Inferring moth emergence from abundance data: A novel mathematical approach using birth-death contingency tables

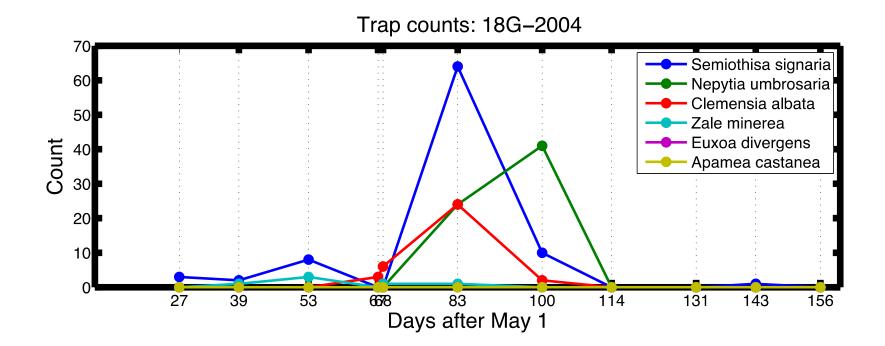
Dan Sheldon, Evan Goldman, Erin Childs, Olivia Poblacion, Jeffrey C. Miller, Julia A. Jones and **Thomas G. Dietterich**

Oregon State University

A Common Problem in Ecology

- What we have: periodic observations of organism "activity"
 - Moth trap counts
 - Bird surveys
- What we want: timing of life history events
 - When did adult moths emerge from cocoons?
 - When did migrating birds arrive?
- How to bridge the gap?

Example: Moth Trap Counts

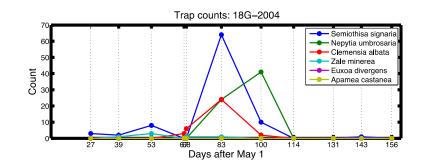


What was the flight period of Nepytia umbrosaria in 2004?

Challenges

We do not directly observe the events we are interested in

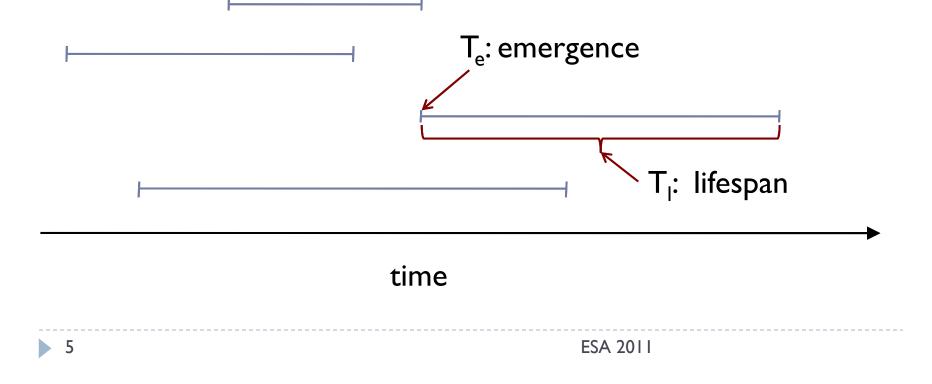
- Moth emergence
- Bird arrival
- Surveys are infrequent
 - May miss "peak" activity



- Naïve approaches don't use all of the data
 - Date of first moth
 - Date of maximum abundance

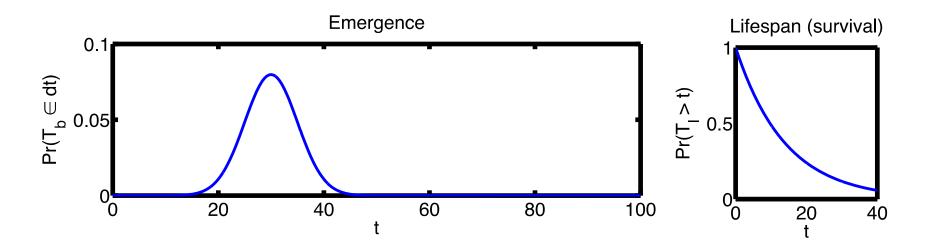
Probabilistic Modeling Approach

- Due to Zonneveld (1991), Manley (1974)
- Assume moths are independent and identical draws from a probability distribution



