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Many Data Mining Problems 
Involve Sequential Data

• Cellular Telephone Fraud
• Part-of-speech Tagging
• Information Extraction from the Web
• Protein Secondary Structure Prediction

Cellular Telephone Fraud

• Given the sequence of recent telephone 
calls, can we determine which calls (if any) 
are fraudulent?
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Part-of-Speech Tagging

• Given an English sentence, can we assign 
a part of speech to each word?

• “Do you want fries with that?”
• <verb pron verb noun prep pron>

Information Extraction from the 
Web

<dl><dt><b>Srinivasan Seshan</b> (Carnegie Mellon 
University) <dt><a href=…><i>Making Virtual Worlds 
Real</i></a><dt>Tuesday, June 4, 2002<dd>2:00 PM , 
322 Sieg<dd>Research Seminar

* * * name name * * affiliation affiliation affiliation * * * * 
title title title title * * * date date date date * time time * 
location location * event-type event-type
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Protein Secondary Structure 
Prediction

• Given input sequence of amino acid residues
• Predict protein secondary structure 

classification: 
– h: helix
– e: beta sheet/turn
– _: coil

K S V M G H N W V L T K E A D K E 
h h h h _ _ _ _ e e e e _ _ _ h h

Sequential Supervised Learning 
(SSL)

• Given:  A set of training examples of the 
form (Xi,Yi), where 
Xi = hxi,1, … , xi,Tii and
Yi = hyi,1, … , yi,Tii are sequences of length 
Ti

• Find:  A function F for predicting new 
sequences: Y = F(X).
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Examples as Sequential 
Supervised Learning

sequence of 
{e,h,_}

sequence of 
amino acids

Protein 
Secondary 

sequence of field 
labels {name, …}

sequence of 
tokens

Information 
Extraction

sequence of 
labels {ok, fraud}

sequence of 
calls

Telephone 
Fraud

sequence of 
parts of speech

sequence of 
words

Part-of-speech 
Tagging

Output YiInput XiDomain

Goal: Off-the-Shelf Learning 
Methods for SSL 

• No existing machine learning, data mining, 
and statistical packages supports SSL

• No existing method meets all of the 
requirements needed for an “off-the-shelf”
method
– Accurate
– Easy-to-use
– Efficient
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Outline

• Sequential Supervised Learning
• Off-The-Shelf Methods: Criteria
• Review of Existing and Proposed 

Approaches
• Two New Results
• Conclusions

Objectives

• Accurate
– Must capture sequential relationships
– Must allow rich input features

• Easy-to-use
– Should not require careful modeling or 

assumptions about probability distributions
– Should be robust to parameter settings

• Fast
– Should train and run fast and scale well
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Two Kinds of Relationships

• “Vertical” relationship between the xt’s and yt’s
– Example: “Friday” is usually a “date”

• “Horizontal” relationships among the yt’s
– Example: “name” is usually followed by “affiliation”

• SSL should exploit both kinds of information

y1 y2 y3

x1 x2 x3

Rich X ↔ y Relationships

• Generative models such as HMMs model 
each xt as being generated by a single yt

• Can’t incorporate the context around xt
– Example: disambiguate “bank” based on 

surrounding words: “account”, “river”, “shot”
• Can’t include global features

– Example: “Sentence begins with question 
word”
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Outline

• Sequential Supervised Learning
• Off-The-Shelf Methods: Criteria
• Review of Existing and Proposed 

Approaches
• Two New Results
• Conclusions

Candidate Methods

1. Sliding windows
2. Recurrent sliding windows
3. Hidden Markov models
4. Maximum entropy Markov models
5. Input/Output Markov models
6. Conditional Random Fields
7. Maximum Margin Markov models
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Sliding Windows

___thatwithfrieswantyouDo___

verb→youDo___

verb→frieswantyou

noun→withfrieswant

prep→thatwithfries

pron→___thatwith

pron→wantyouDo

Properties of Sliding Windows

• Converts SSL to ordinary supervised 
learning

• Only captures the relationship between 
(part of) X and yt.  Does not explicitly 
model relations among the yt’s

• Assumes each window is independent
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Recurrent Sliding Windows

___thatwithfrieswantyouDo___

___ verb→youDo___

pron verb→frieswantyou

verb noun→withfrieswant

noun prep→thatwithfries

prep pron→___thatwith

verb pron→wantyouDo

Recurrent Sliding Windows

• Key Idea:  Include yt as input feature when 
computing yt+1.

