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Bird Migration

=Many bird species are declining. Why?
= Loss of summer and winter habitat
= Loss of stop-over habitat during migration
= Cats
= Skyscrapers
= Airplanes
= Wind farms
= Food asynchrony due to climate change
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Understanding Bird Migration

= We need better models of
= Required habitat for each species
= Detailed dynamics of bird migration

= Bird decision making??
= Absolute timing (e.g., based on day length)
= Temperature
= Wind speed and direction
= Relative humidity
= Food availability
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Methodology
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Step 1: Mathematical Modeling |
k3

P(sy): Initial State Distribution
P(s;|s;—1): State transition function

= Markov Process

= The state at time t + 1 depends only on the state at time t (and not the
“history” of earlier states)

= Vector/Matrix representation

(0.25] [0.50 0.0 0.0 0.0][0.5]
0.50 0.50 0.50 0.0 0.0]}]0.5

0.25 0.0 0.50 0.50 0.0 0
0 0.0 0.0 050 1.0l1L0 |

P(st =) = ) P(s¢ = jlsees = DP(ses = i)

Oberlin 2014



States of our Markov Process =
Grid Cells [

= 36x28 grid of cells over Eastern US
= 1008 cells

= Problem 1: There are 1008 x 1008 =
1,000,064 transition probabilities to
determine

= Problem 2: The transition
probabilities are time-invariant,
whereas we need them to change

= Depending on the season
= Depending on weather conditions
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Solution: Make the transition probabilities
depend on variables (“covariates”) I.

= |n each cell i on each night (t,t + 1), we will observe the
following covariates x; ;4 (i)
= day of the year: t
= wind speed: v (i)
= wind direction: w; (i)
= temperature: temp, (i)
= relative humidity: rh; (i)
= Between each pair of cells i and j we also know
= distance: dist(i,j)
= direction from i to j: a(i,j)
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Parametric
State Transition Model

= Let a(i,j) be the heading from i to j
= Let w(i) be the heading of the wind
= Let v(i) be the speed of the wind
= Wind profit v(i) cos(w(i) — a(i, j))

= 1 if perfectly aligned

= —1 if perfect headwind

cos(w(j) — a(i,j))
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Distance Preferences

Desirability
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Distance

= Desirability(dist) = Normal(logdist; u, o)
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Preferences for temperature,
relative humidity, day of year, etc. |.

= (temp — Htemp)z ideal temperature

=(rh —0,,)* ideal relative humidity
"t — 040y (1) ahead/behind schedule
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Combine into probability model |

"F@,j) =+ v(@)cos(w (i) —a(i,j)) +
Normal(log dist(i, j); , ) +

(temp; — )2 +  (rhy— )%+

(¢ - ) +

exp F(i,j)
Z]’/ eXp F(l;]’)

"P(s¢ = jlst—1 = 1) =

=Construct the transition matrix at time t by
evaluating this function for each pair (i, j)
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Step 2: Fitting the model to data
The data we wish we had:

= Tracks of individual birds
over time

= Weather at every location

This would give us points

(x¢ 41 (1), 5¢(0), s¢41()) to

which we could fit our model

www.azoresbioportal.angra.uac.pt

macworld.com
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The data we have (1):
Project eBird (www.ebird.org)

= VVolunteer Bird Watchers
= Stationary Count
= Travelling Count
= Time, place, duration, distance
travelled
= Species seen

= Number of birds for each
species or ‘X’ which means > 1

= Checkbox: This is everything
that | saw

= 8,000-12,000 checklists
uploaded per day
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The data we have (2):
Weather Radar
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The data we (hope to) have (3):
Acoustic monitoring

= Night flight calls

= People can identify species or
species groups from these calls
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The data we have (4):
Weather data

= North American Regional Reanalysis
= wind speed
= wind direction
= temperature
= relative humidity



Modeling for each data source (1):

eBird |

= Bird watchers do not detect all birds at a given location
= detection probability
= day of year
= weather conditions
= habitat (shoreline, meadow, dense forest)
= expertise of the bird watcher

= Bird watchers may misidentify species

= Yu, J., Wong, W-K., and Hutchinson, R. (2010). Modeling Experts and Novices in Citizen Science Data for Species
Distribution Modeling. Proceedings of the 2010 IEEE International Conference on Data Mining

= Yu, J., Wong, W-K. and Kelling, S. (2014). Clustering Species Accumulation Curves to Identify Skill Levels of Citizen
Scientists Participating in the eBird Project. IAAl 2014

= Yu, J., Hutchinson, R. and Wong, W-K. (2014). A Latent Variable Model for Discovering Bird Species Commonly
Misidentified by Citizen Scientists. AAAI 2014
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Modeling for each data source (2):
Weather radar

= Radar measures Doppler shift
= Gives radial velocity r
= Velocity is aliased: r mod 2V, 4

= \We developed a maximum likelihood
model (EP) that includes the mod
operator inside the likelihood function

= “fix the model instead of the data”
= Sheldon et al. (2013)

= Bird biomass per km?3
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Radar Visualization



Modeling for each data source (3)
Night flight calls

= Fourier analysis over short time
windows to obtain a spectrogram

= Dynamic time warping to match to
spectrograms of known species
= similar to DNA sequence alignment

= allows time to stretch or shrink (with
a penalty)

= Apply machine learning algorithm to
predict the species

= Accuracy: 97% on 5 species (clean
data using captive birds)

= Damoulas, Henry, Farnsworth, Lanzone, Gomes
(2010). Bayesian classification of flight calls with a
novel Dynamic Time Warping Kernel (ICDM 2010).
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Modeling for each data source (4)
NARR data

= NARR data product is the result of
performing “data assimilation”

= Observed variables from radiosonde
balloons

= Update a physics-based model of the
atmosphere via Bayes theorem

www.ncdc.noaa.gov
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Challenge: Aggregate anonymous

counts |.