Choose Lifetime Distributions

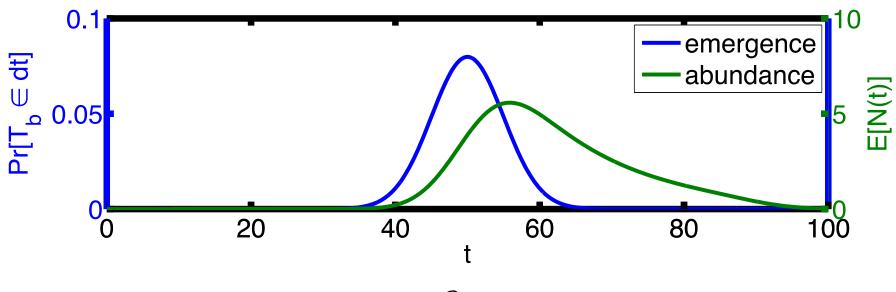
- Emergence date is Normal(μ, σ^2)
- Lifespan is Exponential(λ)



Note: *any* other parametric models can work (not restricted to Zonneveld's Logistic distribution)

Abundance

Emergence and lifespan induce a model of abundance



• Goal: fit parameters (μ, σ^2, λ)

Zonneveld (1991)

Compute expected number of moths X(t) flying at time t by solving

$$\frac{dx(t)}{dt} = N^* f(t; \mu, \sigma^2) - \lambda x(t)$$

- Assume Poisson distributed observation counts $y(t) \sim Poisson(x(t))$
- Implemented in INCA (<u>www.urbanwildlands.org/INCA/</u>)
 - Bruggeman, Longcore & Zonneveld

Differences between Transect Counts and Moth Trapping

Traps are lethal

- requires change in the likelihood and survival functions
- eliminates issues of double counting (either within a single night or across multiple nights)
- Traps are very effective
 - Less problem with detection rates
 - Nonetheless, we still include detection rate in our model

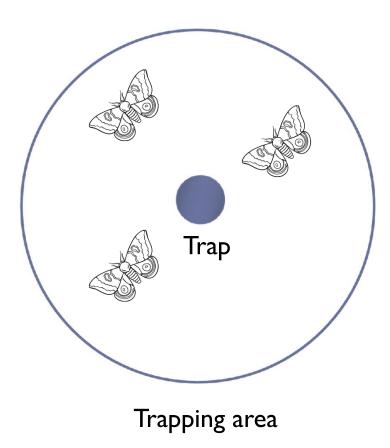
Limitations of the Zonneveld Method

- Differential equation approach makes it difficult to change the emergence distribution
- Likelihood requires an approximation (i.e., Poisson)

Our Contributions

- General approach that can work with any emergence and mortality distributions
 - Only requirement is the ability to evaluate a double integral over the convolution of the two distributions
 - Survival functions for emergence and mortality with weather covariates
 - Overlapping generations
 - Can model lethal and non-lethal trapping
- Exact likelihood rather than an approximation
 - Our likelihood converges to the Zonneveld likelihood in the limit where trapping probability goes to zero

Trapping model



- Closed trapping area
- N moths (unknown) emerge during season
- Trap dates t_1, \ldots, t_k

ESA 2011

• Trapping probability α for each moth alive on trap date

Data Likelihood

• Can categorize each moth by its possible fates

Outcome	Probability	Trap Count
Trapped t_1	q_1	f_1
Trapped t_2	q_2	f_2
Trapped t_k	${q}_k$	f_k
Not trapped	$r = 1 - (q_1 + \dots + q_k)$	$U = N - (f_1 + \dots + f_k)$

• Thus, likelihood of observed trap counts f_1, \dots, f_k is Multinomial:

 $(f_1, \dots, f_k, U) \sim \text{Multinomial}(N; q_1, \dots, q_k, r)$

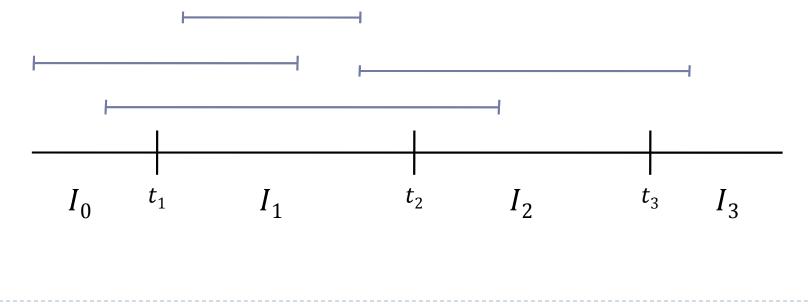
Likelihood Computation and Model Fitting

• To compute likelihood:

- Compute birth-death table P(i, j) from emergence and lifespan distributions (numerical integration)
- Compute birth-trap table Q(i, j)
- Compute trapping probabilities q_1, \ldots, q_k
- Find (μ, σ^2, λ) to maximize likelihood with numerical optimizer

Intervals

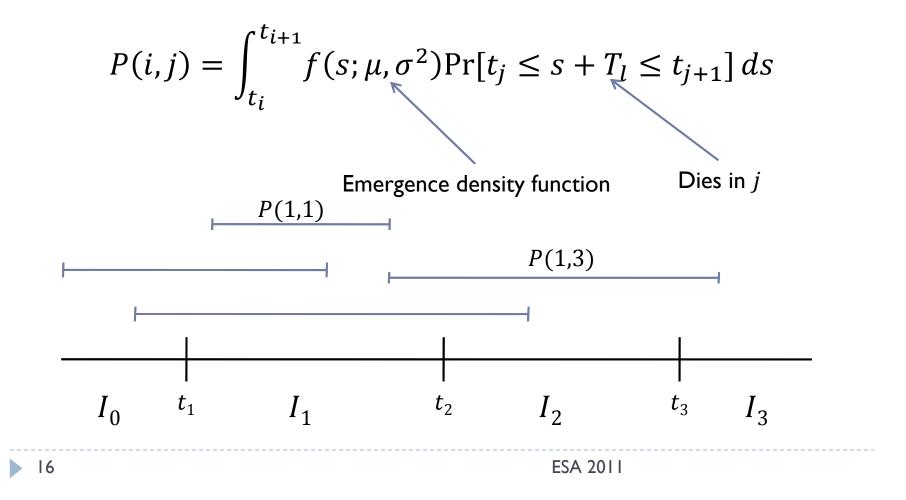
- Trapping times t_1, \dots, t_k
- Intervals I_0, \dots, I_k
- Trap counts f_1, \dots, f_k



ESA 2011

Birth-Death Table

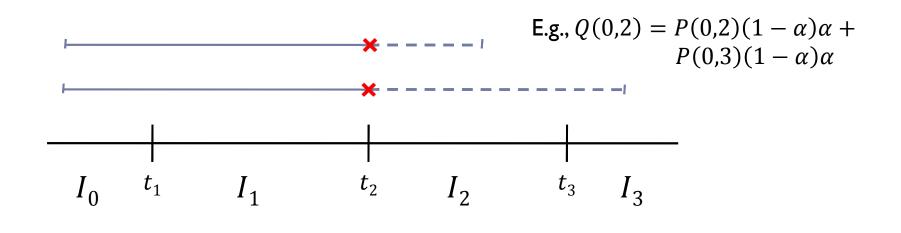
• Let P(i, j) be probability a moth is born in I_i and dies in I_j