• During training:
– Use the correct value of yt
– Or train iteratively (especially recurrent neural 

networks)
• During evaluation:

– Use the predicted value of yt
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Properties of 
Recurrent Sliding Windows

• Captures relationship among the y’s, but 
only in one direction!

• Results on text-to-speech:

74.2%24.4%right-leftrecurrent s. w.
67.9%17.0%left-rightrecurrent s. w.
69.6%12.5%nonesliding window
LettersWordsDirectionMethod

WEKA RSW Package

• WEKA is a java-based machine learning 
and data mining package available from 
the University of Waikato, NZ

• Saket Joshi has implemented a general 
recurrent sliding window package for 
WEKA.  Can apply any WEKA classifier 
with recurrent sliding windows
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Hidden Markov Models

y2y1 y3

x1 x2 x3

• yt’s are generated as a Markov chain
• xt’s are generated independently (as in 

naïve Bayes or Gaussian classifiers).

Hidden Markov Models (2)
• Models both the xt ↔ yt relationships and 

the yt ↔ yt+1 relationships.
• Does not permit rich X ↔ yt relationships

– Unlike the sliding window, we can’t use 
several xt’s to predict yt.
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HMM Alternatives: Maximum 
Entropy Markov Models

y2y1 y3

x1 x2 x3

MEMM Properties

• Permits complex X ↔ yt relationships by 
employing a sparse maximum entropy 
model of P(yt+1|X, yt):
P(yt+1|X,yt) ∝ exp(Σb αb fb(X,yt,yt+1))

where fb is a boolean feature.
• Training can be expensive (gradient 

descent or iterative scaling)
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HMM Alternatives (2): 
Input/Output HMM

h2h1 h3

x1 x2 x3

y1 y2 y3

(Bengio & Frasconi, 1996)

IOHMM Properties

• Hidden states permit “memory” of long 
distance effects (beyond what is captured 
by the class labels)

• As with MEMM, arbitrary features of the 
input X can be used to predict yt.
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• Forward models that are normalized at 
each step exhibit a problem.

• Consider a domain with only two 
sequences: “rib” → “111” and “rob” →
“222”.

• Consider what happens when an MEMM 
sees the sequence “rib”.

Label Bias Problem

Label Bias Problem (2)
• After “r”, both labels 1 and 2 have same 

probability.  After “i”, label 2 must still send all of 
its probability forward, even though it was 
expecting “o”.  Result: both output strings  “111”
and “222” are assigned the same probability.

i b
1 1 1

2 2 2

r

r o b
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Conditional Random Fields

• The yt’s form a Markov Random Field 
conditioned on X:  P(Y|X)

Lafferty, McCallum, & Pereira (2001)

y2y1 y3

x1 x2 x3

Markov Random Fields

• Graph G = (V,E)
– Each vertex v ∈ V represents a random variable yv.
– Each edge represents a direct probabilistic 

dependency.
• P(Y) = 1/Z exp [∑c Ψc(c(Y))]

– c indexes the cliques in the graph
– Ψc is the potential function for clique c
– c(Y) selects the random variables participating in 

clique c.
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A Simple MRF

• Cliques:
– singletons:  {y1}, {y2}, {y3}
– pairs (edges); {y1,y2}, {y2,y3}

• P(hy1,y2,y3i) = 1/Z exp[Ψ1(y1) + Ψ2(y2) +    
Ψ3(y3) + Ψ12(y1,y2) + Ψ23(y2,y3)]

y2y1 y3

CRF Potential Functions are 
Conditioned on X

• Ψt(yt,X)

• Ψt,t+1(yt,yt+1,X)

y2y1 y3

x1 x2 x3
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CRF Potentials are 
Log Linear Models

• Ψt(yt,X) = ∑b βb gb(yt,X)
• Ψt,t+1(yt,yt+1,X) = ∑a λa fa(yt,yt+1,X)

• where gb and fa are user-defined boolean
functions (“features”)
– Example: g23 = [xt = “bank” and yt = “noun”]

Training CRFs

• Let θ = {β1, β2, …, λ1, λ2, …} be all of our 
parameters

• Let Fθ be our CRF, so Fθ(Y,X) = P(Y|X)
• Define the “loss” function L(Y,Fθ(Y,X)) to 

be the Negative Log Likelihood
L(Y,Fθ(Y,X)) = – log Fθ(Y,X) 

• Goal: Find θ to minimize loss (maximize 
likelihood)

• Method: Gradient descent
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CRFs on Part-of-speech tagging

