Conditional Random Fields for Sequential Supervised Learning

Thomas G. Dietterich Adam Ashenfelter

Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

http://www.eecs.oregonstate.edu/~tgd

Supported by NSF IIS-0083292

Outline

- Goal: Off-the-Shelf Sequential Supervised Learning
- Candidate Methods
- Training CRFs by Gradient Boosting
- Concluding Remarks

Many Application Problems Require Sequential Learning

- Part-of-speech Tagging
- Information Extraction from the Web
- Text-to-Speech Mapping

Part-of-Speech Tagging

- Given an English sentence, can we assign a part of speech to each word?
- "Do you want fries with that?"
- <verb pron verb noun prep pron>

Information Extraction from the Web

<dl><dt>Srinivasan Seshan (Carnegie Mellon
University) <dt><i>Making Virtual Worlds
Real</i><dt>Tuesday, June 4, 2002<dd>2:00 PM ,
322 Sieg<dd>Research Seminar

* * * name name * * affiliation affiliation affiliation * * * * title title title title * * * date date date date * time time * location location * event-type event-type

Text-to-Speech Mapping

* "photograph" => /f-Ot@graf-/

Sequential Supervised Learning (SSL)

 Given: A set of training examples of the form (X_i, Y_i), where

$$\mathbf{X}_{i} = kx_{i,1}, \dots, x_{i,T_{i}}$$
 and $\mathbf{Y}_{i} = ky_{i,1}, \dots, y_{i,T_{i}}$ are sequences of length T_{i}

 Find: A function f for predicting new sequences: Y = f(X).

Examples as Sequential Supervised Learning

Domain	Input X _i	Output Y _i
Part-of-speech Tagging	sequence of words	sequence of parts of speech
Information Extraction	sequence of tokens	sequence of field labels {name,}
Test-to-speech Mapping	sequence of letters	sequence phonemes

Goal: Off-the-Shelf Learning Methods for SSL

- No existing machine learning, data mining, and statistical packages supports SSL
- No existing method meets all of the requirements needed for an "off-theshelf" method

Requirements for Off-the-Shelf Methods

- Accuracy
 - Model both x ' y and y_t ' y_{t+1} relationships
 - Support rich X ' y_t features
 - Avoid label bias problem
- Computational efficiency
- Easy to use
 - No parameter tuning required

Two Kinds of Relationships

- "Vertical" relationship between the x_t 's and y_t 's
 - Example: "Friday" is usually a "date"
- "Horizontal" relationships among the y's
 - Example: "name" is usually followed by "affiliation"
- SSL can (and should) exploit both kinds of information

Example of y ' y relationships

- Consider the text-to-speech problem:
 - "photograph" => /f-Ot@graf-/
 - "photography" =>/f-@tAgr@f-i/
- The letter "y" changes the pronunciation of all vowels in the word!
- x ' y relationships are not sufficient:
 - "o" is pronounced as /O/, /@/, and /A/
 - need context to tell which is correct

Rich X ' y Relationships

- Generative models such as HMMs model each x_t as being generated by a single y_t
- Can't incorporate the context around x_t
 - Example: Decide how to pronounce "h" based on surrounding letters "th", "ph", "sh", "ch".
- Can't include global features
 - Example: "Sentence begins with question word"

Existing Methods

- Sliding windows
- Recurrent sliding windows
- Hidden Markov models
- Maximum entropy Markov models
- Input/Output Markov models
- Conditional Random Fields
- Maximum Margin Markov Networks

Sliding Windows

Properties of Sliding Windows

- Converts SSL to ordinary supervised learning
- Only captures the relationship between (part of) X and y_t. Does not explicitly model relations among the y_t's
- Assumes each window is independent

Recurrent Sliding Windows

Recurrent Sliding Windows

- Key Idea: Include y_t as input feature when computing y_{t+1} .
- During training:
 - Use the correct value of y_t
 - Or train iteratively (especially recurrent neural networks)
- During evaluation:
 - Use the predicted value of y_t

