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Many Application Problems 
Require Sequential Learning

 Part-of-speech Tagging
 Information Extraction from the Web
 Text-to-Speech Mapping



Part-of-Speech Tagging

 Given an English sentence, can we 
assign a part of speech to each word?

 “Do you want fries with that?”
 <verb pron verb noun prep pron>



Information Extraction from 
the Web

<dl><dt><b>Srinivasan Seshan</b> (Carnegie Mellon 
University) <dt><a href=…><i>Making Virtual Worlds 
Real</i></a><dt>Tuesday, June 4, 2002<dd>2:00 PM , 
322 Sieg<dd>Research Seminar

* * * name name * * affiliation affiliation affiliation * * * * 
title title title title * * * date date date date * time time * 
location location * event-type event-type



Text-to-Speech Mapping

 “photograph”  => /f-Ot@graf-/



Sequential Supervised 
Learning (SSL)

 Given:  A set of training examples of the 
form (Xi,Yi), where 
Xi = 〈xi,1, … , xi,Ti〉and
Yi = 〈yi,1, … , yi,Ti〉are sequences of 
length Ti

 Find:  A function f for predicting new 
sequences: Y = f(X).



Examples as Sequential 
Supervised Learning

Domain Input Xi Output Yi

Part-of-speech 
Tagging

sequence of 
words

sequence of 
parts of speech

Information 
Extraction

sequence of 
tokens

sequence of field 
labels {name, …}

Test-to-speech 
Mapping

sequence of 
letters

sequence 
phonemes



Goal: Off-the-Shelf Learning 
Methods for SSL 

 No existing machine learning, data 
mining, and statistical packages supports 
SSL
 No existing method meets all of the 

requirements needed for an “off-the-
shelf” method



Requirements for Off-the-Shelf 
Methods

 Accuracy
 Model both x ↔ y and yt ↔ yt+1 relationships
 Support rich X ↔ yt features
 Avoid label bias problem

 Computational efficiency
 Easy to use

 No parameter tuning required



Two Kinds of Relationships

 “Vertical” relationship between the xt’s and yt’s 
 Example: “Friday” is usually a “date”

 “Horizontal” relationships among the yt’s
 Example: “name” is usually followed by “affiliation”

 SSL can (and should) exploit both kinds of 
information

y1 y2 y3

x1 x2 x3



Example of y ↔ y relationships

 Consider the text-to-speech problem:
 “photograph”  => /f-Ot@graf-/
 “photography” =>/f-@tAgr@f-i/

 The letter “y” changes the pronunciation 
of all vowels in the word!
 x ↔ y relationships are not sufficient:

 “o” is pronounced as /O/, /@/, and /A/
 need context to tell which is correct



Rich X ↔ y Relationships

 Generative models such as HMMs model 
each xt as being generated by a single yt
 Can’t incorporate the context around xt

 Example: Decide how to pronounce “h” based 
on surrounding letters “th”, “ph”, “sh”, “ch”.

 Can’t include global features
 Example: “Sentence begins with question 

word”



Existing Methods

 Sliding windows
 Recurrent sliding windows
 Hidden Markov models
 Maximum entropy Markov models
 Input/Output Markov models
 Conditional Random Fields
 Maximum Margin Markov Networks



Sliding Windows

___ Do you want fries with that ___

___ Do you → verb

you want fries → verb

want fries with → noun

fries with that → prep

with that ___ → pron

Do you want → pron



Properties of Sliding 
Windows

 Converts SSL to ordinary supervised 
learning
 Only captures the relationship between 

(part of) X and yt.  Does not explicitly 
model relations among the yt’s
 Assumes each window is independent



Recurrent Sliding Windows

___ Do you want fries with that ___

___ Do you ___ → verb

you want fries pron → verb

want fries with verb → noun

fries with that noun → prep

with that ___ prep → pron

Do you want verb → pron



Recurrent Sliding Windows

 Key Idea:  Include yt as input feature 
when computing yt+1.
 During training:

 Use the correct value of yt
 Or train iteratively (especially recurrent 

neural networks)
 During evaluation:

 Use the predicted value of yt



Properties of Recurrent 
Sliding Windows

 Captures relationship among the y’s, but 
only in one direction!
 Results on text-to-speech:

Method Direction Words Letters
sliding window none 12.5% 69.6%
recurrent s. w. left-right 17.0% 67.9%
recurrent s. w. right-left 24.4% 74.2%



