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Threats to the Biosphere
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Pollution  including Greenhouse Gases Habitat Loss and Fragmentation

Over-Harvesting



Needed: 
Robust Optimal Policy 

Based on Sound Science
 Our understanding of ecosystem structure and 

function is poor
 Extremely complex interactions
 Operate at many temporal and spatial scales
 Hard to do controlled experiments
 Impossible to observe critical past events

 Long record of policy failures: “Ecological 
Surprises”
 Doak et al. Ecology 39(4), 2008.
 “Surprises are common and extreme”
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A Limiting Factor: 
Ecological Data

 Many ecological simulation models are 
based on little or no data
 Historical time series only extend back 100 

years
 Oldest continuous data set at HJ Andrews 

Experimental Forest is 1909-present
 Most begin in 1990s

 Location, population size, interactions for 
virtually all species are unobserved
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Ecosystem Sciences

 Past approaches
 Naturalists: museum collections
 Artificial ecosystems (test tubes; barrels)
 Isotope tagging of fluxes

 Emerging approaches
 In-situ sensor networks
 Radio/RFID tagging and tracking of 

organisms
 Radar ornithology
 Remote sensing
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Optimal Sensor Placement for 
Environmental Data Collection

 Objectives
 detection probability
 improving model 

accuracy
 improving causal 

understanding
 improving policy 

effectiveness
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Leskovec et al, KDD2007
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This image cannot currently be displayed.

Sampling Bias: ebird.org

 Citizen science 
collected by amateur 
bird watchers

 Strong bias toward 
where people live

 Explicit models of 
sampling bias
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Cardinals

Phillips, Dudik, Elith, Graham, Lehmann, Leathwick, Ferrier: Sample 
Selection Bias and Presence-only Distribution models: implications for 
background and pseudo-absence data. Ecological Applications, 19(1), 
181-197. 2009.



This image cannot currently be displayed.

Detectability

 Birds in Forested Landscapes protocol
 Step 1: 2 minutes silent listening and observing
 Step 2: Play “con-specific” mating calls and 

listen/observe
 Step 3: Play “predator mobbing” tape and 

listen/observe
 Coupled models of detectability and occurrence 

can be fit simultaneously
Royle, Dorazio (2008). Hierarchical Modeling and Inference in 
Ecology: The Analysis of Data from Populations, Metapopulations 
and Communities.
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This image cannot currently be displayed.

Species Distribution Models

 What are the environmental/biological 
requirements for a species?

 Given:
 Environmental features (elevation, soil properties, 

weather) of a site
 Presence, presence/absence, or abundance of K 

species
 Find:

 Probability that each of the K species will be found 
at new sites

 Extrapolation to global climate change scenarios
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Plants in Victoria

 5,605 plant 
species measured 
at >113,000 sites

 83 environmental 
features
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Predicted winter distribution of tree 
swallows (Fink, et al., unpublished)



This image cannot currently be displayed.

Outline

 BugID Project: Arthropod Counting

 Automated Data Cleaning for Wireless 
Sensor Network Data
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Automated Rapid-Throughput 
Arthropod Population Counting

 Goal: 
 technician collects specimens in the field by various 

means
 robotic device automatically manipulates, photographs, 

classifies, and sorts the specimens

 Three applications:
 stoneflies in freshwater streams
 soil mesofauna
 freshwater zooplankton
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Application 1: Stonefly populations in 
freshwater streams

• differentially sensitive to 
many pollutants

• live in rivers; reliable 
indicator of stream health

• difficult and expensive for 
people to classify 
(particularly to genus or 
species levels)

• hundreds of species
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Application 2: Small arthropods 
in soil: “soil mesofauna”

AchipteriaA BdellozoniumI BelbaA BelbaI CatoposurusA EniochthoniusA

EntomobrgaTM EpidamaeusA EpilohmanniaA EpilohmanniaD EpilohmanniaT HypochthoniusLA

HypogastruraA

IsotomaA
IsotomaVI LiacarusRA MetrioppiaA

NothrusF

onychiurusA
OppiellaA PeltenuialaA PhthiracarusA

PlatynothrusF
PlatynothrusI

PtenothrixV

PtiliidA

QuadroppiaA

SiroVITomocerusA
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Application 3: 
Freshwater Zooplankton

 Measure biodiversity in freshwater lakes
 70 species

Images from Microscopy-UK. 

