasive tree from the Middle East
 - Out-competes native vegetation for water
 - Reduces biodiversity
- What is the best way to manage a spatially-spreading organism?

Markov Decision Process

Tree-structured river network

- Each edge $e \in E$ has H "sites" where a tree can grow.
- Each site can be
 - {empty, occupied by native, occupied by invasive}
- # of states is 3^{EH}
- Management actions
 - Each edge: {do nothing, eradicate, restore, eradicate+restore}
 - # of actions is 4^E

Dynamics and Objective

Dynamics:

In each time period

- Natural death
- Seed production
- Seed dispersal (preferentially downstream)
- Seed competition to become established
- Couples all edges because of spatial spread
- Inference is intractable

Objective:

- Minimize expected discounted costs (sum of cost of invasion plus cost of management)
- Subject to annual budget constraint

Algorithm DDV

- Goal: Compute PAC-optimal policy while minimizing simulator calls
- Explicit representation of the MDP (Transition matrix and Q table)
- Confidence intervals $Q_{lower}(s, a)$ and $Q_{upper}(s, a)$
- Confidence interval on $V(s_0)$
- Upper bound on discounted state occupancy probability $\mu_{upper}(s)$

•
$$\mu^{\pi}(s) = \sum_{t} \gamma^{t} P(s^{t} = s | s^{0} = s_{0}, \pi)$$

Measure of uncertainty:

•
$$\Delta V(s_0) = V_{upper}(s_0) - V_{lower}(s_0)$$

Algorithm DDV

- Exploration heuristic:
 - Exploring (s, a₂) will cause a local reduction in
 ΔQ(s, a₂) = Q_{upper}(s, a₂) Q_{lower}(s, a₂)
 - The impact of this on $\Delta V(s_0)$ can be approximated by $\mu_{upper}(s)[\Delta Q(s, a_1) - \Delta Q'(s, a_1)]$
 - Explore the (s, a) that maximizes $\mu_{upper}(s)[\Delta Q(s, a) - \Delta Q'(s, a)]$

Results on "RiverSwim" benchmark

- Comparison with Strehl & Littman (2008)
 Model-Based Interval Estimation (MBIE)
- DDV reduces the uncertainty in V(s₀) much faster than MBIE
 - note log scale
- Both algorithms have PAC guarantees

Published Rule of Thumb Policies for Invasive Species Management

Triage Policy

- Treat most-invaded edge first
- Break ties by treating upstream first
- Leading edge
 - Eradicate along the leading edge of invasion
- Chades, et al.
 - Treat most-upstream invaded edge first
 - Break ties by amount of invasion
- DDV
 - Our PAC solution

Cost Comparisons: Rule of Thumb Policies vs. DDV

Total Costs

Summary

- Data \rightarrow Models \rightarrow Policies
- Three projects at Oregon State:
 - Species Distribution Modeling with Imperfect Observations
 - Flexible Latent Variable Models
 - Models of Bird Migration
 - Collective Graphical Models
 - Policy Optimization
 - Algorithms for simulator-defined MDPs

Distinctive Characteristics of Sustainability Problems

- Goal is typically to encourage or prevent spatial spread
 - Encourage spread of endangered species
 - Manage spread of fire
 - Prevent spread of diseases and invasive species
 - Over long time horizons
 - Resulting MDPs are immense
 - Dynamics are typically available only via a simulator
- Data are extremely noisy, heterogeneous, and incomplete
 - Need to learn latent process dynamical models from this data
- Optimization is based on learned models
 - Need to be robust to incorrect models
 - Need to be robust to the unknown unknowns
 - Risk sensitive:
 - avoid species extinctions
 - avoid catastrophic fires

Computational Sustainability

 There are many opportunities for computing to contribute to sustainable ecosystem management

There are many challenging machine learning research problems to be solved

Institute for Computational Sustainability: <u>http://www.computational-sustainability.org/</u>

Thank-you

- Rebecca Hutchinson, Liping Liu: Boosted Regression Trees in OD models
- Dan Sheldon: Collective Graphical Models
- Steve Kelling, Andrew Farnsworth, Wes Hochachka, Daniel Fink: BirdCast
- H. Jo Albers, Kim Hall, Majid Taleghan, Mark Crowley: Tamarisk
- Carla Gomes for spearheading the Institute for Computational Sustainability
- National Science Foundation Grants 0705765, 0832804, and 0905885

Questions?