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Bird Migration 

Many bird species are declining. Why? 

Loss of summer and winter habitat 

Loss of stop-over habitat during migration 

Cats 

Skyscrapers 

Airplanes 

Wind farms 

Food asynchrony due to climate change 
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Understanding Bird Migration 

We need better models of 

 Required habitat for each species 

 Detailed dynamics of bird migration 

 

Bird decision making?? 

 Absolute timing (e.g., based on day length) 

 Temperature 

 Wind speed and direction 

 Relative humidity 

 Food availability 
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Methodology 
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Step 1: Mathematical Modeling 

Markov Process 

 The state at time 𝑡 + 1 depends only on the state at time 𝑡 (and not the 

“history” of earlier states) 

Vector/Matrix representation 
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𝑃 𝑠𝑡 = 𝑗 = 𝑃 𝑠𝑡 = 𝑗 𝑠𝑡−1 = 𝑖 𝑃(𝑠𝑡−1 = 𝑖)

𝑥
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 𝑠1  𝑠2  𝑠3  𝑠4  𝑠𝑇 

𝑃(𝑠1): Initial State Distribution 

𝑃 𝑠𝑡 𝑠𝑡−1 : State transition function 



States of our Markov Process = 

Grid Cells 

 36x28 grid of cells over Eastern US 

 1008 cells 

 

 Problem 1: There are 1008 x 1008 = 

1,000,064 transition probabilities to 

determine 

 Problem 2: The transition 

probabilities are time-invariant, 

whereas we need them to change 

 Depending on the season 

 Depending on weather conditions 
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Solution: Make the transition probabilities 

depend on variables (“covariates”) 

 In each cell 𝑖 on each night (𝑡, 𝑡 + 1), we will observe the 

following covariates 𝑥𝑡,𝑡+1(𝑖) 

 day of the year: 𝑡 

 wind speed: 𝑣𝑡(𝑖) 

 wind direction: 𝑤𝑡(𝑖) 

 temperature: 𝑡𝑒𝑚𝑝𝑡(𝑖) 

 relative humidity: 𝑟ℎ𝑡(𝑖) 

Between each pair of cells 𝑖 and 𝑗 we also know 

 distance:  𝑑𝑖𝑠𝑡(𝑖, 𝑗) 

 direction from 𝑖 to 𝑗:  𝛼(𝑖, 𝑗) 
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Parametric  

State Transition Model 
 Let 𝛼(𝑖, 𝑗) be the heading from 𝑖 to 𝑗 

 Let 𝑤(𝑖) be the heading of the wind 

 Let 𝑣(𝑖) be the speed of the wind 

 Wind profit 𝑣(𝑖) cos 𝑤 𝑖 − 𝛼 𝑖, 𝑗  

 1 if perfectly aligned 

 −1 if perfect headwind 
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Distance Preferences 

 Desirability(𝑑𝑖𝑠𝑡) =  𝑁𝑜𝑟𝑚𝑎𝑙 log 𝑑𝑖𝑠𝑡 ; 𝜇, 𝜎  
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Preferences for temperature, 

relative humidity, day of year, etc. 

 𝑡𝑒𝑚𝑝 − 𝜃𝑡𝑒𝑚𝑝
2
   ideal temperature 

 𝑟ℎ − 𝜃𝑟ℎ
2      ideal relative humidity 

 𝑡 − 𝜃𝑑𝑜𝑦(𝑖)       ahead/behind schedule 
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Combine into probability model 

𝐹 𝑖, 𝑗 = 𝛽0 + 𝛽𝑤𝑣𝑡(𝑖) cos 𝑤𝑡 𝑖 − 𝛼 𝑖, 𝑗 +
𝛽𝑑Normal log 𝑑𝑖𝑠𝑡 𝑖, 𝑗 ; 𝜇𝑑𝑖𝑠𝑡, 𝜎𝑑𝑖𝑠𝑡 +

𝛽𝑡𝑒𝑚𝑝 𝑡𝑒𝑚𝑝𝑡 − 𝜃𝑡𝑒𝑚𝑝
2
+ 𝛽𝑟ℎ 𝑟ℎ𝑡 − 𝜃𝑟ℎ

2 +

𝛽𝑑𝑜𝑦 𝑡 − 𝜃𝑑𝑜𝑦(𝑖)
 
+⋯ 

 

𝑃 𝑠𝑡 = 𝑗 𝑠𝑡−1 = 𝑖 =
exp 𝐹 𝑖,𝑗

 exp 𝐹 𝑖,𝑗′
𝑗′

 

 

Construct the transition matrix at time 𝑡 by 
evaluating this function for each pair (𝑖, 𝑗) 
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Step 2: Fitting the model to data 

The data we wish we had: 

Tracks of individual birds 

over time 

Weather at every location 

 

12 
Oberlin 2014 

macworld.com 

www.azoresbioportal.angra.uac.pt 

This would give us points 

(𝑥𝑡,𝑡+1 𝑖 , 𝑠𝑡 𝑖 , 𝑠𝑡+1 𝑗 ) to 

which we could fit our model 



The data we have (1): 