Evaluation of Methods

Issue SW RSW HMM MEMM IOHMM CRF
xt ↔  yt
yt ↔ yt+1

NO Partly YES YES YES YES

X ↔  yt rich? YES YES NO YES YES YES

label bias 
ok? YES YES YES NO NO YES

efficient? YES YES YES YES? NO NO



Conditional Random Fields

 The yt’s form a Markov Random Field 
conditioned on X:  P(Y|X)

Lafferty, McCallum, & Pereira (2001)

y2y1 y3

x1 x2 x3



Markov Random Fields

 Graph G = (V,E)
 Each vertex v ∈ V represents a random variable yv.
 Each edge represents a direct probabilistic 

dependency.
 P(Y) = 1/Z exp [c c(c(Y))]

 c indexes the cliques in the graph
 c is a potential function
 c(Y) selects the random variables participating in 

clique c.



A Simple MRF

 Cliques:
 singletons:  {y1}, {y2}, {y3}
 pairs (edges); {y1,y2}, {y2,y3}

 P(〈y1,y2,y3〉) = 1/Z exp[1(y1) + 2(y2) +    
3(y3) + 12(y1,y2) + 23(y2,y3)]

y2y1 y3



CRF Potential Functions are 
Conditioned on X

 t(yt,X)

 t,t+1(yt,yt+1,X)

y2y1 y3

x1 x2 x3



CRF Potentials are Log Linear 
Models

 t(yt,X) = b b gb(yt,X)
 t,t+1(yt,yt+1,X) = a a fa(yt,yt+1,X)

 where gb and fa are user-defined boolean 
functions (“features”)
 Example: g23 = [xt = “o” and yt = /@/]



Training CRFs

 Let  = {1, 2, …, 1, 2, …} be all of our 
parameters
 Let F be our CRF, so F(Y,X) = P(Y|X)
 Define the “loss” function L(Y,F(Y,X)) to 

be the Negative Log Likelihood
L(Y,F(Y,X)) = – log F(Y,X) 

 Goal: Find  to minimize loss (maximize 
likelihood)



Algorithms

 Iterative Scaling
 Gradient Descent
 Functional Gradient Descent 

 Gradient “tree boosting”



 From calculus we know that the 
minimum loss will be where

 Method:

Gradient Descent Search

d L(Y,F(Y,X))
d  = ∇  L(Y,F(Y,X)) = 0

∇  L(Y,F(Y,X)) :=  – 



Gradient Descent with
Set of Training Examples

We have N training examples (Xi,Yi)
 Negative log likelihood of all N examples 

is the sum of the neg log likelihoods of 
each example
 The gradient of the negative log 

likelihood is the sum of the gradients of 
the neg log likelihoods of each example.



Gradients from Each Example

example gradient

(X1,Y1) ∇  L(Y1,F(Y1,X1))
(X2,Y2) ∇  L(Y2,F(Y2,X2))
(X3,Y3) ∇  L(Y3,F(Y3,X3))
(X4,Y4) ∇  L(Y4,F(Y4,X4))

 :=  –  i ∇  L(Yi, F(Yi,Xi))



Problem:
Gradient Descent is Very Slow

 Lafferty et al. employed modified iterative 
scaling but reported that it was very slow.
We (and others) implemented conjugate 

gradient search, which is faster, but not 
fast enough
 For text-to-speech:  16 parallel 

processors, 40 hours per line search.



Functional Gradient Descent 
(Breiman, et al.)

 Standard gradient descent:
final = 0 + 1 + 2 + … + M

where m = –  ∇ m-1 i L(Yi, Fm-1(Yi,Xi))
 Functional Gradient Descent:

Ffinal = F0 + 1 + 2 + … + M

where m = –  hm, and hm is a function that
approximates ∇ FiL(Yi,Fm-1(Yi,Xi))



Functional Gradient Descent 
(2)

example functional gradient
functional 
gradient 
example

(X1,Y1) ∇ F L(Y1,Fm-1(Y1,X1)) = g1 (X1,g1)
(X2,Y2) ∇ F L(Y2,Fm-1(Y2,X2)) = g2 (X2,g2)
(X3,Y3) ∇ F L(Y3,Fm-1(Y3,X3)) = g3 (X3,g3)
(X4,Y4) ∇ F L(Y4,Fm-1(Y4,X4)) = g4 (X4,g4)

