
LOCALIZATION PROBLEM IN SENSOR NETWORKS:
THE MACHINE LEARNING APPROACH

Chapter in book “Localization Algorithms and Strategies for Wireless Sensor Networks:
Monitoring and Surveillance Techniques for Target Tracking” (Eds: Guoqiang Mao and
Baris Fidan, IGI Global)

Authors:

Duc A. Tran, Ph.D. (corresponding author)
Department of Computer Science
University of Massachusetts, Boston, MA 02125
Email: duc@cs.umb.edu
Tel: (617) 287-6452
Fax: (617) 287-6433

XuanLong Nguyen, Ph.D.
Statistical and Applied Mathematical Sciences Institute
and Department of Statistical Science
Duke University, Durham, NC 27708
Email: xuanlong.nguyen@gmail.com
Tel: (919) 685-9339

Thinh Nguyen, Ph. D.
School of Electrical Engineering and Computer Science
Oregon State University, Corvallis, OR 97331
Email: thinhq@eecs.oregonstate.edu
Tel: (541) 737-3470

LOCALIZATION PROBLEM IN SENSOR NETWORKS:
THE MACHINE LEARNING APPROACH

Abstract – A vast majority of localization techniques proposed for sensor networks are
based on triangulation methods in Euclidean geometry. They utilize the geometrical
properties of the sensor network to imply about the sensor locations. In this chapter, we
present a fundamentally different approach that is based on machine learning. Under this
approach, we work directly on the natural (non-Euclidean) coordinate systems provided
by the sensor devices. The known locations of a few sensors in the network and the
sensor readings can be exploited to construct signal-based function spaces that are useful
for learning unknown sensor locations, as well as other extrinsic quantities of interest.
We discuss the applicability of two learning methods: the classification method and the
regression method. We show that these methods are especially suitable for target tracking
applications.

Keywords – Sensor networks, localization, kernel-based learning methods, regression,
classification, support vector machines, kernel canonical correlation analysis.

INTRODUCTION
A sensor knows its location either via a built-in GPS-like device or a localization
technique. A straightforward localization approach is to gather the information (e.g.,
connectivity, pair-wise distance measure) about the entire network into one place, where
the collected information is processed centrally to estimate the sensors' locations using
mathematical algorithms such as Semidefinite Programming [Doherty et al. (2001)] and
Multidimensional Scaling [Shang et al. (2003)].

Many techniques attempt localization in a distributed manner. The relaxation-based
techniques [Savarese et al. (2001), Priyantha et al. (2003)] start with all the nodes in
initial positions and keep refining their positions using algorithms such as local
neighborhood multilateration and convex optimization. The coordinate-system stitching
techniques [Capkun et al. (2001), Meertens & Fitzpatrick (2004), Moore et al. (2004)]
divide the network into overlapping regions, nodes in each region being positioned
relatively to the region's local coordinate system (a centralized algorithm may be used
here). The local coordinate systems are then merged, or “stitched”, together to form a
global coordinate system. Localization accuracy can be improved by using a set of
beacons and extrapolate unknown node locations from the beacon locations [Bulusu et al.
(2002), Savvides et al. (2001), Savvides et al. (2002), Niculescu & Nath (2003a), Nagpal
et al. (2003), He et al. (2003)].

Most current techniques assume that the distance between two neighbor nodes can be
measured, typically via a ranging procedure. For instance, pair-wise distance can be
estimated based on Received Signal Strength Indication (RSSI) [Whitehouse (2002)],
Time Difference of Arrival (TDoA) [Priyantha (2005), Kwon et al. (2004)], or Angle of
Arrival (AoA) [Priyantha et al. (2001), Niculescu & Nath (2003a)]. To avoid the cost of

ranging, range-free techniques have been proposed [Bulusu et al. (2002), Meertens &
Fitzpatrick (2004), He et al. (2003), Stoleru et al. (2005), Priyantha et al. (2005)]. APIT
[He et al. (2003)] assumes that a node can hear from a large number of beacons. Spotlight
[Stoleru et al. (2005)] requires an aerial vehicle to generate light onto the sensor field.
[Priyantha et al. (2005)] uses a mobile node to assist pair-wise distance measurements
until converged to a “global rigid” state where the sensor locations can be uniquely
determined. DV-Hop [Niculescu & Nath (2003b)] and Diffusion [Bulusu et al. (2002),
Meertens & Fitzpatrick (2004)] are localization techniques requiring neither ranging nor
external assisting devices.