Birth-Trap Table

• Let Q(i,j) be probability a moth is born in I_i and trapped at t_j

$$Q(i,j) = \sum_{k \ge j} P(i,k)(1-\alpha)^{j-i-1}\alpha$$



Trap Probabilities

• Overall probability of being trapped at t_j

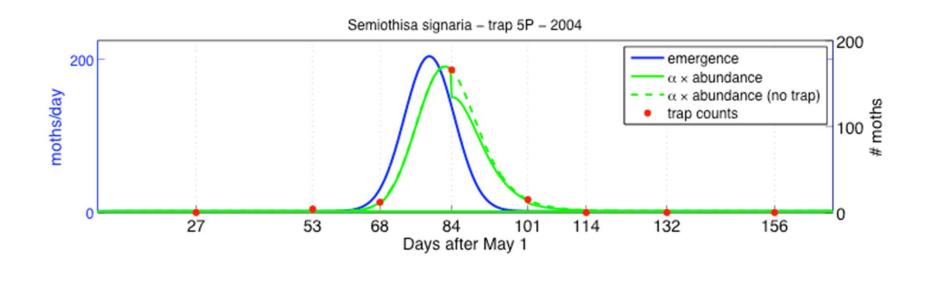
$$q_j = \sum_{i < j} Q(i, j)$$

Probability not trapped at all