Fit h to minimize i [h(Xi) – gi]2



Friedman’s Gradient 
Boosting Algorithm

 F0 = argmin i L(Yi,)
 For m = 1, …, M do

 gi := ∇ F L(Yi,Fm-1(Yi,Xi)), i = 1, …, N
 fit regression tree h := argminf i [f(Xi) – gi]2

 m = argmin i L(Yi, Fm-1(Yi,Xi) +  h(Xi))
 Fm = Fm-1 + m hm



Regression Trees

x1 = ‘o’

x1 = ‘a’x2 = ‘t’

yes no

h= 0.3 h= -2.1

yes yes nono

h= 0.8 …

Very fast and effective algorithms



Application to CRF Training

 Recall CRF model:
(yt-1,yt,X) = a a fa(yt-1,yt,X)
(yt,X) = b b gb(yt,X)]

 Represent (yt-1,yt,X) + (yt,X) by a set of K 
functions (one per class label):
 (ℓ,k,X) + (k,X) = Fk(ℓ,X),   k = 1, …, K

 where Fk(ℓ,X) = m m hk,m (ℓ,X)
 Each hk,m is a regression tree that tests the features {fa, gb} of 

the CRF
 The values in the leaves of the tree become the weights a

and b



Sum of Regression Trees is 
Equivalent to CRF

Circled Path is equivalent to 
expression of the form a fa
a = 0.324

fa = s1 & ¬s4 & ¬s18



Resulting CRF Model

P(Y|X) = 1/Z * exp[ t Fyt(yt-1,X)]



Forward-Backward Algorithm: 
Recursive Computation of Z

 Let
(k,1) = exp Fk(⊥ ,X)
(k,t) = k’ [exp Fk(k’,X)] (k’,t–1)

(k,T) = 1
(k,t) = k’ [exp Fk’(k,X)] (k’,t+1)

 Z = k (k,T) = (⊥ ,0)



Functional Gradient 
Computation

 Let wt(Xi) be the “window” of Xi used by the 
features at time t.

 We get one training example for each k, ℓ, i, 
and t:

 Training example for Fk: 
(〈ℓ,wt(Xi)〉, gk,ℓ,i,t)

gk,ℓ,i,t =
 log L(Yi, P(Yi | Xi))

 Fk(ℓ,wt(Xi))



Functional Gradient 
Computation (2)

gk,ℓ,i,t =
 log L(Yi, P(Yi | Xi))

 Fk(ℓ,wt(Xi))

=

 Fk(ℓ,wt(Xi))

t Fyt(yt-1,wt(Xi)) – log Z

= I[yt-1=ℓ,yt=k] –

 Fk(ℓ,wt(Xi))

1
Z Z



Functional Gradient 
Computation (3)


 Fk(ℓ,wt(Xi))

=Z

u (v [exp Fu(v,wt(Xi))] (v,t-1)) (u,t)
 Fk(ℓ,wt(Xi))

=

Fk(ℓ,wt(Xi) (ℓ,t-1) (k,t)

1
Z

1
Z

Z
=

P(yi,t=k, yi,t-1=ℓ | Xi)



Functional Gradient 
Computation (4)

gk,ℓ,i,t =
 log L(Yi, P(Yi | Xi))

 Fk(ℓ,wt(Xi))

= I[yi,t-1=ℓ, yi,t=k] – P(yi,t=k, yi,t-1=ℓ | Xi)

This is our residual on the probability scale



Training Procedure

 Initialize Fk = 0;   k=1,…,K
 For m = 1, …, M

 For i = 1, …, N
 Compute (k,t), (k,t), Z via forward/backward for 

(Xi,Yi)
 Compute gradients for Fk according to 

gk,ℓ,i,t = I[yi,t = k, yi,t-1 = ℓ] – (ℓ,t–1) [exp Fk(ℓ,Xi)] (k,t)/Z

 Fit regression trees hk,m to (〈ℓ,wt(Xi)〉, gk,ℓ,i,t) pairs
 Update: Fk := Fk + hk,m



Initial Results: Training Times

 Gradient Boosting
 1 processor: 100 iterations requires 6 hours 

(compared to 16*40*100 = 64,000 hours for 
conjugate gradient)

 However: Full Gradient Boosting algorithm 
was not implemented



Results: Whole words correct
5-letter window 

Viterbi beam width 20.  



Whole Words: 
Window Sizes of 3 and 7



Predicting Single Letters



Why Gradient Boosting is More 
Effective

 Each step is large:  Each iteration adds 
one regression tree to the potential 
function for each class
 Parameters are introduced only as 

necessary
 Combinations of features are constructed



Concluding Remarks

 Many machine learning applications can be 
formalized as Sequential Supervised Learning

 Similar issues arise in other complex learning 
problems (e.g., spatial and relational data)

 Many methods have been developed 
specifically for SSL, but none is perfect

 Gradient boosting may provide a general, off-
the-shelf way of fitting CRFs.


