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Bird Distribution and Migration 

Management: 
 Many bird populations are declining 

 Predicting aircraft-bird interactions 

 Siting wind farms 

 Night-time lighting of buildings (esp. skyscrapers) 

 How will climate change affect bird migration and survival? 

 

Science: 

What is the migration decision making policy for each species 
 When to start migrating? 

 How far to fly each night? 

 When to stop over and for how long? 

 When to resume flying? 

 What route to take? 
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Why bird migration is poorly 

understood 

 It is difficult to observe 

 Takes place at continental scale (and beyond) 

 Impossible for the small number of professional ornithologists to collect 

enough observations 

 Very few birds have been individually tracked 
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What Data Are Available? 

Birdwatcher count data: eBird.org 

Doppler weather radar 

Night flight calls 
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eBird Data 
Bird watchers record their observations in a 

database through eBird.org. 

 “Citizen Science” 

Dataset available for analysis 

Features 
 LOTS of data! 

 ~3 million observations reported last May 

 All bird species (~3,000) 

 Year-round 

 Continent-scale 

Challenges 
 Variable quality observations  

 No systematic sampling design 
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Doppler Weather Radar 
 Weather radar detects migrating birds 
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 Can estimate total 

biomass 

 No species information 

 Archived data available 

back to 1995 
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Night Flight Calls 

 Many species of migrating birds emit flight 

calls that can be identified to species or 

species group 

 New project at Cornell to roll out a large 

network of recording stations 

 Automated detection and classification 

 DTW kernel 

 Damoulas, et al, 2010 

 Results on 5 species 

 Clean recordings 
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Prediction Tasks 

Species Distribution Models 
 
 Given site described by feature vector 𝑥 

 Predict whether a target species 𝑠 will be present 𝑦 = 1 
 At a particular point in time 

 At any time throughout the year 

 

Bird Migration Models 
 

 Given observations from ebird, radar, flight calls 
 Reconstruct migration behavior 

 

 Given observations + weather forecast 
 Predict migration behavior for next 24 hours, next 5 days 
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Species Distribution Model 

Challenges 

1. Partial Detection 

 Observer may not detect the species even though it is present 

2. Observer Expertise 

 Observer may not recognize the species even though it is detected 

3. Sampling Bias 

 Birders choose where and when to observe 

4. Population Size Effects 

 Bird population may be too small to occupy all suitable habitat 

 Unoccupied and occupied sites may be identical 

5. Spatial Dynamics  

 In order to occupy habitat, the birds must discover it, so it needs to be 
accessible 

6. Spatial and Temporal Dynamics of other species 

 Food: insect and plant species 

 Competitors/Predators 
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Partial Solution: Multiple visits: Different birds hide on different visits Problem: Some birds are hidden 

1. Imperfect Detection 
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Multiple Visit Data 

Detection History 

 

Site 

True 

occupancy 

(latent) 

Visit 1 

(rainy day, 

12pm) 

Visit 2 

(clear day, 

6am) 

Visit 3 

(clear day, 

9am) 

A  

(forest, 

elev=400m) 

 

1 

 

0 

 

1 

 

1 

B  

(forest, 

elev=500m) 

 

1 

 

0 

 

1 

 

0 

C  

(forest, 

elev=300m) 

 

1 

 

0 

 

0 

 

0 

D  

(grassland, 

elev=200m) 

 

0 

 

0 

 

0 

 

0 
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Occupancy-Detection Model 

Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

𝑧𝑖~𝑃(𝑧𝑖|𝑥𝑖): Species Distribution Model 

 𝑃 𝑧𝑖 = 1 𝑥𝑖 = 𝑜𝑖 = 𝐹(𝑥𝑖)  “occupancy probability” 

𝑦𝑖𝑡~𝑃(𝑦𝑖𝑡|𝑧𝑖 , 𝑤𝑖𝑡): Observation model 

 𝑃 𝑦𝑖𝑡 = 1 𝑧𝑖 , 𝑤𝑖𝑡 = 𝑧𝑖𝑑𝑖𝑡 

 𝑑𝑖𝑡 = 𝐺(𝑤𝑖𝑡)  “detection probability” 
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The Power of Probabilistic 