$$r = 1 - \sum_{j} q_{j}$$

Results

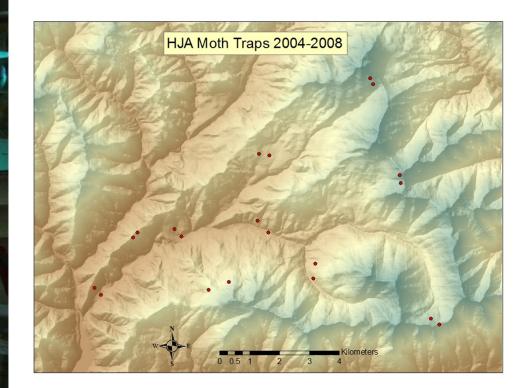
Example of fitted model

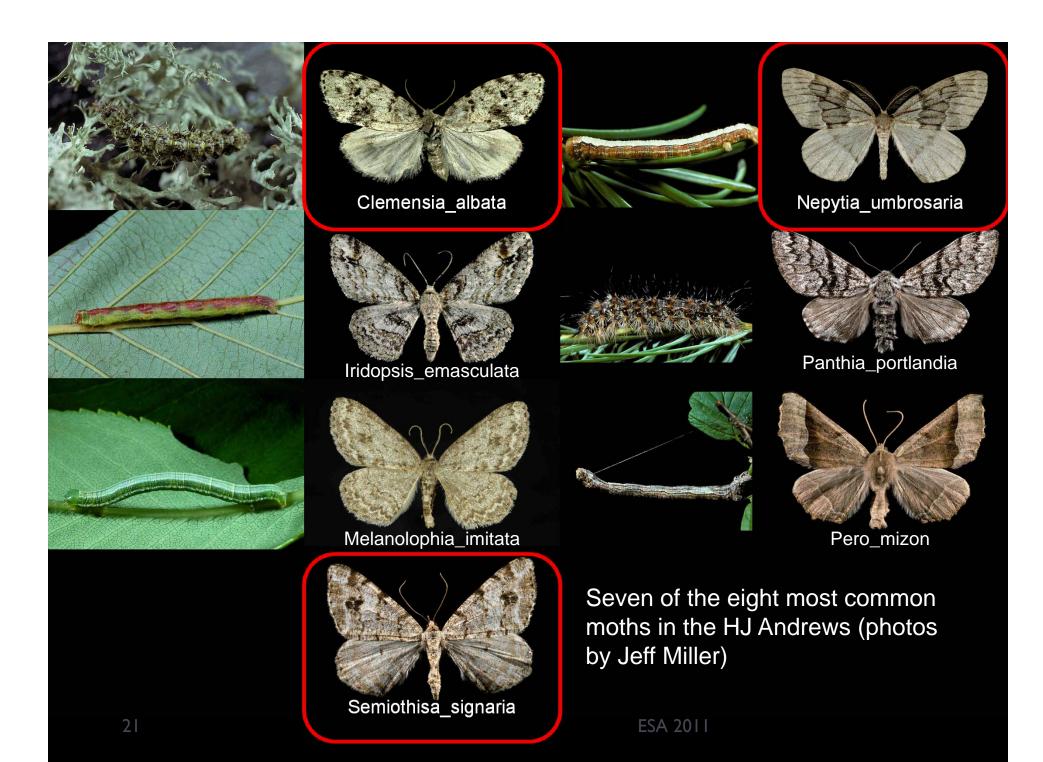


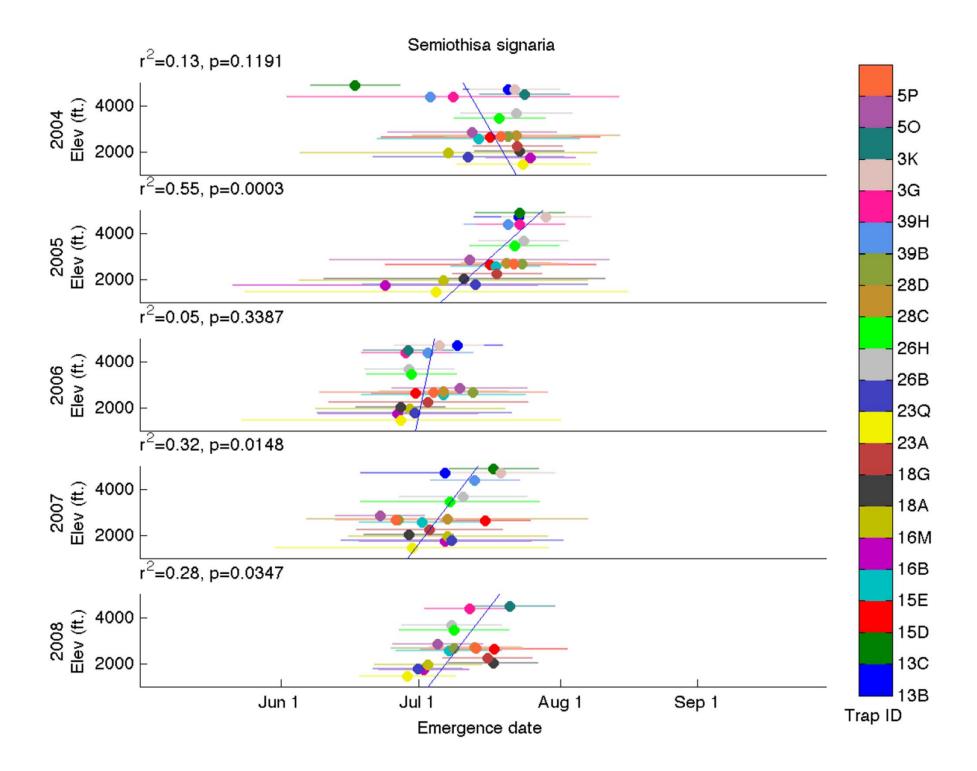
- Moth trapping at HJA, 2004-2008
- 20 paired sites
- 10 trapping dates/year
- Approx. 2 week intervals

