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Many Application Problems
Require Sequential Learning

+ Part-of-speech Tagging
¢ |[nformation Extraction from the Web
¢+ Text-to-Speech Mapping




Part-of-Speech Tagging

+ Given an English sentence, can we
assign a part of speech to each word?

* “Do you want fries with that?”
¢ <verb pron verb noun prep pron>




Information Extraction from
the Web

<dI><dt><b>Srinivasan Seshan</b> (Carnegie Mellon
University) <dt><a href=...><i>Making Virtual Worlds
Real</i></a><dt>Tuesday, June 4, 2002<dd>2:00 PM ,
322 Sieg<dd>Research Seminar

* * * * * % %

name name * * affiliation affiliation affiliation
title title title title * * * date date date date * time time *
location location * event-type event-type




Text-to-Speech Mapping

¢ “photograph™ => /f-0t@graf-/




Sequential Supervised
Learning (SSL)

* Given: A set of training examples of the
form (X,Y.), where
Xi =K, ..., X;land
Y= Wi, ..., Yir.Lare sequences of
length T,

+ Find: A function f for predicting new
sequences: Y = f(X).




Examples as Sequential
Supervised Learning

Domain

Input X,

Output Y,

Part-of-speech
Tagging

sequence of
words

sequence of
parts of speech

Information
Extraction

sequence of
tokens

sequence of field
labels {name, ...}

Test-to-speech
Mapping

sequence of
letters

sequence
phonemes




Goal: Off-the-Shelf Learning
Methods for SSL

* No existing machine learning, data

mining, and statistical packages supports
SSL

+ No existing method meets all of the
requirements needed for an “off-the-
shelf” method




Requirements for Off-the-Shelf
Methods

+ Accuracy
s Model bothx * yandy, ' vy, relationships
s Support rich X * vy, features

= Avoid label bias problem
+ Computational efficiency

+ Easy to use
= No parameter tuning required




Two Kinds of Relationships

+ “Vertical” relationship between the x,'s and y,’s
= Example: “Friday” is usually a “date”

¢ “Horizontal” relationships among the y,’s
= Example: “name” is usually followed by “affiliation”

+ SSL can (and should) exploit both kinds of
information




Example of y vy relationships

+ Consider the text-to-speech problem:
= ‘photograph” => /f-0t@graf-/
= ‘photography” =>/f-QtAgr@f-u/
* The letter "y” changes the pronunciation
of all vowels in the word!
+ x 'y relationships are not sufficient:
= 'O IS pronounced as 70/, /@/, and /A/

s need context to tell which is correct




Rich X 7y Relationships

¢+ Generative models such as HMMs model
each x, as being generated by a single vy,
¢ Can't incorporate the context around x,
= Example: Decide how to pronounce “h” based

7 13

on surrounding letters “th”, “ph”, “sh”, “ch”.

¢ Can't include global features

s Example: “Sentence begins with question
word”




Existing Methods

+ Sliding windows

¢ Recurrent sliding windows

+ Hidden Markov models

* Maximum entropy Markov models
¢ |nput/Output Markov models

¢ Conditional Random Fields

+ Maximum Margin Markov Networks




Sliding Windows

fries | with | that

verb

S




Properties of Sliding
Windows

+ Converts SSL to ordinary supervised
learning

* Only captures the relationship between
(part of) X and y,. Does not explicitly
model relations among the y,’s

+ Assumes each window is independent




Recurrent Sliding Windows

fries | with | that

S |verb
S




Recurrent Sliding Windows

+ Key Idea: Include y, as input feature
when computing V..

¢ During training:
s Use the correct value of y,

s Or train iteratively (especially recurrent
neural networks)

¢ During evaluation:
» Use the predicted value of y,




Properties of Recurrent
Sliding Windows

¢ Captures relationship among the y’s, but
only in one direction!

+ Results on text-to-speech:

Method Direction| Words Letters
sliding window | none 12.5% 69.6%
recurrent s. w. | left-right | 17.0% 67.9%
recurrent s. w. | right-left | 24.4% 74.2%




Evaluation of Methods

Issue
Xi " Yy
Yi " Yie1

X " y,rich?

label bias
ok?

efficient?




