Three Challenges for Machine Learning Research: From Learning Algorithms to Learning Systems

Thomas G. Dietterich School of EECS Oregon State University http://eecs.engr.orst.edu/~tgd

A Caricature of AI Research History

Three Challenges

Structured Machine Learning
 Transfer Learning
 Deployed Learning Systems

Structured Machine Learning

Emerging applications of machine learning

- Sequence labeling (information extraction, NLP, bioinformatics, activity recognition)
- Spatio-temporal labeling
- Relational learning and collective classification
- Existing ideas are not scaling up well to these problems

Sequential Supervised Learning

Given: A set of training examples of the form (X_i, Y_i), where
X_i = (x_{i,1}, ..., x_{i,Ti}) and
Y_i = (y_{i,1}, ..., y_{i,Ti}) are sequences of length T_i

Find: A function F for predicting new sequences: Y = F(X).

Examples of Sequential Supervised Learning

Domain	Input X i	Output Y _i
Part-of-speech Tagging	sequence of words	sequence of parts of speech
Information Extraction	sequence of tokens	sequence of field labels {name,}
Text-to-speech Mapping	sequence of letters	sequence phonemes

How to Solve Structured ML Problems?

Existing approaches: Two main families

- Declarative:

Learn declarative knowledge

Feed to reasoning system to make decisions at run time

– Procedural:

Learn procedural knowledge

No reasoning system needed at run time

For Structured ML problems, neither approach appears to be entirely satisfactory!

Declarative vs Procedural Learning (1): Classification

Task: Classification

 $\mathbf{x} \longrightarrow$ Classifier f() \longrightarrow y

Declarative Approach:

• Learn Bayesian network P(**x**,y):

Learn Association Rules:

 $x_2 \Rightarrow y$ $y \land x_3 \Rightarrow x_1$

• Perform reasoning to make classification decisions:

belief propagation resolution

Declarative vs Procedural Learning (1): Classification

Procedural Approach:

• Tune a black box classifier:

No reasoning needed to
 make classification decisions

Declarative vs Procedural Learning (2): Sequential Decision Making

Task: Given s_t choose action a_t to maximize total reward $\sum_t r_t$

Declarative Approach:

- Learn transition function $P(s_{t+1} | s_t, a_t)$
- Learn reward function $R(s_{t+1} | s_t, a_t)$

 Compute policy π via dynamic programming (MDP Planning)

- Learn STRIPS operators
- Learn goal predicates

 Compute policy via STRIPS planning

Declarative vs Procedural Learning (2): Sequential Decision Making

Procedural Approach:

• Tune policy π incrementally

No reasoning required to choose actions

Experience with these methods

	Declarative	Procedural
learning algorithms	simple & efficient	complex & expensive
cost of inference	expensive	zero
easy to mix learning with hand-crafted knowledge	easy	very difficult
performance	mediocre	excellent

Applying these Methods to Structured ML Problems
Declarative Approach:
- Hidden Markov models
Procedural Approach:
- Many new methods!

Declarative Approach: Hidden Markov Models

- Learning (in fully-observed case) does not require inference
- Classification inference procedure: Viterbi algorithm $argmax_{\langle y1...yT\rangle} \prod_{t} P(y_t|y_{t-1}) \cdot P(x_t|y_t)$
- Performance often mediocre

Procedural Approach

A completely procedural approach is not feasible because there are K^T possible output sequences Y (for K classes and sequence length T)

$$X \longrightarrow$$
Classifier F() $\longrightarrow Y$

Procedural Approach (2)

Learn a scoring function Ψ such that the Viterbi algorithm gives the right answer argmax_(y1...yT) Σ_t ψ(y_{t-1},y_t,x_t)

Algorithms:

- voted perceptron
- conditional random fields (CRF)
- extensions of Support Vector Machines
- graph transformer networks

Learning "through" Inference

All of these algorithms perform inference at learning time

- Given X and current Ψ
- Perform inference to compute $\langle \hat{y}_1 ... \hat{y}_T \rangle$
- Compare $\langle \hat{y}_1,\,...,\,\hat{y}_T\rangle$ to $\langle y_1,\,...,\,y_T\rangle$ and update Ψ

Signs of Trouble

Learning cost is dominated by cost of inference

- Nobody publishes results on large data sets
- Text-to-Speech Mapping
 - Conditional random fields are too expensive to apply
- Learned classifier often performs worse than simple "sliding window"
 - Sliding window treats (x_t, y_t) as independent examples (possibly considering a "window", e.g., $\langle x_{t-2}, x_{t-1}, x_t, x_{t+1}, x_{t+2} \rangle$)
 - Protein secondary structure prediction:
 - Neural network sliding window: 76-78% correct
 - Conditional random fields: 66% correct
 - Semantic Role Labeling
 - Boosted tree sliding window F1 = 71.41 (75 labels)
 - Conditional random fields: F1 = 60.43 (15 labels)