Graphical Models 

Probabilistic graphical models have many advantages 

 Excellent language for representing models 

 Learning and reasoning via probabilistic inference 

 Support hidden (latent) variables 

 

However, they have disadvantages 

 Designer must choose the parametric form of each probability 

distribution 

 Must decide on the number and form of interactions 

 Data must be scaled and transformed to match model assumptions 

 Somewhat difficult to adapt the complexity of the model to the amount 

and complexity of the data 
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Important Contribution of Machine 

Learning: Flexible Models 

Classification and Regression Trees 

 Require no model design 

 Require no data preprocessing or transformation 

 Automatically discover interactions as needed 

 Achieve high accuracy via ensembles 

 

Support Vector Machines 

 Still require data preprocessing and transformation 

 Powerful methods for tuning model complexity automatically 
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Goal: Combine Probabilistic 

Graphical Models with Flexible 

Models 

Major open problem in machine learning 

 

Current efforts: 

 Kernel (SVM) methods for computing with probability distributions 

 Bayesian Non-Parametric Models: Dirichlet process mixture models 

 

Our approach: Boosted regression trees 

 Represent 𝐹 and 𝐺 using weighted sums of regression trees 

 Learn them via boosting 

 This can be done using functional gradient descent (Mason & Bartlett, 

1999; Friedman, 2000; Dietterich, et al, 2008; Hutchinson & Dietterich, 

2011) 
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L2-Tree Boosting Algorithm 
(Friedman 2000) 
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 Let 𝐹0 𝑋 = 𝑓0(𝑋) = 0 be the zero function 

 For ℓ = 1, … , 𝐿 do 

 Construct a training set Sℓ = 𝑋𝑖 , 𝑌 𝑖
𝑖=1

𝑁
  

 where 𝑌  is computed as 

 𝑌 𝑖 =
𝜕𝐿𝐿 𝐹

𝜕𝐹
 
𝐹=𝐹ℓ−1 𝑋𝑖

      how we wish 𝐹 would change at 𝑋𝑖 

 Let 𝑓ℓ = regression tree fit to 𝑆ℓ 

 𝐹ℓ ≔ 𝐹ℓ−1 + 𝜂ℓ𝑓
ℓ 

 The step sizes 𝜂ℓ are the weights computed in boosting 

 This provides a general recipe for learning a conditional probability 

distribution for a Bernoulli or multinomial random variable 
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Alternating Functional Gradient 

Descent 

Loss function 𝐿(𝐹, 𝐺, 𝑦) 

𝐹0 = 𝐺0 = 𝑓0 = 𝑔0 = 0 

For ℓ = 1, … , 𝐿 

 For each site 𝑖 compute  

𝑧 𝑖 = 𝜕𝐿(𝐹ℓ−1 𝑥𝑖 , 𝐺ℓ−1, 𝑦𝑖)/𝜕𝐹ℓ−1 𝑥𝑖  

 Fit regression tree 𝑓ℓ to 𝑥𝑖 , 𝑧 𝑖 𝑖=1
𝑀  

 Let 𝐹ℓ = 𝐹ℓ−1 + 𝜌ℓ𝑓
ℓ 

 For each visit 𝑡 to site 𝑖, compute 

𝑦 𝑖𝑡 = 𝜕𝐿 𝐹ℓ 𝑥𝑖 , 𝐺ℓ−1 𝑤𝑖𝑡 , 𝑦𝑖𝑡  
/𝜕𝐺ℓ−1 𝑤𝑖𝑡  

 Fit regression tree 𝑔ℓto 𝑤𝑖𝑡 , 𝑦 𝑖𝑡 𝑖=1,𝑡=1
𝑀,𝑇𝑖  

 Let 𝐺ℓ = 𝐺ℓ−1 + 𝜂ℓ𝑔
ℓ 
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Experiment 

Algorithms: 

 Supervised methods:  

 S-LR: logistic regression from 𝑥𝑖 , 𝑤𝑖𝑡 → 𝑦𝑖𝑡 

 S-BRT: boosted regression trees 𝑥𝑖 , 𝑤𝑖𝑡 → 𝑦𝑖𝑡 

 Occupancy-Detection methods: 

 OD-LR: 𝐹 and 𝐺 logistic regressions 

 OD-BRT: 𝐹 and 𝐺 boosted regression trees 

Data: 