Conditional Random Fields

YTYTTW
» @ @  ®

¢ The y,'s form a Markov Random Field
conditioned on X: P(Y|X)

Lafferty, McCallum, & Pereira (2001)




Markov Random Fields

¢+ Graph G = (V,E)
» Each vertex v 5 V represents a random variable y,,.

s Each edge represents a direct probabilistic
dependency.

* P(Y)=1/Z exp [2, ¥c(c(Y))]
= C indexes the cliques in the graph

» Y_Is a potential function

= C(Y) selects the random variables participating in
clique c.




A Simple MRF

O——®

+ Cliques:
= singletons: {y,}, {y,}: {ys}
= pairs (edges); {y4,Y2}, {Y2,Y3}
* P(ky1,Y2,Y31) = 1/Z exp[W¥,(y,) + Falys) +

Wa(ys) + Wialyq,Y2) + Waslyaya)l




CRF Potential Functions are
Conditioned on X

YTYTTW
» @ @  ®

¢ \Pt(ytax)
* W1 (Yo Yie1,X)




CRF Potentials are Log Linear
Models

* Yy, X) = 2p Bp 9y X)
* Wi (Yo Y, X) = 2a Ag Ta(YirYie1,X)

* where g, and f, are user-defined boolean
functions (“features”)

» Example: g,; =[x, = “0”" and y, = /@/]




Training CRFs

*LetO={B4 By, ---, Ay, Ay, ...} De all of our
parameters

¢ Let F, be our CRF, so F,(Y,X) = P(Y|X)

¢ Define the “loss” function L(Y,F,(Y,X)) to
be the Negative Log Likelihood

L(Y,

¢ Goa
likeli

~o(Y,X)) = —log Fy(Y,X)
. Find 6 to minimize loss (maximize

gleele)




Algorithms

¢ |terative Scaling
+ Gradient Descent

¢ Functional Gradient Descent
= Gradient “tree boosting”




Gradient Descent Search

* From calculus we know that the
minimum loss will be where

d L(Y,F,(Y,X
( 5 ‘é( ) -, o L(Y,F4(Y,X)) =0

+* Method:
0:=0—mnu,L(Y,Fy(Y.X))




Gradient Descent with
Set of Training Examples

* We have N training examples (X,,Y.)

+ Negative log likelihood of all N examples
Is the sum of the neg log likelihoods of
each example

* The gradient of the negative log
likelihood is the sum of the gradients of
the neg log likelihoods of each example.




Gradients from Each Example

example gradient
(X4,Y4)
(X2, Y2)
(X3,Y3)
(X4, Y4g)




Problem:
Gradient Descent is Very Slow

+ | afferty et al. employed modified iterative
scaling but reported that it was very slow.

+ \We (and others) implemented conjugate
gradient search, which is faster, but not
fast enough

* For text-to-speech: 16 parallel
processors, 40 hours per line search.




Functional Gradient Descent
(Breiman, et al.)

+ Standard gradient descent:
Ofinal = 0p T 01 T 0, + ... + 0y
where 6., = — M U gy 2 LIY;, Fomoa(Yi X))
+ Functional Gradient Descent:
Fina = Fo + Ay + Ay + .. + Ay,
where A, =—n h_, and h_, is a function that
approximates u 2. L(Y:,F . 4(Y;,X))




Functional Gradient Descent

(2)

example

functional gradient

functional
gradient
example

X1, Y4)

X2 Y2)

X3:Y3)

(
(
(
(

X4:Y4)




Friedman’'s Gradient
Boosting Algorithm

* Fo =argmin, 2 L(Y;,0)
*Form=1,..., Mdo
n g =upL(Y,F (Y, X)),i=1,...,N
= fit regression tree h := argmin, 2. [f(X)) — g]?
= N, = argming 2 LY, Fro(Y3,X) + ¢ (X))
s F =F _,+n,h

m




Regression Trees

Very fast and effective algorithms




Application to CRF Training

+ Recall CRF model:

(Ve YoX) = Z5 Ay TV, Y X)