23.7626.9945.99
spelling 
features (OOV)

4.274.875.69
spelling 
features

5.556.375.69baseline
CRFMEMMHMM

Lafferty, McCallum & Pereira (2001) 
(error rates in percent)

Maximum Margin Markov networks
(Taskar, Guestrin, Koller, NIPS 2003)

• MMM = CRF but with a different objective 
function during training
– HMMs:  Train to maximize P(Xi,Yi) on the 

training data
– CRF:  Train to maximize P(Yi|Xi) on the 

training data
– MMM: Train to maximize the margin 

P(Yi|Xi) – maxY’≠Y P(Y’|Xi) 
Can incorporate kernels (a la SVMs)
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MMM Results on OCR Task

Summary of Methods

YES

NO

YES

YES
CRF

YESNONOYESYESYESlabel bias ok?

???NOYES?YESYESYESefficient?

YESYESYESNOYESYESX ↔ yt rich?

YESYESYESYESPartlyNOxt ↔ yt
yt ↔ yt+1

MMMIOHMMMEMMHMMRSWSWIssue

Partly

NO
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Outline

• Sequential Supervised Learning
• Off-The-Shelf Methods: Criteria
• Review of Existing and Proposed Approaches
• Two New Results

– Choosing Input and Output Window Sizes
– A Faster Method for Training CRFs

• Conclusions

Result 1:
Choosing Input and Output 

Window Sizes
• Design Decision for most SSL Methods:

– Size of input window
– Amount of output context (degree of Markov 

model)
• How can these decisions be made?

– Essentially a kind of feature selection
– Maybe fit a simple model (mutual information?  

Naïve Bayes) and use it? 
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Systematic Study using WEKA

What’s Going On?

• Increasing window size…
– increases variance (extra features)
– reduces bias (more accurate model)

• Bagging and Boosting reduce variance
– permits them to use a larger window
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Bias/Variance Study
Nettalk J48(C4.5) Bagging

Conclusion

• To choose window sizes, we must perform 
cross-validation
– The best window size depends on the 

algorithm
– Basing the decision on a simple algorithm will 

give the wrong results
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Result 2: Faster Training for CRFs

• Can we make CRFs fast enough to be off-
the-shelf?
– Iterative Scaling  (very very slow)
– Gradient Descent (very slow)
– Functional Gradient Descent (fast enough?)

• Gradient “tree boosting”

• From calculus we know that the minimum 
loss will be where

• Method:

Gradient Descent Search

d L(Y,Fθ(Y,X))
d θ = ∇θ L(Y,Fθ(Y,X)) = 0

∇θ L(Y,Fθ(Y,X))θ := θ – η
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Gradient Descent with
Set of Training Examples

• We have N training examples (Xi,Yi)
• Negative log likelihood of all N examples is 

the sum of the neg log likelihoods of each 
example

• The gradient of the negative log likelihood 
is the sum of the gradients of the neg log 
likelihoods of each example.

Gradients from Each Example

gradientexample

∇θ L(Y4,Fθ(Y4,X4))(X4,Y4)

∇θ L(Y3,Fθ(Y3,X3))(X3,Y3)

∇θ L(Y2,Fθ(Y2,X2))(X2,Y2)

∇θ L(Y1,Fθ(Y1,X1))(X1,Y1)

θ := θ – η ∑i ∇θ L(Yi, Fθ(Yi,Xi))
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Problem:
Gradient Descent is Very Slow

• Lafferty et al. employed modified iterative 
scaling but reported that it was very slow.

• We (and others) implemented conjugate 
gradient search, which is faster, but not 
fast enough

• For text-to-speech:  16 parallel 
processors, 40 hours per line search.
– 100 line searches = 4000 hours (64000 CPU 

hours)

Functional Gradient Descent 
(Breiman; Friedman; et al.)

• Standard gradient descent:
θfinal = θ0 + δ1 + δ2 + … + δM

where δm = – η ∇θm-1 ∑i L(Yi, Fθm-1(Yi,Xi))
• Functional Gradient Descent:

Ffinal = F0 + ∆1 + ∆2 + … + ∆M
where ∆m = – η hm, and hm is a function that
approximates ∇F∑iL(Yi,Fm-1(Yi,Xi))
• Idea: Use regression trees for hm’s
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Functional Gradient Descent (2)

(X4,g4)

(X3,g3)

(X2,g2)

(X1,g1)

functional 
gradient 
example

functional gradientexample

∇F L(Y4,Fm-1(Y4,X4)) = g4(X4,Y4)