Project eBird (www.ebird.org) 

 Volunteer Bird Watchers 

 Stationary Count 

 Travelling Count 

 Time, place, duration, distance 

travelled 

 Species seen 

 Number of birds for each 

species or ‘X’ which means ≥ 1 

 Checkbox: This is everything 

that I saw 

 

 8,000-12,000 checklists 

uploaded per day 
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The data we have (2): 

Weather Radar 

 Radar detects 

 weather (remove) 

 smoke, dust, and insects 
(remove) 

 birds and bats 

 

 Removing weather 

 manual, using a web-
based tool 

 

 Removing smoke, dust & 
insects 

 estimate velocities 

 ignore pixels that are 
moving at same speed 
as wind 
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The data we (hope to) have (3): 

Acoustic monitoring 

 Night flight calls 

 People can identify species or 

species groups from these calls 
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The data we have (4): 

Weather data 

North American Regional Reanalysis  

 wind speed 

 wind direction 

 temperature 

 relative humidity 
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Modeling for each data source (1): 

eBird 

 Bird watchers do not detect all birds at a given location 

 detection probability  

 day of year 

 weather conditions 

 habitat (shoreline, meadow, dense forest) 

 expertise of the bird watcher 

 Bird watchers may misidentify species 

 
 Yu, J., Wong, W-K., and Hutchinson, R. (2010). Modeling Experts and Novices in Citizen Science Data for Species 

Distribution Modeling. Proceedings of the 2010 IEEE International Conference on Data Mining 

 Yu, J., Wong, W-K. and Kelling, S. (2014). Clustering Species Accumulation Curves to Identify Skill Levels of Citizen 

Scientists Participating in the eBird Project. IAAI 2014 

 Yu, J., Hutchinson, R. and Wong, W-K. (2014). A Latent Variable Model for Discovering Bird Species Commonly 

Misidentified by Citizen Scientists. AAAI 2014 
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Modeling for each data source (2): 

Weather radar 
 Radar measures Doppler shift 

 Gives radial velocity 𝑟 

 Velocity is aliased: 𝑟 𝑚𝑜𝑑 2𝑉𝑚𝑎𝑥 

 We developed a maximum likelihood 

model (EP) that includes the 𝑚𝑜𝑑 
operator inside the likelihood function 

 “fix the model instead of the data” 

 Sheldon et al. (2013) 

 Bird biomass per 𝑘𝑚3 
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Radar Visualization 
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Modeling for each data source (3) 

Night flight calls 

 Fourier analysis over short time 

windows to obtain a spectrogram 

 Dynamic time warping to match to 

spectrograms of known species 

 similar to DNA sequence alignment 

 allows time to stretch or shrink (with 

a penalty) 

 Apply machine learning algorithm to 

predict the species 

 Accuracy: 97% on 5 species (clean 

data using captive birds) 

 
 Damoulas, Henry, Farnsworth, Lanzone, Gomes 

(2010). Bayesian classification of flight calls with a 

novel Dynamic Time Warping Kernel (ICDM 2010). 
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Modeling for each data source (4) 

NARR data 

NARR data product is the result of 

performing “data assimilation” 

 Observed variables from radiosonde 

balloons 

 Update a physics-based model of the 

atmosphere via Bayes theorem 
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Challenge: Aggregate anonymous 

counts 

We do not observe the behavior of individual birds 

We only obtain information about aggregated counts of birds 
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𝑛𝑡(𝑖) 

𝑛𝑡+1(𝑗) 

𝑛𝑡,𝑡+1 𝑖, 𝑗 ? ? 



Solution:  

Collective Graphical Models 

New method for fitting models of individual behavior 

from noisy aggregate counts 

 

Assumes all birds make their decisions independently 

according to the same 𝑃 𝑠𝑡+1 = 𝑗 𝑠𝑡 = 𝑖, 𝑥𝑡,𝑡+1(𝑖, 𝑗)   
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Full Migration Model 
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Fitting Latent Variable Models 

Expectation Maximization (EM; MAP version) 
 

1. Make initial guess about the parameter values 

Θ = 𝛽0, 𝛽𝑤 , 𝛽𝑡𝑒𝑚𝑝, 𝜃𝑡𝑒𝑚𝑝, 𝛽𝑟ℎ , 𝜃𝑟ℎ , 𝛽𝑑𝑜𝑦 , 𝜃𝑑𝑜𝑦(𝑖), 𝛽𝑑𝑖𝑠𝑡 , 𝜇𝑑𝑖𝑠𝑡 , 𝜎𝑑𝑖𝑠𝑡    

2. Compute the most likely number of birds flying from cell 𝑖 to 

cell 𝑗 each night (for all 𝑖, 𝑗). 𝒏𝑡,𝑡+1
𝑠 (𝑖 → 𝑗).  

