Machine Learning in Ecosystem Informatics and Sustainability

Tom Dietterich

School of Electrical Engineering and Computer Science Oregon State University <u>http://web.engr.oregonstate.edu/~tgd</u>

tgd@eecs.oregonstate.edu

Threats to the Biosphere

Pollution including Greenhouse Gases

Habitat Loss and Fragmentation

Over-Harvesting

Needed: Robust Optimal Policy Based on Sound Science

- Our understanding of ecosystem structure and function is poor
 - Extremely complex interactions
 - Operate at many temporal and spatial scales
 - Hard to do controlled experiments
 - Impossible to observe critical past events
- Long record of policy failures: "Ecological Surprises"
 - Doak et al. Ecology 39(4), 2008.
 - "Surprises are common and extreme"

A Limiting Factor: Ecological Data

- Many ecological simulation models are based on little or no data
- Historical time series only extend back 100 years
 - Oldest continuous data set at HJ Andrews Experimental Forest is 1909-present
 - Most begin in 1990s
- Location, population size, interactions for virtually all species are unobserved

Ecosystem Sciences

Past approaches

- Naturalists: museum collections
- Artificial ecosystems (test tubes; barrels)

Data

Driven

- Isotope tagging of fluxes
- Emerging approaches
 - In-situ sensor networks
 - Radio/RFID tagging and tracking of organisms
 - Radar ornithology
 - Remote sensing

Data Pipeline

Data Pipeline

Optimal Sensor Placement

Optimal Sensor Placement for Environmental Data Collection

Leskovec et al, KDD2007

- Objectives
 - detection probability
 - improving model accuracy
 - improving causal understanding
 - improving policy effectiveness

Data Pipeline

Optimal Sensor Placement

Detectability Errors / Noise Sampling Bias

Sampling Bias: ebird.org

- Citizen science collected by amateur bird watchers
- Strong bias toward where people live
- Explicit models of sampling bias

Phillips, Dudik, Elith, Graham, Lehmann, Leathwick, Ferrier: Sample Selection Bias and Presence-only Distribution models: implications for background and pseudo-absence data. *Ecological Applications*, 19(1), 181-197. 2009.

Detectability

- Birds in Forested Landscapes protocol
 - Step 1: 2 minutes silent listening and observing
 - Step 2: Play "con-specific" mating calls and listen/observe
 - Step 3: Play "predator mobbing" tape and listen/observe

Coupled models of detectability and occurrence can be fit simultaneously

Royle, Dorazio (2008). *Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities.*

Data Pipeline

Optimal Sensor Placement

Detectability Errors / Noise Sampling Bias

Species classification

Recognizing individuals Tracking individuals

The BugID Project: Rapid Throughput Arthropod Counting

- Arthropods are a powerful data source
 - Found in virtually all environments
 - streams, lakes, oceans, soils, birds, mammals
 - Easy to collect
 - Provide valuable information on ecosystem function
 - Consume the primary producers: bacteria, fungi, plants
 - Are consumed by more charismatic organisms: birds, mammals, fish
- Problem: Identification is timeconsuming and requires scarce expertise
- Solution: Combine robotics, computer vision, and machine learning to automate classification and population counting UCAL 2009

Data Pipeline

Optimal Sensor Placement

Detectability Errors / Noise Sampling Bias

Species classification Recognizing individuals Tracking individuals

Sensor failures Networking failures Recognition errors

Multi-Sensor Anomaly Detection

Data Pipeline

Optimal Sensor Placement

Detectability Errors / Noise Sampling Bias

Species classification **Recognizing individuals** Tracking individuals

Sensor failures Networking failures **Recognition errors**

Species distribution models Behavioral models Dynamical systems models

Species Distribution Models

- What are the environmental/biological requirements for a species?
- Given:
 - Environmental features (elevation, soil properties, weather) of a site
 - Presence, presence/absence, or abundance of K species

Find:

- Probability that each of the K species will be found at new sites
- Extrapolation to global climate change scenarios

Plants in Victoria

- 5,605 plant species measured at >113,000 sites
- 83 environmental features

Data Pipeline

Optimal Sensor Placement

Detectability Errors / Noise Sampling Bias

Species classification **Recognizing individuals** Tracking individuals

Sensor failures Networking failures **Recognition errors**

Species distribution models **Behavioral models** Dynamical systems models

Optima that are robust to model uncertainty

Robust Reserve Design

- Given:
 - Species distribution model
 - Budget
- Find:
 - Set of reserves to purchase that are good habitat for the species and fit within the budget
- Robust to uncertainties in the model (and climate, etc.)
 - Optimize the machine learning to be more accurate where land is cheaper to acquire?
 - Joint optimization of model fitting and optimization?

