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A Common Problem in Ecology

» What we have: periodic observations of organism
“activity”
Moth trap counts

Bird surveys

» What we want: timing of life history events
When did adult moths emerge from cocoons!?
When did migrating birds arrive!

» How to bridge the gap!?
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Example: Moth Trap Counts

Trap counts: 18G-2004
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What was the flight period of Nepytia umbrosaria in 2004?
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Challenges

» We do not directly observe the events we are interested
in
Moth emergence

Bird arrival

Trap counts: 18G-2004
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» Surveys are infrequent

20p

10p

Ma)’ miSS “Peal(” aCtiVity 0_;7—;9—5’3 J 8;5 700 1;4 1:;1 1;13 1?;;5'

Days after May 1

» Naive approaches don’t use all of the data
Date of first moth

Date of maximum abundance
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Probabilistic Modeling Approach
» Due to Zonneveld (1991), Manley (1974)

» Assume moths are independent and identical draws from
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Choose Lifetime Distributions

» Emergence date is Normal(u, 04)
» Lifespan is Exponential(A)

Emergence Lifespan (survival)
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Note: any other parametric models can work
(not restricted to Zonneveld’s Logistic distribution)
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Abundance

» Emergence and lifespan induce a model of abundance
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* Goal: fit parameters (u, o2, 1)
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Zonneveld (1991)

» Compute expected number of moths X (t) flying at time t
by solving
dx(t
);Es ) N*f(t;u,0%) — Ax(t)
» Assume Poisson distributed observation counts
y(t)~ Poisson(x(t))

» Implemented in INCA (www.urbanwildlands.org/INCA/)

Bruggeman, Longcore & Zonneveld
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Differences between Transect Counts and
Moth Trapping

» Traps are lethal
requires change in the likelihood and survival functions

eliminates issues of double counting (either within a single
night or across multiple nights)

» Traps are very effective
Less problem with detection rates

Nonetheless, we still include detection rate in our model
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Limitations of the Zonneveld Method

» Differential equation approach makes it difficult to change
the emergence distribution

» Likelihood requires an approximation (i.e., Poisson)
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Our Contributions

» General approach that can work with any emergence and
mortality distributions

Only requirement is the ability to evaluate a double integral
over the convolution of the two distributions

Survival functions for emergence and mortality with weather
covariates

Overlapping generations

Can model lethal and non-lethal trapping

» Exact likelihood rather than an approximation

Our likelihood converges to the Zonneveld likelihood in the
limit where trapping probability goes to zero
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Trapping model

» Closed trapping area

» N moths (unknown) emerge
during season

» Trap dates t4, ..., ty

» Trapping probability a for each
moth alive on trap date

Trapping area
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Data Likelihood

e Can categorize each moth by its possible fates

Trapped t; q1 fi
Trapped t, q; f2
Trapped t, dy fr
Not trapped r=1-(q;+:+4q,) U=N-(f1 + -+ fr)

e Thus, likelihood of observed trap counts f1, ..., fi is
Multinomial:

(fi, .-, fi, U) ~ Multinomial(N; q4, ..., qx, 1)
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Likelihood Computation and Model Fitting

» To compute likelihood:

Compute birth-death table P(i, j) from emergence and lifespan
distributions (numerical integration)

Compute birth-trap table Q(i, )
Compute trapping probabilities g4, ..., gk

» Find (u, 0%, 1) to maximize likelihood with numerical
optimizer

14 ESA 2011



Intervals

» Trapping times ¢, ... , t;
» Intervals [, ... , I,

» Trap counts f3, ... , [k
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Birth-Death Table

» Let P(i,j) be probability a moth is born in /; and dies in I,

Liv1
P(i,j) = f(s;m,0%)Pr(t; < s+ T, < tjq] ds
ti \ \
Emergence density function Dies in j
P(1,1)
P(1,3)
| | |
| | |
I, ty I, t I, t3 I
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Birth-Trap Table

» Let Q(i,)) be probability a moth is born in /; and trapped at t;

Qi) = ) PG -a) e

K>
Eg.,0(0,2) = P(0,2)(1 — Q)a +
Koo P(0,3)(1 — a)a
L |
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Trap Probabilities

» Overall probability of being trapped at ¢,

aj= ) QG.)

i<j

» Probability not trapped at all

r=1—2qj
J
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Results

» Example of fitted model

Semiothisa signaria - trap 5P - 2004
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Days after May 1
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Moth trappi
HJA, 2004- |

20 paired sites

10 trapping
dates/year

Approx. 2 week
intervals

> 500 species

A

i




A"

Panthia_portlandia

- ; e

Pero_mizon

Seven of the eight most common
moths in the HJ Andrews (photos
by Jeff Miller)
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Semiothisa signaria
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Summary

» Generalization of the Zonneveld model

Works with any parametric birth (arrival) and death (departure)
processes

Provides exact likelihood

» At HJA, often significant correlation between elevation and moth
emergence, but also unexplained variability in this pattern

» Future work:
Incorporate environmental covariates into model (e.g., degree
days)
Explore model limitations via simulation study
Obtain confidence intervals on parameters
Extend to other phenology questions: Bird Migration
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Thank-you to Nick Haddad for introducing
us to the Zonneveld Model
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