Properties of Recurrent Sliding Windows

- Captures relationship among the y's, but only in one direction!
- Results on text-to-speech:

Method	Direction	Words	Letters
sliding window	none	12.5%	69.6%
recurrent s. w.	left-right	17.0%	67.9%
recurrent s. w.	right-left	24.4%	74.2%

Evaluation of Methods

Issue	SW	RSW	НММ	MEMM	IOHMM	CRF
x_t ' y_t ' y_{t+1}	NO	Partly	YES	YES	YES	YES
X ' y _t rich?	YES	YES	NO	YES	YES	YES
label bias ok?	YES	YES	YES	NO	NO	YES
efficient?	YES	YES	YES	YES?	NO	NO

Conditional Random Fields

 The y's form a Markov Random Field conditioned on X: P(Y|X)

Lafferty, McCallum, & Pereira (2001)

Markov Random Fields

- Graph G = (V,E)
 - Each vertex v 5 V represents a random variable y_v.
 - Each edge represents a direct probabilistic dependency.
- $P(Y) = 1/Z \exp \left[\sum_{c} \Psi_{c}(c(Y))\right]$
 - c indexes the cliques in the graph
 - Ψ_c is a potential function
 - c(Y) selects the random variables participating in clique c.

A Simple MRF

- Cliques:
 - singletons: {y₁}, {y₂}, {y₃}
 - pairs (edges); {y₁,y₂}, {y₂,y₃}
- $P(ky_1, y_2, y_3) = 1/Z \exp[\Psi_1(y_1) + \Psi_2(y_2) + \Psi_3(y_3) + \Psi_{12}(y_1, y_2) + \Psi_{23}(y_2, y_3)]$

CRF Potential Functions are Conditioned on X

- $\Psi_t(y_t,X)$
- $\Psi_{t,t+1}(y_t,y_{t+1},X)$

CRF Potentials are Log Linear Models

- $\Psi_t(y_t, X) = \sum_b \beta_b g_b(y_t, X)$
- $\Psi_{t,t+1}(y_t,y_{t+1},X) = \sum_a \lambda_a f_a(y_t,y_{t+1},X)$
- where g_b and f_a are user-defined boolean functions ("features")
 - Example: $g_{23} = [x_t = "o" and y_t = /@/]$

Training CRFs

- Let $\theta = \{\beta_1, \beta_2, ..., \lambda_1, \lambda_2, ...\}$ be all of our parameters
- Let F_{θ} be our CRF, so $F_{\theta}(Y,X) = P(Y|X)$
- Define the "loss" function L(Y,F_θ(Y,X)) to be the Negative Log Likelihood L(Y,F_θ(Y,X)) = - log F_θ(Y,X)
- Goal: Find θ to minimize loss (maximize likelihood)

Algorithms

- Iterative Scaling
- Gradient Descent
- Functional Gradient Descent
 - Gradient "tree boosting"

Gradient Descent Search

 From calculus we know that the minimum loss will be where

$$\frac{d L(Y,F_{\theta}(Y,X))}{d \theta} = u_{\theta} L(Y,F_{\theta}(Y,X)) = 0$$

Method:

$$\theta := \theta - \eta u_{\theta} L(Y,F_{\theta}(Y,X))$$

Gradient Descent with Set of Training Examples

- We have N training examples (X_i,Y_i)
- Negative log likelihood of all N examples is the sum of the neg log likelihoods of each example
- The gradient of the negative log likelihood is the sum of the gradients of the neg log likelihoods of each example.