What to Try Next? Hints from Cognitive Psychology

Intelligence (as measured by IQ) is required to carry out this process on novel tasks

Initial performance based on declarative knowledge is mediocre

Skill is acquired slowly and becomes opaque

Claims

- Skill is not simply declarative knowledge combined with inference
 - Skill acquisition is more than just acquiring declarative knowledge
 - Skill acquisition is not just compiling declarative knowledge into more efficient form (a la EBL and SOAR)
- Somehow, declarative knowledge and inference guide the acquisition of procedural skill
 - initialize the policy π ?
 - constrain the tuning of π ?
- In structured ML tasks, we should explore methods that do not require extensive run-time inference
 - learn declarative knowledge first
 - then apply it to guide procedural learning?

Three Challenges

Structured Machine Learning
 Transfer Learning
 Deployed Learning Systems

Transfer Learning

 System learns to perform Task A
 on new Task B, system either

 immediately performs better on it (Type I), or
 learns to perform well <u>with less experience</u> than would otherwise have been required (Type II)

Measuring Type I Transfer

When B is not a learning task

amount of task A training data

amount of task B training data

Dimensions of Transfer Learning

Amount of sharing possible
Depth of sharing
Direct sharing versus mapped sharing
Engineered transfer versus "transfer in the wild"

Amount of Sharing Possible

Distance	feature relevance	ontology	task decomposition	declarative facts
Near	Shared	Shared	Shared	Shared
Medium	Shared	Shared	Shared	Not Shared
Medium	Shared	Shared	Not Shared	Not Shared
Far	Shared	Not Shared	Not Shared	Not Shared
Infinite	Not Shared	Not Shared	Not Shared	Not Shared

Example 1: Transfer of Learned Facts

Task A: Meeting Planning Who should attend budget meeting for Project X? Task B: Purchasing

Who can approve purchases on Project X?

Example 2: Transfer of Learned Subprocedures

Task A: Purchasing Computers

Disk size •

- Back ordered
- Delivery date •

Task B: Purchasing Books

Example 3: Transfer of Learned Ontology

Task A: Tenure review in university

Organization is a hierarchy of groups

Each group has a team leader and team members

The members of all groups except the lowest are the team leaders of subgroups

Note: Domain facts and procedures do NOT transfer:

Tenure dossier flows up hierarchy

Task B: Command and control in police force

Organization is a hierarchy of groups

Each group has a team leader and team members

The members of all groups except the lowest are the team leaders of subgroups

Orders flow down hierarchy

Example 4: Transfer of Learned Feature Relevance

Task A: Routing Complaints

Task B: Meeting Scheduling

Job title determines job responsibilities

Carpenter: framing, installing cabinets Drywaller: taping, sealing, texturing Painter: masking, painting Contractor: scheduling, project planning Job title determines job responsibilities

"Chief Evangelist" might be able to substitute for "Evangelist" in meeting

These inferences can be made without even knowing what "sealing" or "Evangelist" mean

Amount of Sharing Possible

Distance	feature relevance	ontology	task decomposition	declarative facts	Stephen Q is
Near	Shared	Shared	Shared	Shared ^{<}	financial officer
Medium	Shared	Shared	Shared	Not Shared	Book specifications must match
Medium	Shared	Shared	Not Shared	Not Shared	Hierarchical Organization
Far	Shared —	Not Chared	Not Onaroa		Job title determines
Infinite	Not Shared	Not Shared	Not Shared	Not Shared	responsibilities

Transfer Learning Summary

People exhibit transfer learning

- Transfer learning requires identifying shared components (feature relevance, ontology, subprocedures, domain facts)
- Transfer learning could involve a wide variety of mechanisms
 - Current learning systems can transfer if the input feature space encompasses both tasks and there is enough training data
 - This may not be statistically feasible in more complex problems

Three Challenges

Structured Machine Learning
 Transfer Learning
 Deployed Learning Systems

Deployed Learning Systems

Two views of machine learning

- as a data-driven software development methodology
 - ■tablet PC
 - US mail address reader
- as the foundation for adaptive software systems
 - collaborative filtering
 - spam filtering
 - TaskTracer

Challenges for Deployed Learning Systems

- Autonomous Learning ("learning in the wild")
 - Can't afford to deploy a machine learning expert with each software system
- Non-stationarity
 - space of classes is changing
 - space of features is changing
 - underlying probability distribution is changing
 - "don't call it 'drift'"

Example Application: TaskTracer

- TaskTracer: make the Windows desktop tasksensitive
- Hypothesis:
 - user's time at the keyboard can be divided into episodes each devoted to a general activity
 working on CS534
 - working on sequential supervised learning
 - preparing for Iberamia conference
 - these general activities provide a key way to organize the user's documents, web pages, contacts, appointments, folders, phone calls, etc.