Predicted winter distribution of tree swallows (Fink, et al., unpublished)

Outline

BugID Project: Arthropod Counting

 Automated Data Cleaning for Wireless Sensor Network Data

Automated Rapid-Throughput Arthropod Population Counting

Goal:

- technician collects specimens in the field by various means
- robotic device automatically manipulates, photographs, classifies, and sorts the specimens

Three applications:

- stoneflies in freshwater streams
- soil mesofauna
- freshwater zooplankton

Application 1: Stonefly populations in freshwater streams

- differentially sensitive to many pollutants
- live in rivers; reliable indicator of stream health
- difficult and expensive for people to classify (particularly to genus or species levels)
- hundreds of species \bullet

Application 2: Small arthropods in soil: "soil mesofauna"

AchipteriaA

Bdellozonium

EniochthoniusA

PtenothrixV

EntomobrgaTM

EpidamaeusA

onychiurusA

EpilohmanniaA

CatoposurusA

EpilohmanniaT HypochthoniusLA EpilohmanniaD

PtiliidA

HypogastruraA

TomocerusA

IsotomaA

OppiellaA PeltenuialaA PhthiracarusA

IsotomaVI

LiacarusRA

PlatynothrusF

QuadroppiaA

NothrusF

24

SiroVI

Platynothrusl

Application 3: Freshwater Zooplankton

Measure biodiversity in freshwater lakes
70 species

Images from Microscopy-UK.

IJCAI 2009

Image Capture Apparatus

Stonefly Imaging

Soil Mesofauna Imaging

IJCAI 2009

Robotic Extraction of Specimens

IJCAI 2009

Computer Vision Challenges(1)

Highly-articulated objects with deformation

Computer Vision Challenges(2)

 Huge intra-class changes of appearances due to development and maturation

Computer Vision Challenges(3)

Small between-class differences

Calinueria

Doronueria

Machine Learning

Region-Based Approaches: Convert Image to Bag of Patches

- Handles
 - Occlusion
 - Rotation, translation
 - Scale (with scale-independent patch representation)
 - Partial out-of-plane orientation
 - Articulation / Pose
- Problem:
 - How to define the patches?
 - How to represent each patch?
 - How to classify a BAG of patches?

Defining the Patches: Interest Region Detectors

Hessian-Affine Detector

Kadir Entropy Detector

PCBR Detector

Representing the Patches: SIFT (Lowe, 1999)

- Morph ellipse into a circle
- Compute intensity gradient at each pixel in 16x16 region
- Rotate whole circle according to dominant intensity gradient
- Weight gradients by a gaussian distribution (indicated by circle)
- Collect into histograms within each 4x4 region (gives 16 histograms)
- Result: 128-element vector normalized to have Euclidean norm 1
 IJCAI 2009

Classify Bag of Patches Method 1: Visual Dictionaries

- "look up" each patch in dictionary and count into a feature vector
- feature vector is then given to the classifier

Learn visual dictionary via clustering

 Gaussian Mixture Model (k=100) with diagonal covariance matrices (EM, initialized with K-means)

Classify Bag of Patches Method 2: Multiple-Instance Classifier

- The classifier predicts the class of the image separately from each patch
- These vote to make the final decision

Final prediction: ŷ=2

IJCAI 2009

Improved Multiple-Instance Classification

- Evidence Trees: Like decision trees, but store the "evidence" in each leaf
- Given an input, output the evidence

Classify Bag of Patches Voted Evidence Trees

- The classifier predicts the class of the image separately from each patch
- These vote to make the final decision

votes

Final prediction: ŷ=1

IJCAI 2009

Theorem: Voting Evidence is Better than Voting Decisions

- Intuition: When voting decisions, there are two opportunities to make a mistake:
 - Making the wrong decision at each leaf
 - 2. Making the wrong decision when combining the votes
- With evidence trees, the first opportunity is avoided