All the aforementioned techniques use (Euclidean) geometrical properties to imply about
the sensor location. Recently, a number of techniques that employ the concepts from
machine learning have been proposed [Brunato & Battiti (2005), Nguyen et al. (2005),
Pan et al. (2006), Tran & Nguyen (2006), Tran & Nguyen (2007)]. The main insight of
these methods is that the topology implicit in sets of sensor readings and locations can be
exploited to in the construction of possibly non-Euclidean signal-based function spaces
that are useful for the prediction of unknown sensor locations, as well as other extrinsic
quantities of interest. Specifically, one can assume a set of sensors with known locations,
which are called the beacon nodes, and use them as the training data for a learning
procedure. The result of this procedure is a prediction model that will be used to localize
the sensors that are of previously unknown positions.

Consider a sensor S whose true (unknown) position is (x, y) on a 2-D field. There are
more than one way we can learn. For example, we can model the localization problem as
a classification problem [Nguyen et al. (2005), Tran & Nguyen (2006), Tran & Nguyen
(2007)]. Indeed, we can define a set of classes (e.g., A, B, and C as in Figure 1), which
are geographic regions chosen appropriately in the sensor area. We then run a
classification procedure to decide the membership of S in these classes. Based on these
memberships, we can localize S. For example, in Figure 1, if the classification procedure
outputs that S is a member of class A, of B, and of C, then S must be in the intersection A
∩ B ∩ C.

Figure 1 If we can define a set of classes which are geographic regions, a sensor’s location can be
estimated based on its memberships in these classes

We can also solve the localization problem as a regression problem [Pan et al. (2006)].
We can use a regression tool to learn about the distances between S and the beacon nodes
based on the signal strengths that S receives from these nodes, or when S cannot hear

(x, y)

A B

C

directly from them, based on the hop-count lengths between S and these nodes. After
these distances are learned, trilateration can be used to estimate the location of S.
Alternatively, we can apply a regression tool that maps the signal strengths that S
receives from the beacon nodes directly to a location. One such a tool was proposed by
[Pan et al. (2006)], which is based on Kernel Canonical Correlation Analysis [Hardoon et
al. (2004)].

Compared to geometric-based localization techniques, the requirements for the learning-
based techniques to work are modest. Neither ranging nor external assisting devices is
needed. The only assumption is the existence of a set of beacon nodes at known
locations. The information serving as input to the learning can be signal strengths
[Nguyen et al. (2005), Pan et al. (2006)] or hop-count information [Tran & Nguyen
(2006), Tran & Nguyen (2007)], which can be obtained easily at no cost.

The correlation between the signal-strength (and/or hop-count) space and the physical
location space is generally non-linear. It is also usually not possible to know a priori,
given a sensor, the exact features that uniquely identify its location. A versatile and
productive approach for learning correlations of this kind is based on the kernel methods
for statistical classification and regression [Scholkopf & Smola (2002)]. Central to this
methodology is the notion of a kernel function, which provides a generalized measure of
similarity for any pair of entities (e.g., sensor locations, sensor signals, hop-counts). The
functions that are output by the kernel methods (such as support vector machines and
kernel canonical correlation analysis) are sums of kernel functions, with the number of
terms in the sum equal to the number of data points. Kernel methods are examples of
nonparametric statistical procedures – procedures that aim to capture large, open-ended
classes of functions.

Given that the raw signal readings in a sensor network implicitly capture topological
relations among the sensors, kernel methods would seem to be particularly natural in the
sensor network setting. In the simplest case, the signal strength/ hop-count would itself
be a kernel function. More generally, and more realistically, derived kernels can be
defined based on the signal strength/ hop-count matrix. In particular, inner products
between vectors of received signal strengths/ hop-counts can be used in kernel methods.
Alternatively, generalized inner products of these vectors can be computed – this simply
involves the use of higher-level kernels whose arguments are transformations induced by
lower-level kernels. In general, hierarchies of kernels can be defined to convert the initial
topology provided by the raw sensor readings into a topology more appropriate for the
classification or regression task at hand. This can be done with little or no knowledge of
the physical sensor model.

In this chapter, we describe localization techniques that build on kernel-based learning
methods for classification and regression/ correlation analysis.