∇F L(Y3,Fm-1(Y3,X3)) = g3(X3,Y3)

∇F L(Y2,Fm-1(Y2,X2)) = g2(X2,Y2)

∇F L(Y1,Fm-1(Y1,X1)) = g1(X1,Y1)

Fit h to minimize ∑i [h(Xi) – gi]2

Friedman’s Gradient Boosting 
Algorithm

• F0 = argminφ ∑i L(Yi,φ)
• For m = 1, …, M do

– gi := ∇F L(Yi,Fm-1(Yi,Xi)), i = 1, …, N
– fit regression tree h := argminf ∑i [f(Xi) – gi]2

– ηm = argminφ ∑i L(Yi, Fm-1(Yi,Xi) – φ h(Xi))
– Fm = Fm-1 – ηm hm
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Regression Trees

x1 = ‘o’

x1 = ‘a’x2 = ‘t’

yes no

h= 0.3 h= -2.1

yes yes nono

h= 0.8 …

Very fast and effective algorithms

Application to CRF Training

• Recall CRF model:
Ψ(yt-1,yt,X) = Σa λa fa(yt-1,yt,X)
Ψ(yt,X) = Σb βb gb(yt,X)]

• Represent Ψ(yt-1,yt,X) + Ψ(yt,X) by a set of K 
functions (one per class label):
– Ψ(ℓ,k,X) + Ψ(k,X) = Fk(ℓ,X),   k = 1, …, K

• where Fk(ℓ,X) = Σm ηm hk,m (ℓ,X)
• Each hk,m is a regression tree that tests the features {fa, gb} of 

the CRF
• The values in the leaves of the tree become the weights λa

and βb
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Sum of Regression Trees is 
Equivalent to CRF

Circled Path is equivalent to 
expression of the form λa fa
λa = 0.324

fa = s1 & ¬s4 & ¬s18

Advantages of 
Gradient Tree Boosting

• Each potential function is represented as a 
weighted sum of regression trees

• Trees can be learned very quickly
• Requires no assumptions about probability 

distributions
• Can introduce combinations of features, 

which is difficult to do in gradient descent 
(although see McCallum, UAI 2003)
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Training CRFs by 
Gradient Tree Boosting

• Generate training examples
– Apply forward-backward algorithm to compute 

P(yit|Xi)
– Construct regression tree training example 

(Xi,git)
• Fit regression tree for each output class y
• Repeat until convergence

Initial Results: Training Times

• Gradient Boosting
– 1 processor: 100 iterations requires 6 hours 

(compared to 16*40*100 = 64,000 hours for 
conjugate gradient)

– However: only forward part of gradient 
boosting algorithm was implemented
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Results: Whole words correct
5-letter window 

Viterbi beam width 20.  

Whole Words: 
Window Sizes of 3 and 7
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Predicting Single Letters

Protein Secondary Structure 
Prediction

(Qian & Sejnowski)
• Training time per iteration:
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Protein Secondary Structure:
Accuracy

Why Gradient Boosting is More 
Effective

• Each step is large:  Each iteration adds 
one regression tree to the potential 
function for each class

• Parameters are introduced only as 
necessary

• Combinations of features are constructed 
(although see McCallum, UAI 2003)
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Outline

• Sequential Supervised Learning
• Off-The-Shelf Methods: Criteria
• Review of Existing and Proposed 

Approaches
• Two New Results
• Conclusions

Discussion

• Sequential Supervised Learning problems arise 
in many domains
– language processing
– fraud detection, intrusion detection
– bioinformatics

• Off-the-shelf methods are needed
– Basic off-the-shelf method: recurrent sliding windows
– Possible “high-tech” alternatives: CRFs, MMMs



35

Choosing Window Sizes

• Bias/Variance Tradeoff
– Depends on particular learning algorithm
– Requires cross-validation

• Can we find a computationally less 
expensive method?

Faster and More Robust 
Method for Training CRFs

• Boosted regression trees
– CPU time scales linearly with window size
– Introduces feature combinations
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Open Questions

• Can we train MMMs by gradient tree 
boosting?

• Can we train SVMs by gradient tree 
boosting?

• Will standard techniques for handling 
missing values in trees (C4.5, CART) work 
for tree boosting?

Concluding Remarks

• SSL problems are instances of relational 
learning problems with a single relation: 
the sequence

• SSL requires “collective classification”
• Machine Learning is in the midst of a 

revolution:
IID is dead; long live relational 

learning!
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