Gradients from Each Example

example	gradient
(X_1,Y_1)	$u_{\theta} L(Y_1,F_{\theta}(Y_1,X_1))$
(X_2,Y_2)	$u_{\theta} L(Y_2,F_{\theta}(Y_2,X_2))$
(X_3,Y_3)	$u_{\theta} L(Y_3,F_{\theta}(Y_3,X_3))$
(X_4,Y_4)	$u_{\theta} L(Y_4,F_{\theta}(Y_4,X_4))$

$$\theta := \theta - \eta \sum_{i} u_{\theta} L(Y_{i}, F_{\theta}(Y_{i}, X_{i}))$$

Problem: Gradient Descent is Very Slow

- Lafferty et al. employed modified iterative scaling but reported that it was very slow.
- We (and others) implemented conjugate gradient search, which is faster, but not fast enough
- For text-to-speech: 16 parallel processors, 40 hours per line search.

Functional Gradient Descent (Breiman, et al.)

Standard gradient descent:

$$\theta_{\text{final}} = \theta_0 + \delta_1 + \delta_2 + \dots + \delta_M$$
where $\delta_{\text{m}} = -\eta \ \text{u}_{\theta \text{m-1}} \sum_{i} L(Y_i, F_{\theta \text{m-1}}(Y_i, X_i))$

Functional Gradient Descent:

$$F_{\text{final}} = F_0 + \Delta_1 + \Delta_2 + \dots + \Delta_M$$
 where $\Delta_m = -\eta h_m$, and h_m is a function that approximates $u_F \sum_i L(Y_i, F_{m-1}(Y_i, X_i))$

Functional Gradient Descent (2)

example	functional gradient	functional gradient example
(X_1,Y_1)	$u_F L(Y_1,F_{m-1}(Y_1,X_1)) = g_1$	(X_1,g_1)
(X_2,Y_2)	$u_F L(Y_2, F_{m-1}(Y_2, X_2)) = g_2$	(X_2,g_2)
(X_3,Y_3)	$u_F L(Y_3, F_{m-1}(Y_3, X_3)) = g_3$	(X_3,g_3)
(X_4,Y_4)	$u_F L(Y_4, F_{m-1}(Y_4, X_4)) = g_4$	(X_4,g_4)

Fit h to minimize $\sum_{i} [h(X_i) - g_i]^2$

Friedman's Gradient Boosting Algorithm

- $F_0 = \operatorname{argmin}_{\phi} \sum_{i} L(Y_i, \overline{\phi})$
- ◆ For m = 1, ..., M do
 - $g_i := u_F L(Y_i, F_{m-1}(Y_i, X_i)), i = 1, ..., N$
 - fit regression tree h := argmin_f $\sum_i [f(X_i) g_i]^2$

 - $F_m = F_{m-1} + \eta_m h_m$

Regression Trees

Very fast and effective algorithms

Application to CRF Training

Recall CRF model:

$$\Psi(y_{t-1}, y_t, X) = \Sigma_a \lambda_a f_a(y_{t-1}, y_t, X)$$

$$\Psi(y_t, X) = \Sigma_b \beta_b g_b(y_t, X)$$

- Represent $\Psi(y_{t-1}, y_t, X) + \Psi(y_t, X)$ by a set of K functions (one per class label):
 - $\Psi(\ell, k, X) + \Psi(k, X) = F^{k}(\ell, X), k = 1, ..., K$
 - where $F^{k}(\ell,X) = \Sigma_{m} \eta_{m} h_{k,m} (\ell,X)$
 - \bullet Each $h_{k,m}$ is a regression tree that tests the features $\{f_a,\,g_b\}$ of the CRF
 - The values in the leaves of the tree become the weights λ_{a} and β_{b}

Sum of Regression Trees is Equivalent to CRF

Circled Path is equivalent to expression of the form λ_a f_a

$$\lambda_a = 0.324$$

$$f_a = s_1 \& \neg s_4 \& \neg s_{18}$$

Resulting CRF Model

 $P(Y|X) = 1/Z * exp[\sum_{t} F^{yt}(y_{t-1},X)]$

Forward-Backward Algorithm: Recursive Computation of Z

Let

$$\alpha(k,1) = \exp F^{k}(B,X)$$

 $\alpha(k,t) = \sum_{k'} [\exp F^{k}(k',X)] \alpha(k',t-1)$

$$\beta(k,T) = 1$$

$$\beta(k,t) = \sum_{k'} [\exp F^{k'}(k,X)] \beta(k',t+1)$$

• $Z = \sum_{k} \alpha(k,T) = \beta(B,0)$

Functional Gradient Computation

- Let w_t(X_i) be the "window" of X_i used by the features at time t.
- ♦ We get one training example for each k, \(\ell\), i, and t:

$$g_{k,\ell,i,t} = \frac{\partial \log L(Y_i, P(Y_i \mid X_i))}{\partial F^k(\ell, w_t(X_i))}$$