 12 bird species 

 3 synthetic species 

 3124 observations from New York State, May-July 2006-2008 

 All predictors rescaled to zero mean, unit variance 
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Synthetic Species 

 Synthetic Species 2: 𝐹 and 𝐺 nonlinear 

𝑜𝑖 ∝ exp −2 𝑥𝑖
1

2
+ 3 𝑥𝑖

2
2

− 2𝑥𝑖
3

 

𝑑𝑖𝑡 ∝ exp exp −0.5𝑤𝑖𝑡
4

+ sin 1.25𝑤𝑖𝑡
1

+ 5   
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Predicting 
Occupancy 

 

Synthetic 

Species 2 

20 



Partial Dependence Plot 

Synthetic Species 1 

OD-BRT has 

the least bias 

Distance of survey 21 



Partial Dependence Plot 

Synthetic Species 3 

OD-BRT has 

the least bias 

and correctly 

captures the 

bi-modal 

detection 

probability 

Time of Day 22 



Partial 

Dependence 

Plot 

Blue Jay vs. 

Time of Day 

Time of Day 
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Partial 

Dependence 

Plot 

Blue Jay vs. 

Duration of 

Observation 

Effort in Hours 
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2. Variable Expertise 

Problem: expert and novice observers 

contributing observations to citizen science 

data generate different mistakes/biases 

 

Solution: extend occupancy models so that 

observer expertise affects the detection 

model 
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Occupancy-Detection-Expertise 

(ODE) model 

Yit Zi 

i=1,…,M 

Xi Wit 

oi 

t=1,…,T 

j=1,…,N 

vj Observer 

covariates 

Expert/novice observer Expertise probability 

Observers 

Ej Uj 

Yu, et al, 2010 26 



Expert vs Novice Differences 

Yu, et al, 2010 

-0.05

0.00

0.05

0.10

0.15

0.20

Average Difference in True Detection Probability

Hard-to-detect 

birds

Common birds
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3. Sample Selection Bias 

NICTA/ANU May 2012 

Citizen scientists tend 

to stay close to home 

How can we make 

good predictions 

across the whole US? 

Cardinals

Distribution of check lists mentioning 

explicit presence or absence of Cardinal 

28 



Covariate Shift Reweighting 

Distribution of training data: 𝑃𝑡𝑟𝑎𝑖𝑛(𝑥) 

Target test distribution 𝑃𝑡𝑒𝑠𝑡(𝑥) is uniform 

Reweight training examples according to 

𝑟 𝑥 =
𝑃𝑡𝑒𝑠𝑡 𝑥

𝑃𝑡𝑟𝑎𝑖𝑛 𝑥
 

 

Fit classifier to weighted training data 
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Density Estimation 

Assume 𝑥 ∈ ℝ𝑑 𝑑-dimensional Euclidean space 

Let 𝑣 be a volume of ℝ𝑑 

𝑃𝑡𝑟𝑎𝑖𝑛 𝑥 𝑣 =
𝑁𝑣

𝑁|𝑣|
 

Volume is a tricky concept 

Effective dimension of the data may be much less than 𝑑 

Sample complexity of scales with the dimension 
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Direct Density Ratio Estimation 
(Sugiyama et al., 2011, 2012) 

 Direct density ratio estimation 

𝑟 𝑥 =
𝑃𝑡𝑒𝑠𝑡 𝑥

𝑃𝑡𝑟𝑎𝑖𝑛 𝑥
=

𝑁𝑡𝑒𝑠𝑡 𝑣

𝑁𝑡𝑒𝑠𝑡 𝑣
⋅
𝑁𝑡𝑟𝑎𝑖𝑛 𝑣

𝑁𝑡𝑟𝑎𝑖𝑛 𝑣
=

𝑁𝑡𝑒𝑠𝑡 𝑣

𝑁𝑡𝑒𝑠𝑡
⋅

𝑁𝑡𝑟𝑎𝑖𝑛

𝑁𝑡𝑟𝑎𝑖𝑛 𝑣
 

 

 The volumes cancel 
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Random Projection Trees for 

Direct Density Estimation 

RP-Trees (Dasgupta & Freund, STOC 2008) 

 Project training data onto random vector 

 Two kinds of splits: 