“Maximum Aposteriori Probability (MAP) estimate” 

3. Pretend these are the true values of the latent variables 

and adjust the parameters Θ to maximize the likelihood of 

the 𝒏𝑡,𝑡+1
𝑠 𝑖 → 𝑗  values:  

argmaxΘ𝑃 𝒏𝑡,𝑡+1
𝑠 Θ  

4. Repeat 2-3 until convergence 
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“E-Step” 

Very Difficult 

“M-step” 

Easy: Can be 

solved with 

gradient 

descent 



Intractability of the E step in the 

Collective Graphical Model 

Let 𝑀 be the population size 

Let 𝐿 the number of grid cells 

Theorem: Unless 𝑃 = 𝑁𝑃, there is no exact 

inference algorithm with runtime that is 

simultaneously polynomial in both 𝑀 and 𝐿 

 

Bird migration has 𝑀 ≈ 109 and 𝐿 = 1008 

We must approximate!! 
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Approximation #1:  

Markov Chain Monte Carlo (MCMC) 

Algorithm 
(Sheldon & Dietterich, NIPS 2011) 

 Samples from 𝑃(𝒏𝑡,𝑡+1|𝒏1, … , 𝒏𝑇) 

 posterior distribution of “flows” from 

cell to cell 

 respects Kirchoff’s laws 

 running time is independent of 

population size 

 converges (slowly) to the correct 

distribution 
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Approximation #2:  

MAP approximation 
(Sheldon, Sun, Kumar, Dietterich, ICML 2013) 

Approximate MAP inference  
 Continuous relaxation (allow counts to 

be real numbers) 

 Sterling’s approximation: log 𝑛! ≈
𝑛 log 𝑛 − 𝑛 

 Theorem:  With these two 

approximations, the CGM log 

likelihood is convex 

 Solve using Matlab interior point 

solver 
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Comparison of #1 and #2: 

Accuracy and speed of parameter fitting 

SAEM: Stochastic 

approximation EM 

 

MCEM: MCMC + 

EM 

 

MAP-EM: MAP 

approximation + 

EM 
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Approximation #3:  

Gaussian Approximation 
(Liu, Sheldon, Dietterich, 2014) 

The statistics in the CGM are combinations of 
multinomial distributions 

The multinomial distribution can be 
approximated well by a multivariate Gaussian 
distribution once the counts are large enough 

 

Theorem:  
The Gaussian CGM converges in distribution to the 

exact CGM as 𝑀 → ∞ 

The Gaussian CGM has the same sparsity structure 
as the CGM 

Oberlin 2014 
31 



Comparison of #2 and #3:  

Fitting the parameters 

 If 𝑀 is too small, 

both the MAP 

approximation and 

the GCGM lose 

badly, but GCGM is 

much worse 

 

For 𝑀 ≥ 480, 
GCGM gives 

answers identical to 

those of the MAP 

approximation 
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Comparison of #2 and #3: 

Computation Speed 

We expect a 100-fold 

speedup on a 1008-cell 

grid 
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Black-throated Blue Warbler 

Initial Results:  

Movement Reconstruction  [Sheldon, 2009] 

Observations (eBird volunteers) Fitted Migration Model 
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Current Status 

We have developed a faster algorithm for the MAP 

approximation (approximation #4) 

We are currently fitting both the MAP (#2) and GCGM (#3) 

methods to the eBird data 
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Step 3: Policy Optimization 

Policy Questions: 

1. Where should conservation reserves and habitat 

restoration be performed? 

 Examine which cells are being used by the birds 

 We have also developed habitat models directly from eBird data 

2. Where should wind farms be located? 

3. When and where should low-altitude flight training be 

allowed? 

4. When should wind turbines be operated? 

5. When should lights in skyscrapers be turned off? 

6. Where should I go bird watching if I want to see species 𝑠? 
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Summary 

Modeling: 

 Non-linear probabilistic model of the behavior of individual birds 

 Collective graphical model (in order to work with aggregate data) 

Fitting to Data: 

 EM algorithm 

 Computational complexity requires developing algorithms for 

approximate inference 

Policy Optimization: 

 Straightforward in this application 
Oberlin 2014 
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Open Problems: Uncertainty and 

Robustness 

Uncertainty: 

 Errors in our model 

 Errors in the models of each data source 

 Errors resulting from noisy and insufficient data 

 Errors from computational approximations 

Robustness: 

 How can we make our policies robust to both the known and unknown 

errors in our models? 
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Opportunities at Oregon State 

 “Spring Break Class in Monte Carlo AI”  

http://web.engr.oregonstate.edu/mcai  

 

 

 Summer REU program: Eco-

Informatics Summer Institute 

http://eco-

informatics.engr.oregonstate.edu/  

 

 

 PhD and Postdoc Research Projects 

 Fundamental research in machine 

learning and AI with applications in 

sustainability 
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Thank-you 

 Dan Sheldon, Akshat Kumar, Liping Liu, Tao Sun: Collective Graphical 

Models 

 Steve Kelling, Andrew Farnsworth, Wes Hochachka, Daniel Fink: 

BirdCast 

 Carla Gomes for spearheading the Institute for Computational 

Sustainability 

 

 National Science Foundation Grants 0705765, 0832804, 0905885, 

1331932 
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Questions? 
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