= We do not observe the behavior of individual birds
= We only obtain information about aggregated counts of birds

Neer1(0,7)?7?
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Solution:
Collective Graphical Models |.

*New method for fitting models of individual behavior
from noisy aggregate counts

= Assumes all birds make their decisions independently
according to the same P(s;11 = j|s; = i, Xr¢41 (0, )
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Full Migration Model

24
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Fitting Latent Variable Models |

Expectation Maximization (EM; MAP version)

1. Make initial guess about the parameter values “E-Step’
O = Bo, Bw, Btempr Otemp, Bris Orns Baoy Oaoy (1), Baise, U~ Very Difficult
2. Compute the most likely number of birds flying from cell i to
cell j each night (for all i, j). ni .1 (i = j).
“Maximum Aposteriori Probability (MAP) estimate”
3. Pretend these are the true values of the latent variables

and adjust the parameters 0 to maximize the likelihood of
the n;,,,(i - j) values: “M-step”

Easy: Can be
S

argmaxg P (nt,t+1|®) solved with
4. Repeat 2-3 until convergence gradient

descent
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Intractabillity of the E step in the
Collective Graphical Model |.

*Let M be the population size
=Let L the number of grid cells

=Theorem: Unless P = NP, there is no exact
inference algorithm with runtime that is
simultaneously polynomial in both M and L

=Bird migration has M ~ 10° and L = 1008
*We must approximate!!

Oberlin 2014 26



Approximation #1:

Markov Chain Monte Carlo (MCMC) I.
Algorithm

(Sheldon & Dietterich, NIPS 2011)

Best exact method

= Samples from P(n;;44|Nn4, ..., N7)

= posterior distribution of “flows” from
cell to cell

= respects Kirchoff's laws

= running time is independent of
population size

= converges (slowly) to the correct
distribution
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O
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n

Population' size

Our method
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Approximation #2;
MAP approximation

(Sheldon, Sun, Kumar, Dietterich, ICML 2013)

= Approximate MAP inference

= Continuous relaxation (allow counts to
be real numbers)

= Sterling’s approximation: logn! =
nlogn —n
= Theorem: With these two
approximations, the CGM log
likelihood is convex

= Solve using Matlab interior point
solver

—&— Approximate

—h
o (&]] Qo o
o o o o
o o o o
o o o o

Running time (seconds)

3 4 5
Population size:
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Comparison of #1 and #2:
Accuracy and speed of parameter fitting I.

SAEM: Stochastic 49
approximation EM - O SAEM
O v MCEM
MCEM: MCMC + D O MAP-EM
EM O
=
©
MAP-EM: MAP o
L o
approximation +
=\

5000 10000 15000
Seconds
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Approximation #3:
Gaussian Approximation |

(Liu, Sheldon, Dietterich, 2014)

= The statistics in the CGM are combinations of
multinomial distributions

= The multinomial distribution can be
approximated well by a multivariate Gaussian
distribution once the counts are large enough

= Theorem:

= The Gaussian CGM converges in distribution to the
exact CGMas M - o«

= The Gaussian CGM has the same sparsity structure
as the CGM
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Comparison of #2 and #3:
Fitting the parameters

answers identical to
those of the MAP
approximation

=If M is too small, w=(0.5,1,1,1)
both the MAP x
approximation and © methods population size
the GCGM lose : R, e
badly, but GCGM is _° A 480
much worse s 3

= For M > 480, - .
GCGM gives _

EM iteration




Comparison of #2 and #3:
Computation Speed

Inference time v.s. domain size

= \We expect a 100-fold
speedup on a 1008-cell — e
grid

GCGM infer node counts only

running time (seconds)

64

domain size

Oberlin 2014 33



Initial Results:
Movement Reconstruction sheidon, 2009




Current Status |.

= We have developed a faster algorithm for the MAP
approximation (approximation #4)

= We are currently fitting both the MAP (#2) and GCGM (#3)
methods to the eBird data
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Step 3: Policy Optimization |

Policy Questions:

1. Where should conservation reserves and habitat
restoration be performed?
= Examine which cells are being used by the birds
= We have also developed habitat models directly from eBird data

2. Where should wind farms be located?

3. When and where should low-altitude flight training be
allowed?

4. When should wind turbines be operated?
5. When should lights in skyscrapers be turned off?
6. Where should | go bird watching if | want to see species s?
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Summary

—

—

= Modeling:
= Non-linear probabilistic model of the behavior of individual birds
= Collective graphical model (in order to work with aggregate data)

= Fitting to Data:
= EM algorithm

= Computational complexity requires developing algorithms for
approximate inference

= Policy Optimization:

= Straightforward in this application
Oberlin 2014
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Open Problems: Uncertainty and
Robustness |.

—

—

= Uncertainty:
= Errors in our model
= Errors in the models of each data source
= Errors resulting from noisy and insufficient data
= Errors from computational approximations

= Robustness:

= How can we make our policies robust to both the known and unknown
errors in our models?
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Opportunities at Oregon State

= “Spring Break Class in Monte Carlo Al”
http://web.engr.oregonstate.edu/mcai

= Summer REU program: Eco-
Informatics Summer Institute

http://eco-
informatics.engr.oreqgonstate.edu/

= PhD and Postdoc Research Projects
» Fundamental research in machine
learning and Al with applications in
sustainability

Oberlin 2014 39


http://web.engr.oregonstate.edu/mcai
http://eco-informatics.engr.oregonstate.edu/
http://eco-informatics.engr.oregonstate.edu/
http://eco-informatics.engr.oregonstate.edu/
http://eco-informatics.engr.oregonstate.edu/

Thank-you |
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Questions?