P(YuX) = Zp Bp Go(YeX)]
* Represent Y(y,.,,Y,X) + ¥(y,,X) by a set of K
functions (one per class label):
s Pk X)+ P(kX)=FKEX), k=1,..., K
e where FX(£,X) = ., 1, hy m (£X)

e Each h, ., is a regression tree that tests the features {f,, g} of
the CRF

e The values in the leaves of the tree become the weights A
and 3,




Sum of Regression Trees is
Equivalent to CRF

Circled Path is equivalent to
expression of the form A f,

), = 0.324

f,=5,&7s, & 1S4




Resulting CRF Model

P(Y[X) = 1/Z* exp[ 2 F¥'(y;.,X)]




Forward-Backward Algorithm:
Recursive Computation of Z

¢ | et
a(k,1) = exp FXB ,X)
a(k,t) = > [exp FX(K,X)] a(k’t=1)

(k,T) =1

B
B(k,t) = 2 [exp F¥(k,X)] B(K’,t+1)

¢Z=Y, akT)=p(E,0)




Functional Gradient
Computation

* Let wi(X,) be the "window” of X, used by the
features at time t.

* We get one training example for each k, ¢, i,
and t: 0 log L(Y,, P(Y. | X))
it = 5 F(2,w,(X))

* Training example for Fk:
(K, W(X))L Gy pit)




Functional Gradient
Computation (2)

~dlog L(Y;, P(Y; | X))
Okt ~ 0 F¥(2,w(X))

0

= 0 FX(,w,(X))) 2t FY (Y1, W(X;)) — log Z
y VVENTY

1 0

= Ily.1=4y=K] — 7 0 Fk([,wt(xi)) £




Functional Gradient
Computation (3)

1 0O

Z oFtw(X) © -

1 O
Z 0 FK({w(X)))

>, (2, [exp Fu(vw(X)] au(v,t-1)) B(u,t) =

Fr(,w, (X)) a(t,t-1) B(k,t)
Z

P(y; =K, Y=t | X))




Functional Gradient
Computation (4)

_ 0log L(Y;, P(Y; | X))
it =7 5 F(2,w (X))

= ly; 1= Vi =K = P 2K, Vi =t | X))

his is our residual on the probability scale




Training Procedure

¢ |nitialize Fk=0; k=1,... K
*Form=1,.... M

m Fori=1,...,N
e Compute a(k,t), B(k,t), Z via forward/backward for
(X, Y5)
e Compute gradients for Fk according to
Okeit = Vit = K, Vigq = 8 — a(t,t=1) [exp F¥(E,X)] B(k,t)/Z
= Fit regression trees h, ., to (i,w,(X))1, gy ,;,) pairs

» Update: Fk:= Fk+h,




Initial Results: Training Times

+ Gradient Boosting

= 1 processor: 100 iterations requires 6 hours
(compared to 16*40*100 = 64,000 hours for
conjugate gradient)

= However: Full Gradient Boosting algorithm
was not implemented




Results: Whole words correct
5-letter window
Viterbl beam width 20.

Regression Tree CRF vs. Recurrent Decision Tree for word prediction

" Viterbi CRF

Recurrent Decision Tree

N
o

% correct words
N
o

o
1




% correct words

Whole Words:
Window Sizes of 3 and 7

Regression Tree CRF using 3 & 7 letter windows for word prediction

! . 1 .
Boosted Regression Trees w' 3 letter window -

Recurrent Becision Tree wf 3 letter window ——
Recurrent Cecision Tree wf 7 letter wincdow

=

100

lterations




Predicting Single Letters

Regression Tree CRF using 3 & 7 letter windows for letter prediction

) I )
Boosted Regression Trees w/ 3 letter window

Recurrent Decision Tree w 3 letter window ——
Hecurrent Decision Tree wf 7 letter winchw ——

% correct letters

100
lterations




Why Gradient Boosting is More
Effective

+ Each step is large: Each iteration adds
one regression tree to the potential
function for each class

+ Parameters are introduced only as
necessary

¢ Combinations of features are constructed




Concluding Remarks

+ Many machine learning applications can be
formalized as Sequential Supervised Learning

¢ Similar issues arise in other complex learning
problems (e.g., spatial and relational data)

+ Many methods have been developed
specifically for SSL, but none is perfect

¢ Gradient boosting may provide a general, off-
the-shelf way of fitting CRFs.