NOTATIONS AND ASSUMPTIONS
We consider a wireless sensor network of N nodes {S1, S2, …, SN} deployed in a 2-D
geographic area [0, D]2 (D > 0). (Here, we assume two dimensions for simplicity,

though the techniques to be presented can work with any dimensionality.) We assume
that the network is connected and an underlying routing protocol exists to provide a path
path(Si, Sj) to navigate from any sensor node Si to any other Sj, whose hop-count length is
denoted by hc(Si, Sj). The sensor coverage is not necessarily uniform; hence, path(Si, Sj)
may not equal path(Sj, Si) and hc(Si, Sj) may not equal hc(Sj, Si).

We assume the existence of k < N beacon nodes {S1, S2, …, Sk} that know their own
location. When the network is small enough that any sensor can hear from these beacons,
we denote by ss(Si, S) the signal strength a sensor S receives from each beacon Si.
Nevertheless, without specified otherwise, we assume that each node can communicate to
a beacon not necessarily direct but via a multi-hop path. This assumption is applicable to
more types of sensor networks.

We need to devise an algorithm each remaining node {Sk+1, Sk+2, …, SN} can use to
estimate its location. Before we present its details, the localization procedure is
summarized as follows:

1. The beacon nodes communicate with each other so that for each beacon node Si,
we can obtain the following k-dimension hop-count vector

hi = (hc(S1, Si) hc(S2, Si) ... hc(Sk, Si))

or, for the case the network is small, the k-dimension signal-strength vector

si = (ss(S1, Si) ss(S2, Si) ... ss(Sk, Si))

2. One beacon node is chosen, called the head beacon, to collect all these vectors
from the beacon nodes and run a learning procedure (regression or classification).
After the learning procedure, the prediction model is broadcast to all sensors in
the network. Furthermore, each beacon node broadcasts a HELLO message to the
network also.

3. As a result of receiving the HELLO message from each beacon, each sensor Sj ∈

{Sk+1, Sk+2, …, SN} computes the following k-dimension hop-count vector

hj = (hc(S1, Sj) hc(S2, Sj) ... hc(Sk, Sj))

or, for the case the network is small, the k-dimension signal-strength vector

sj = (ss(S1, Sj) ss(S2, Sj) ... ss(Sk, Sj))

The sensor then applies the prediction model it has obtained previously to this
hop-count (or signal-strength) vector to estimate the sensor’s location.

LOCALIZATION BASED ON CLASSIFICATION
As we mentioned in the Introduction section, the localization problem can be modeled as
a classification problem. The idea was initiated in [Nguyen et al. (2005)]. The general
steps are as follows:

• Class definition: Define a set of classes {C1, C2, …, Cm}, each class Ci being a
geographical region in the sensor field

• Training data: Because the beacon locations are known, the membership of each
beacon node in each class Ci is known. The hop-count (or signal-strength) vector
of each beacon node serves as its feature vector. The feature vector and
membership information serves as the training data for the classification
procedure on class Ci

We then run the classification procedure to obtain a prediction model which is used to
output, for each given sensor S and class Ci, the membership of S in class Ci. As a result,
we can determine the location of S. To solve the classification problem, an efficient tool
is Support Vector Machines (SVM). A brief background on SVM is presented below and
then how it is used for sensor localization.

SVM Classification
Consider the problem of classifying data in a data space X into either class G or not.
Suppose that each data point x has a feature vector x’ in some feature space X’ ⊂ Rn. We
are given k data points x1, x2, ..., xk, called the training points, with labels y1, y2, ..., yk,
respectively (where yi = 1 if xi ∈ G and -1 otherwise). We need to predict whether a
new data point x is in G or not.

Support Vector Machines (SVM) [Cortes & Vapnik (1995)] is an efficient method to
solve this problem. For the case of finite data space (e.g., location data of nodes in a
sensor network), the steps typically taken in SVM are as follows:

- Define a kernel function K: X × X → R. This function must be symmetric and the
k×k matrix [K(xi, xj)] (i, j ∈ [1, k]) must be positive semi-definite (i.e., has non-
negative Eigen values)

- Maximize the function

 ∑∑
==

−=
k

ji
jijiji

k

i
i xxKyyW

1,1
),(

2
1)(αααα

 subject to

 ∑
=

=
k

i
iiy

1
0α and 0 ≤ αi ≤ C for i ∈ [1, k]

Suppose that {α1

*, α2
*, ..., αk

*} is the solution to this optimization problem. We choose b
= b* such that yihK(xi) = 1 for all i with 0 < αi

* < C. The training points
corresponding to such (i, αi

*)'s are called the support vectors. The decision rule to
classify a data point x is: x ∈ G iff sign(hK(x)) = 1, where

∑ += **),()(bxxKyxh iiiK α

According to Mercer's theorem [cf., Scholkopf & Smola (2002)], there exists a feature
space X’ where the kernel K defined above is the inner product of X’ (i.e., K(x, z) = x’° z’
for every x, z ∈ X). The function hK(.) represents the hyperplane in X’ that maximally
separates the training points in X (G-points in the positive side of the plane, not(G)-
points in the negative side). Under standard assumptions in statistical learning, the SVM
is known to yield bounded (and small) classification error when applied to test data.