TaskTracer 1.0.0

User defines a hierarchy of activities
 User tells TaskTracer what activity he is working on right now
 TaskTracer monitors

visits in IE, Office, etc

Task-Based Access to Documents Task Explorer provides easy access to user's documents based on current activity

TaskExplorer			gra	nt\dampa\ki-leam		×
Task View Tools Help						
🗄 🖓 classes	^	Name	Path	Туре	Date Modified	^
	_	C:\Documents and Settings\	C:\Documents and Settings\tgd\Application Data\Micr	. Folder	11/10/2004	
		🔺 plan.xls	Z:\g	Excel	11/10/2004	=
geo599		🔁 Z:\g	Z:\g	Folder	11/10/2004	
mlrg		🔀 2005-winter-appointments xls	Z:\g	Excel	11/10/2004	_
		Mail :: Welcome to Webmail	https://webmail.oregonstate.edu/?server=cs	IExplorer	11/10/2004	
		🔀 2004-fall-appointments xls	Z:\g	Excel	11/10/2004	
±		a reports	Z:\g\darpa\kbleaming\reports	IExplorer	11/10/2004	
🖃 🖓 grant E 🖓 darpa		🔏 angelo@cs.orst.edu	angelo@cs.orst.edu	Contact	11/10/2004	
		🔏 dambrosi@cs.orst.edu	dambrosi@cs.orst.edu	Contact	11/10/2004	
Collective mind		🔏 herlock@cs.orst.edu	herlock@cs.orst.edu	Contact	11/10/2004	
		<u> tadepall@cs.orst.edu</u>	tadepall@cs.orst.edu	Contact	11/10/2004	
🗸 ki-leam	_	👗 Thomas G. Dietterich	tgd@cs.orst.edu	Contact	11/10/2004	
🗸 kp-seed		🔁 2004Q3 progress report for K	From:Thomas G. Dietterich;	Outlook	11/10/2004	
unman		Oregon State: School of Ele	http://eecs.oregonstate.edu/	IExplorer	11/10/2004	
wagner		College of Engineering	http://engr.oregonstate.edu/	IExplorer	11/10/2004	
🖃 💆 nsf		Z:\g\darpa\kbleaming\reports	Z:\g\darpa\kbleaming\reports	Folder	11/10/2004	
🟹 bugs		🗾 quad-chart-2.ppt	Z:\g\darpa\kbleaming\reports	PowerPoint	11/10/2004	
hardware 2004		KILEARN-year2-schedule-v2	Z:\g\darpa\kbleaming\reports	Excel	11/10/2004	
igert		Journal of Machine Learning	http://jmlr.csail.mit.edu/	IExplorer	11/10/2004	
kbleam		🐞 kbleaming	Z:\g\darpa\kbleaming	IExplorer	11/10/2004	
		a meetings	Z:\g\darpa\kbleaming\meetings	IExplorer	11/10/2004	
sensor nets 2004		2004-10-12	Z:\g\darpa\kbleaming\meetings\2004-10-12	IExplorer	11/10/2004	
ssl [™] ∠ ssl		final-version	Z:\g\darpa\kbleaming\meetings\2004-10-12\final-vers.	IExplorer	11/10/2004	
		kiter (Annual and a set (~h-	http://www.ee.ett.ee.th/~headdewe//shateset/ee.ee.ee.is	(Contana)	11/10/2004	

Activity Predictor

Users forget to update the current activity
 Task predictor learns to predict the current activity from

- title of window
- path name of file
- URL of web page
- etc.

Machine Learning Challenges

Set of activities changes over time projects and classes are finished new projects and classes begin Set of input features changes over time new attributes are added with each release – old attributes are removed or become redundant User behavior changes over time user relies more on predictions and provides less feedback

Software Engineering Challenges

- How can ordinary software engineers learn to design deployed adaptive systems?
 - What design tools and methodologies do they need?
- How can we verify and validate adaptive systems?
 - What measures of system behavior can we verify before deployment and check after deployment?
- How can we support easy maintenance of deployed adaptive systems?
 - Changing the definitions of input features, the number of input features
 - Avoiding having to retrain the system after each upgrade
- How can system staff install new releases and repair problems without access to user's private data?

Concluding Remarks

Maturation of the machine learning field gives rise to three challenges

- Structured Machine Learning
- Transfer Learning
- Design and Software Engineering of Deployed Adaptive Systems

Acknowledgements

Structured Machine Learning

 Conversations with Pat Langley, William Cohen, Alan Fern, Yaroslav Bulatov, Lluís Márquez

Transfer Learning

Leslie Kaelbling and other members of the CALO team

Task Tracer

- Jon Herlocker, fellow PI
- Kevin Johnsrude, software developer
- Phuoc Do, undergraduate
- Research support from NSF (MKIDS program) and DARPA (real-world learning and CALO)