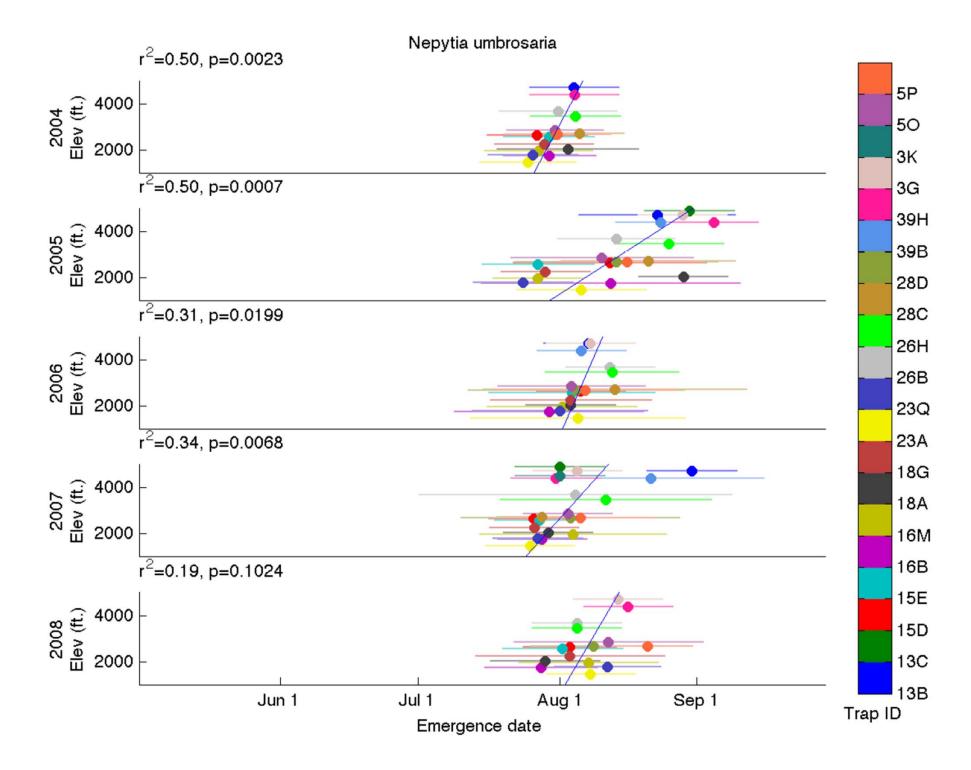
VAPONA

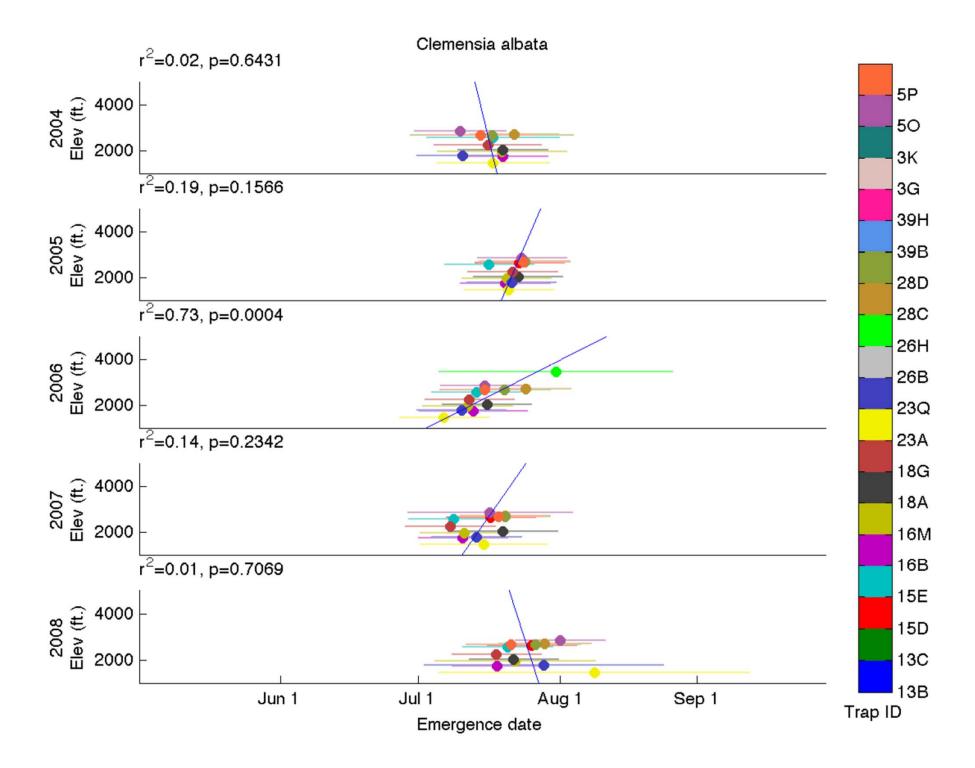
> 500 species











Summary

Generalization of the Zonneveld model

- Works with any parametric birth (arrival) and death (departure) processes
- Provides exact likelihood
- At HJA, often significant correlation between elevation and moth emergence, but also unexplained variability in this pattern
- Future work:
 - Incorporate environmental covariates into model (e.g., degree days)
 - Explore model limitations via simulation study
 - Obtain confidence intervals on parameters
 - Extend to other phenology questions: Bird Migration

Thank-you to Nick Haddad for introducing us to the Zonneveld Model

NSF LTER; NSF Ecoinformatics IGERT (Jones); NSF Computational Sustainability Expedition (Dietterich); NSF Ecoinformatics Summer Institute; NSF BIO Postdoc (Sheldon)