Training example for F^k:

$$(k!, w_t(X_i)], g_{k,\ell,i,t}$$

Functional Gradient Computation (2)

$$\begin{split} g_{k,\ell,i,t} &= \frac{\partial \log L(Y_i, P(Y_i \mid X_i))}{\partial F^k(\ell, w_t(X_i))} \\ &= \frac{\partial}{\partial F^k(\ell, w_t(X_i))} \ \sum_t F^{yt}(y_{t-1}, w_t(X_i)) - \log Z \\ &= I[y_{t-1} = \ell, y_t = k] - \frac{1}{Z} \frac{\partial}{\partial F^k(\ell, w_t(X_i))} \ Z \end{split}$$

Functional Gradient Computation (3)

$$\frac{1}{Z} \frac{\partial}{\partial F^{k}(\ell, w_{t}(X_{i}))} Z =$$

$$\frac{1}{Z} \frac{\partial}{\partial F^{k}(\ell, w_{t}(X_{i}))} \sum_{u} \left(\sum_{v} \left[\exp F^{u}(v, w_{t}(X_{i})) \right] \alpha(v, t-1) \right) \beta(u, t) =$$

$$\frac{F^{k}(\ell,w_{t}(X_{i}) \alpha(\ell,t-1) \beta(k,t)}{Z} =$$

$$P(y_{i,t}=k, y_{i,t-1}=\ell \mid X_i)$$

Functional Gradient Computation (4)

$$g_{k,\ell,i,t} = \frac{\partial \log L(Y_i, P(Y_i \mid X_i))}{\partial F^k(\ell, w_t(X_i))}$$

=
$$I[y_{i,t-1} = \ell, y_{i,t} = k] - P(y_{i,t} = k, y_{i,t-1} = \ell \mid X_i)$$

This is our residual on the probability scale

Training Procedure

- ◆ Initialize F^k = 0; k=1,...,K
- ◆ For m = 1, ..., M
 - For i = 1, ..., N
 - Compute $\alpha(k,t)$, $\beta(k,t)$, Z via forward/backward for (X_i,Y_i)
 - Compute gradients for F^k according to
 g_{k,ℓ,i,t} = I[y_{i,t} = k, y_{i,t-1} = ℓ] α(ℓ,t-1) [exp F^k(ℓ,X_i)] β(k,t)/Z
 - Fit regression trees $h_{k,m}$ to ($k!, w_t(X_i)$), $g_{k,\ell,i,t}$) pairs
 - Update: F^k := F^k + h_{k,m}

Initial Results: Training Times

- Gradient Boosting
 - 1 processor: 100 iterations requires 6 hours (compared to 16*40*100 = 64,000 hours for conjugate gradient)
 - However: Full Gradient Boosting algorithm was not implemented

Results: Whole words correct 5-letter window Viterbi beam width 20.

Whole Words: Window Sizes of 3 and 7

Predicting Single Letters

Why Gradient Boosting is More Effective

- Each step is large: Each iteration adds one regression tree to the potential function for each class
- Parameters are introduced only as necessary
- Combinations of features are constructed

Concluding Remarks

- Many machine learning applications can be formalized as <u>Sequential Supervised Learning</u>
- Similar issues arise in other complex learning problems (e.g., spatial and relational data)
- Many methods have been developed specifically for SSL, but none is perfect
- Gradient boosting may provide a general, offthe-shelf way of fitting CRFs.