Daphnia Polyphemus
(cladocerans)

Cyclops
(copepod)

Bosmina
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Image Capture Apparatus

Stonefly Imaging

Soil Mesofauna Imaging
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Robotic Extraction of Specimens
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Computer Vision Challenges(1)

 Highly-articulated objects with deformation
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Computer Vision Challenges(2)

 Huge intra-class changes of appearances due to 
development and maturation

tergites wingsbecome
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Computer Vision Challenges(3)

 Small between-class differences

Calinueria Doronueria
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Machine Learning

Training 
Examples

Learning
Algorithm Classifier

New 
Examples

Doroneuria

Calineuria

Calineuria

Doroneuria

Doroneuria
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Region-Based Approaches:
Convert Image to Bag of Patches

 Handles
 Occlusion
 Rotation, translation
 Scale (with scale-independent 

patch representation)
 Partial out-of-plane orientation
 Articulation / Pose

 Problem:
 How to define the patches?
 How to represent each patch?
 How to classify a BAG of 

patches?
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Defining the Patches: 
Interest Region Detectors
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Hessian-Affine Detector Kadir Entropy Detector PCBR Detector
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Representing the Patches:
SIFT (Lowe, 1999)

• Morph ellipse into a circle

• Compute intensity gradient at each pixel in 16x16 region

• Rotate whole circle according to dominant intensity gradient

• Weight gradients by a gaussian distribution (indicated by circle)

• Collect into histograms within each 4x4 region (gives 16 
histograms)

• Result: 128-element vector normalized to have Euclidean norm 1

(Low
e, 1999)
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Classify Bag of Patches
Method 1: Visual Dictionaries

 “look up” each patch in 
dictionary and count into a 
feature vector

 feature vector is then given 
to the classifier
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Learn visual dictionary via 
clustering

 Gaussian Mixture Model (k=100) with diagonal covariance 
matrices (EM, initialized  with K-means)

abdomen

nose

eyes

centers of
tergites

sides of
tergites

head
legs

100 clusters



classifier

Classify Bag of Patches
Method 2: Multiple-Instance Classifier

 The classifier 
predicts the class 
of the image 
separately from 
each patch
 These vote to make 

the final decision
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0 0 0 0 0 0 0 0 0

votes

1

ŷ=7ŷ=2

12 8 1 3 0 0 6 4 2 Final prediction: ŷ=2



Improved Multiple-Instance 
Classification

 Evidence Trees: Like decision trees, but store 
the “evidence” in each leaf

 Given an input, output the evidence
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x12 > 0.6

x109 > 0.9 x66 > 0.1

100523 001232 000180 741030

yes no
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classifier

Classify Bag of Patches
Voted Evidence Trees

 The classifier 
predicts the class 
of the image 
separately from 
each patch
 These vote to make 

the final decision
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0 0 0 0 0

votes

Final prediction: ŷ=1

100523

23 5 0 0 1

001232

25 8 12 0 187 14 34 6 61



Theorem: Voting Evidence is Better 
than Voting Decisions

 Intuition: When voting 
decisions, there are 
two opportunities to 
make a mistake:
1. Making the wrong 

decision at each leaf
2. Making the wrong 

decision when 
combining the votes

 With evidence trees, 
the first opportunity is 
avoided
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 = margin of decision tree nodes
 = fraction of non-noise patches
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Ensemble Learning

 Idea: Learn multiple evidence trees and have them 
vote

 Question: How to construct multiple diverse trees?
 Bootstrapping: train each tree on a different bootstrap sample

 Majority vote

 Boosting: train each tree based on a sample containing 50% points 
misclassified by the previous trees and 50% points correctly 
classified by previous trees
 Focuses subsequent trees on the misclassified points
 Weighted vote