 Split by perpendicular bisector randomized near the median of the data 

 Split by an interval centered on the median (tails to the left, center to the 

right) 

 Guarantees that the tree “follows” the data 

 Scales with the true dimensionality of the data, rather than the 

apparent dimensionality 𝑑 
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Algorithm Idea 

 Given 

 𝑁𝑡𝑟𝑎𝑖𝑛 points sampled from 𝑃𝑡𝑟𝑎𝑖𝑛 

 𝑁𝑡𝑒𝑠𝑡 points sampled from 𝑃𝑡𝑒𝑠𝑡 

 

 Build an RP tree using the 𝑁𝑡𝑟𝑎𝑖𝑛 data points 

 Drop the 𝑁𝑡𝑒𝑠𝑡 data points through the tree 

 Prune the tree so that each leaf ℓ contains at least 

 𝑁𝑚𝑖𝑛 data points, and 

 𝑟𝑚𝑖𝑛 ≤
𝑁𝑡𝑒𝑠𝑡 ℓ 𝑁𝑡𝑟𝑎𝑖𝑛

𝑁𝑡𝑟𝑎𝑖𝑛 ℓ 𝑁𝑡𝑒𝑠𝑡
≤

1

𝑟𝑚𝑖𝑛
 

 Combine in large ensemble 

 Conjectures 

 Consistent: 𝑟 (𝑥) → 𝑟(𝑥) as sample sizes → ∞ 

 Generalization bounds on 𝑟 𝑥 − 𝑟 𝑥 2 that depend only on true dimension 

of data 
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𝑤1 ⋅ 𝑥 < 4 

𝑤2 ⋅ 𝑥
∈ [1,3] 

(12,20) 

12

20
×

180

400
= 0.27 
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Results: None Yet 

Results of previous study (Damoulas & Dilkina) that 

employed kernel density estimates of 𝑃𝑡𝑟𝑎𝑖𝑛 
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Computed weights Results 

Red: w(x) > 1 
Red: unweighted data 

Blue: covariate shift correction 
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Current State of the Art: STEM  
(Fink et al., 2010) 
 Idea:  

 Slice space and time into 

hyperrectangles: lat x long x time 

 Train a decision tree on the data 

inside each hyperrectangle 

 To predict at a new point 𝑥, vote the 

predictions of all trees whose 

hyperrectangle contains 𝑥 

 

 Hyperrectangles: 

 Space: random rectangles of fixed 

size 

 Time: 40-day overlapping intervals 

spaced evenly  throughout the year 

 Discard hyperrectangles that 

contain fewer than 25 training 

locations 

Fink, et al, 2010  35 



Indigo Bunting: Animation from 

static SDM predictions 

slide courtesy of Daniel Fink 

Indigo Bunting 
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Open Problems 

4. Population Size Effects 

 Bird population may be too small to occupy all suitable habitat 

 Unoccupied and occupied sites may be identical 

5. Spatial Dynamics. Occupied habitat can depend on  

 Discovery – it can be found by existing bird population 

 Accessibility – it can be reached by existing bird population (migration 

distance) 

6. Spatial and Temporal Dynamics of other species 

 Food: insect and plant species 

 Competitors/Predators 

 

NICTA/ANU May 2012 
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Modeling Bird Migration 

Migration most naturally described at level of individual 

behavior, but we can only observe population-level statistics 

 We need a modeling technique to link the two 

 

Our Approach: Collective Graphical Models 

NICTA/ANU May 2012 
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Modeling Approach 

Place a grid of cells over North America 

State of a bird at time 𝑡 = cell it occupies at time 𝑡 

 

 

 

 

 

 

 

 Aggregate data: does not track individual birds 

 

 

 

 

B 

A 

1 2 3 

A 87 61 22 

B 13 39 78 

Time 

Cell 
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Key Modeling Idea 

Build a model for aggregate data starting with a model of 

individual behavior 

 

 

 

 

 

 

Goals 

 Infer unobserved quantities about population 

 Learn parameters of individual model 

Individual 

Model 

Individual 

Model 

Population 

Model 

Population 

Model 
Population 

Model 

Population 

Model 
Population 

Model 

Population 

Model 
Population 

Model 

Population 

Model 

Replicate 

Aggregate 

Data 

Aggregate 

Data 

Aggregate 

Huge model 
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Step 1: Individual Model 
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X2
 XT