 γ = margin of decision tree nodes π = fraction of non-noise patches

Ensemble Learning

- Idea: Learn multiple evidence trees and have them vote
- Question: How to construct multiple diverse trees?
 - **Bootstrapping**: train each tree on a different bootstrap sample
 - Majority vote
 - Boosting: train each tree based on a sample containing 50% points misclassified by the previous trees and 50% points correctly classified by previous trees
 - Focuses subsequent trees on the misclassified points
 - Weighted vote
 - Random Forests: at each node, randomly sample a subset of features and choose the best split from among them
 - Majority vote

Final Classifier: Stacked Random Forests

- 1. Each patch is processed by a *random forest* of evidence trees
- 2. Evidence is summed and normalized to produce C
- 3. C is classified by a second-level **boosted decision tree ensemble**

Experimental Study 9 Taxa of Stoneflies

STONEFLY9 Dataset

- 3826 images
- 773 specimens
- 9 classes
- Error estimation by 3-fold cross-validation
 all images of a specimen belong to the same fold

Comparison of Methods

1/25/2011

EISI Seminar

Issues with Visual Dictionaries

Unsupervised

- Several efforts to construct discriminative dictionaries (Moosman et al., 2006)
- Lose information
 - 128-element SIFT contains 1024 bits, a bag of 256 SIFTs contains 256K bits
 - Keyword histogram from 2700-element dictionary contains ~2700bits

Next Steps

- Stoneflies
 - Detecting and Rejecting "Distractors"
 - Extending coverage to Ephemeroptera (mayflies) and Trichoptera (caddis flies)
 - EMAP study
- Soil Mesofauna
- Freshwater Zooplankton
- Moths
- Shellfish Larvae

Outline

BugID Project: Arthropod Counting

 Automated Data Cleaning for Wireless Sensor Network Data

Upper Lookout Met. Station

Central, 1996, Week 6

Upper Lookout, 1996, Week 3

Approach: Learn a Very Accurate Model of Normal Behavior

P(current observation | previous observations)

If predicted probability is too low, then declare an anomaly

Single Sensor Bayesian Network Model

Central, 1996, Week 6

Assessment

Assessment:

- near 100% recall for anomalies
- 5.3% false positive rate
- would allow expert to ignore 94% of data = 15x speedup in manual cleaning time

Multiple Sensors

- Discover correlation structure among multiple sensors
- Exploit this to make more accurate inferences

Example: SensorScope (EPFL, Switzerland)

Multi-Sensor Anomaly Detection

Multiple Sensor Evaluation

- Protocol:
 - Insert artificial anomalies
 - Measure how well we can detect them
- Results:
 - Robust to large amounts of noise
 - Insensitive to magnitude of noise except at very low levels

Institute for Computational Sustainability

IJCAI 2009

- Cornell, Oregon State, Bowdoin, Howard U.
 - PI: Carla Gomes
 - co-PIs: Tom Dietterich, David Shmoys
- Goal: Identify and solve novel computational problems in ecological science, policy, and renewable energy

Optimal Sensor Placement

Detectability Errors / Noise Sampling Bias

Species classification **Recognizing individuals** Tracking individuals

Sensor failures Networking failures **Recognition errors**

Species distribution models **Behavioral models** Dynamical systems models

Optima that are robust to model uncertainty

For More Information...

- Graduate program in Ecosystem Informatics: <u>http://ecoinformatics.oregonstate.edu/</u>
- Summer Institute in Ecosystem Informatics: <u>http://eco-informatics.engr.oregonstate.edu/</u>
- Institute for Computational Sustainability <u>http://www.computational-sustainability.org/</u>

Acknowledgements

- Grant Support: US National Science Foundation
- BugID:
 - Students: N. Larios, H. Deng, W. Zhang, N. Payet, M. Sarpola, C. Fagan, J. Yuen, S. Ruiz Correa
 - Postdocs: G. Martínez-Muñoz
 - Faculty: R. Paasch, A. Moldenke, D. A. Lytle, E. Mortensen, L. G. Shapiro, S. Todorovic, T. G. Dietterich
- Data Cleaning: Ethan Dereszynski

Questions?