 Random Forests: at each node, randomly sample a subset of 
features and choose the best split from among them
 Majority vote
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Final Classifier:
Stacked Random Forests

1. Each patch is processed by a random forest of 
evidence trees

2. Evidence is summed and normalized to produce C
3. C is classified by a second-level boosted decision 

tree ensemble

42
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Experimental Study
9 Taxa of Stoneflies
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STONEFLY9 Dataset

 3826 images
 773 specimens
 9 classes
 Error estimation by 3-fold cross-validation

 all images of a specimen belong to the same fold
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Comparison of Methods
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Issues with Visual Dictionaries

 Unsupervised
 Several efforts to construct discriminative 

dictionaries  (Moosman et al., 2006)

 Lose information
 128-element SIFT contains 1024 bits, a bag of 

256 SIFTs contains 256K bits
 Keyword histogram from 2700-element 

dictionary contains ~2700bits

1/25/2011 EISI Seminar 46
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Next Steps

 Stoneflies
 Detecting and Rejecting “Distractors”
 Extending coverage to Ephemeroptera (mayflies) and 

Trichoptera (caddis flies)
 EMAP study

 Soil Mesofauna
 Freshwater Zooplankton
 Moths
 Shellfish Larvae
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Outline

 BugID Project: Arthropod Counting

 Automated Data Cleaning for Wireless 
Sensor Network Data
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Upper Lookout Met. Station

thermometers at 1.5, 
2.5, 3.5, and 4.5m 
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IJCAI 2009Snow Pack Snow Dampening

Broken Sun Shield
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Approach:
Learn a Very Accurate Model of 

Normal Behavior

P(current observation | previous observations)

 If predicted probability is too low, then 
declare an anomaly
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Single Sensor 
Bayesian Network Model

t-1

ToDt-1 DoYt-1Bt-1

Tt-1

St-1

t

ToDt DoYtBt

Tt

St

S: Sensor State (Very Good, Good, Bad, Very Bad)
ToD: Time of Day (the quarter-hour)
DoY: Day of Year (365 day year)
B: Baseline Temperature
 Deviation from Baseline
T: Predicted Temperature
O: Observed Temperature

…

…

OtOt-1

Unobserved

Observed
52
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Assessment

 Assessment:
 near 100% recall for anomalies
 5.3% false positive rate
 would allow expert to ignore 94% of data = 15x 

speedup in manual cleaning time

54



Multiple Sensors

 Discover correlation structure among 
multiple sensors
 Exploit this to make more accurate 

inferences
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Example: SensorScope
(EPFL, Switzerland)
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Multi-Sensor Anomaly Detection
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Multiple Sensor Evaluation

 Protocol:
 Insert artificial 

anomalies
 Measure how well 

we can detect them

 Results:
 Robust to large 

amounts of noise
 Insensitive to 

magnitude of noise 
except at very low 
levels
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Institute for Computational 
Sustainability

 Cornell, Oregon State, 
Bowdoin, Howard U.
 PI: Carla Gomes
 co-PIs: Tom 

Dietterich, David 
Shmoys

 Goal: Identify and 
solve novel 
computational 
problems in ecological 
science, policy, and 
renewable energy
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Summary
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For More Information…

 Graduate program in Ecosystem Informatics:
http://ecoinformatics.oregonstate.edu/

 Summer Institute in Ecosystem Informatics:
http://eco-informatics.engr.oregonstate.edu/

 Institute for Computational Sustainability
http://www.computational-sustainability.org/

IJCAI 2009 61



IJCAI 2009

Acknowledgements

 Grant Support: US National Science Foundation

 BugID: 
 Students: N. Larios, H. Deng, W. Zhang, N. Payet, 

M. Sarpola, C. Fagan, J. Yuen, S. Ruiz Correa
 Postdocs: G. Martínez-Muñoz
 Faculty: R. Paasch, A. Moldenke, D. A. Lytle, E. 

Mortensen, L. G. Shapiro, S. Todorovic, T. G. 
Dietterich

 Data Cleaning: Ethan Dereszynski

62



Questions?
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