 X1
 Individual model:  

Markov chain 
⋯ 



Step 2: iid Population Model 

X2
 XT

 X1
 

M 

Population model: 

iid copies of Markov chain 
… 
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Step 3: Derive aggregate state 

variables 
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X2
 XT

 X1
 

M 

Population model: 

iid copies of Markov chain 
… 

n2 n1 nT Location counts 

n12 n23 
Transition counts 



Step 4: Marginalize out the 

Individuals 

n2 n1 
Location counts 

and transitions 
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n12 n23 

Theorem (Lauritzen, 1996): Count model will have the 

same dependency structure as the population model 

Note that point estimates of these counts give the sufficient 

statistics for the individual model 



Step 5: Attach Observations 

n2 n1 
Location counts 

and transitions 
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n12 n23 

y2 y1 Noisy counts 

Posterior inference over 𝒏1, 𝒏12, 𝒏2, 𝒏23, … gives sufficient statistics 

for the individual model 



Learning in CGMs 
 Migration routes  paths through trellis graph 

Time  

1 2 3 

A 

B 

A 

B 

locations 

A 

B 

 Parameters: 𝜃 = 𝜋𝑖 , 𝑝𝑖𝑗
𝑡  

 If we could observe the paths, we could infer 𝜃 

𝜋𝐴 

𝑝𝐴𝐵
1  

𝑝𝐵𝐴
2  
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Network Flow 
 Key observation: collection of M paths  M-unit flow 

 To learn 𝜃 it is enough to know the flows on each edge 

A 

B B 

A A 

B 

2 1 

1 1 

1 0 

0 0 

[Sheldon, Kozen, Elmohamed, NIPS 2007] 
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Learning in CGMs 

 Given:            aggregate observations of the # of birds in each cell at each 

time step 

 Find: The parameters 𝜃 that maximize 𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝜃) 

A 

B B 

A A 

B 

3 2 

1 

2 

1 0 

2 0 1 

0 1 1 
𝜃 = 𝜋𝑖 , 𝑝𝑖𝑗

𝑡  

NICTA/ANU May 2012 
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Noisy 



Learning the Model is Hard 

 

𝑃 observations 𝜃 =  𝑃 𝑓 𝜃 𝑃(observations|𝑓, 𝜃)

flows 𝑓

 

 

 

 

Solution: Gibbs sampling of the flows 

NICTA/ANU May 2012 
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EM/Gibbs 

 

 

Expectation Maximization (EM) 

 E-step: Compute 𝔼[flow|observations, 𝜃] 

 M-step: Update estimates of the model parameters 

 

Gibbs sampler for the E-step 

 Sample from 𝑃(flow|observations, 𝜃) 
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Gibbs Sampler 

 Initialize flow arbitrarily, then iteratively update by making 

random “moves” 

Traditionally: update a single variable according to 

𝑛𝐴,𝐴
𝑡 ~𝑃 𝑛𝐴,𝐴

𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠, 𝒏− 𝐴,𝐴
𝑡  

This violates conservation of flow 

3+δ 2 

1 2 

1 1 

5 5 

A 

B B 

A A 

B 
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Make Moves Based on Cycles 

 First, select a 4-cycle in trellis uniformly at random 

 

NICTA/ANU May 2012 
52 



𝛿 

𝑃(𝛿) 

-2  1 -1 0 -3 

Update 
 

 Send δ units of flow “around the cycle” 

3+δ 2 

1–δ 2 

1 1–δ 

5+δ 5 

A 

B B 

A A 

B 

Gibbs update rule:  select each value of 𝛿 with probability 

proportional to 𝑃(new flow | observations, 𝜃) 

NICTA/ANU May 2012 
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Flow Update Step 

 

 Make the update 

 

 

 

 

 

 

 

4 2 

0 2 

1 0 

6 5 

A 

B B 

A A 

B 
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Repeat 

 

 Select a new random 4-cycle 

 

 

 

 

 

 

4+δ 2+δ 

0–δ 2 

1–δ 0 

6 5 

A 

B B 

A A 

B 
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Repeat 

 

 Choose 𝛿 
 

 

 

 

 

 

𝛿 

𝑃(𝛿) 

-2 -1 0 

4+δ 2+δ 

0–δ 2 

1–δ 0 

6 5 

A 

B B 

A A 

B 
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Repeat 

 

 Make the update 

 

 

 

 

 

 

3 1 

1 2 

2 0 

6 5 

A 

B B 

A A 

B 
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Requirement 

 

 

 

 Must be able to move between any two valid flows using this set of moves 

… a Markov Basis [Diaconis and Sturmfels, 1998] 

NICTA/ANU May 2012 
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Markov Basis 
 Theorem:  cycles of length four form a Markov basis 

NICTA/ANU May 2012 
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Fast Sampling 

 How to sample 𝛿 quickly when there are many possible values? 

 

 

 

 

 

 

 Theorem: 𝑃(𝛿) is log-concave 

 Can sample in constant expected running time by rejection sampling [Devroye 

1986] 

 Running time of Gibbs move is independent of population size 

𝑃(𝛿) 

 2M -1M 

Large Population 
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Result  
 Running time on EM task 

 

 

 

 

 

 

 

 

 

 

 

 Running time independent of population size 

 Previous best: exponential 

 

10
1

10
2

10
0

10
2

10
4

Population size

S
e

c
o

n
d

s

 

 

VE

MCMC

Best exact method 

(cubic in 𝑀) 

Our method   

(to 2% relative error) 

[Sheldon & Dietterich, NIPS 2011] 
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Can Generalize to Many Other 

Settings 

 Common situation: only have aggregate data, but want to model 

individual behavior 

Z1 Z2 ZT 

M 

n1 n2 nT 

X1 X2 XT 

Sex 

M 

Education 

Race 

Vote 

… 

nSex,Vote 

nRace,Vote 

nEduc,Vote 

Multiple target tracking 

Fish migration 

US Census  

(privacy) 

X1 X2 XT 
M 

n1 n2 nT 
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CGM to fuse eBird, radar, and 

acoustic data 

NICTA/ANU May 2012 

𝒏𝑡
𝑠 𝒏𝑡,𝑡+1

𝑠  

𝑥𝑡
𝑠(𝑖, 𝑜) 

𝑠 = 1, … , 𝑆 

𝑎𝑡,𝑡+1
𝑠 (𝑘) 

𝑦𝑡,𝑡+1
𝑠 (𝑘) 

𝑟𝑡,𝑡+1
 (𝑣) 

𝑧𝑡,𝑡+1
 (𝑣) 

… … 

𝑜 = 1, … , 𝑂(𝑖, 𝑡) 
𝑠 = 1, … , 𝑆 

𝑖 = 1, … , 𝐿 

𝑠 = 1, … , 𝑆 

𝑘 = 1, … , 𝐾 𝑣 = 1, … , 𝑉 

eBird acoustic radar 

b
ir
d
s
 

 Species 𝑠 

 Observers 𝑜 

 Sites 𝑖 

 Acoustic stations 𝑘 

 Radar sites 𝑣 

 

 Observation model for 

eBird (detection, expertise, 

etc.) 

 Observation model for 

night flight calls (distance 

to ground, ambient noise) 

 Observation model for 

radar (signal cone, 

weather, radar “plankton”) 
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𝑎𝑡,𝑡+1
𝑠 (𝑘) 

𝑦𝑡,𝑡+1
𝑠 (𝑘) 

𝑟𝑡,𝑡+1
 (𝑣) 

𝑧𝑡,𝑡+1
 (𝑣) 

… … 

𝑜 = 1, … , 𝑂(𝑖, 𝑡) 
𝑠 = 1, … , 𝑆 

𝑖 = 1, … , 𝐿 

𝑠 = 1, … , 𝑆 

𝑘 = 1, … , 𝐾 𝑣 = 1, … , 𝑉 

eBird acoustic radar 
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Summary 

Fitting Species Distribution Models to Citizen 

Science Data 

 Imperfect Detection 

Observer Expertise 

Sampling Bias 

Fitting Dynamical Models to Multiple Data Sources 

eBird + radar + night flight calls 

Collective Graphical Models: General Methodology 

Fast Gibbs sampler for CGMs (independent of population 

size) 
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