The main property of the SVM is that it only needs a kernel function K(.,.) that represents
a similarity measure between two data points. This is a nice property because other
classifier tools usually require a known feature vector for every data point, which may
not be available or derivable in many applications. In our particular case of a sensor
network, it is impossible to find the features for each sensor, that uniquely and accurately
identify its location. However, we can provide a similarity measure between two sensors
based on their relationships with the beacon nodes. Thus, SVM is highly suitable for the
sensor localization problem.

Class Definition
There are more than one way to define classes {C1, C2, …, Cm}. For example, as
illustrated in [Nguyen et al. (2005)], each class Ci can be an equi-size disk in the sensor
area such that any point in the sensor field must be covered by at least three such disks.
Thus, after the learning procedure, if a sensor S is found to be a member of three classes
Ci, Cj, and Ck, the location of S is estimated as the centroid of the intersection Ci ∩ Cj ∩
Ck.

Using the disk partitioning method, or any method that defines classes as overlapping
regions, the number of classes in the learning procedure could be high. Alternatively,
[Tran & Nguyen (2006), Tran & Nguyen (2007)] propose the LSVM technique which
partitions the sensor field using a fixed number of classes, thus bounding the learning
cost. Hereafter, unless specifically mentioned, the technique we describe is LSVM. Let M
= 2m. LSVM defines (2M-2) classes as follows (illustrated in Figure 2):

- M-1 classes for the X-dimension {cx1, cx2, ..., cxM-1}, each class cxi containing
nodes with x ≥ iD/M

- M-1 classes for the Y-dimension {cy1, cy2, ..., cyM-1}, each class cyi containing
nodes with y ≥ iD/M

We need to solve (2M-2) binary classification problems. Each problem, corresponding to
a class cxi (or cyi), outputs a SVM prediction model that decides whether a sensor belongs
to this class or not. If the SVM learning predicts that a node S is in class cxi but not class
cxi+1, and in class cyj but not class cyj+1, we conclude that S is inside the square cell
[iD/M, (i+1)D/M] × [jD/M, (j+1)D/M]. We then simply use the cell's center point as the
estimated position of node S (see Figure 3). If the above prediction is indeed correct, the
localization error for node S is at most D/(M√2). However, every SVM is subject to some

classification error, and so we should maximize the probability that S is classified into its
true cell, and, in case of misclassification, minimize the localization error.

Kernel Function
The kernel function K(Si, Sj) provides a measure for similarity between two sensors Si and
Sj. We defined the kernel function as a Radial Basis Function because of its empirical
effectiveness [Chang & Lin (2008)]:

)exp(),(
2

jiji hhSSK −−= γ

where γ is a constant to be computed during the cross-validation phase of the training
procedure, and hi the hop-count vector of sensor Si. More examples for the kernel
function are discussed in [Nguyen et al. (2005)].

Training Data
For each binary classification problem (for a class c ∈ {cx1, cx2, ..., cxM-1, cy1, cy2, ...,
cyM-1}), the training data is the set of values {y1, y2, ..., yk}, where yi = 1 if beacon node Si
belongs to class c and -1 otherwise.

Now that the training data and kernel function have been defined for each class c, we can
solve the SVM optimization problem aforementioned to obtain {α1

*, α2
*, ..., αk

} and b.
We then use the decision function hK(.) to decide whether a given sensor S belongs to
class c:

∑ += **),()(bSSKySh iiiK α

The training procedure is implemented as follows. The head beacon obtains the hop-
count vector and location of each beacon. Then, it runs the SVM training procedure (e.g.,

Figure 2 Definition of class cxi

0 1 2 i 2m

Class cxi
X < iD/2m

D

Not in class cxi

X ≥ iD/2m

using a SVM software tool like libsvm [Chang & Lin (2008)] on all (2M-2) classes cx1,
cx2, ..., cxM-1, cy1, cy2, ..., cyM-1 and, for each class, computes the corresponding b* and the
information (i, yiαi

*). This information is called the SVM model information. This model
information is used to predict the location of any sensor given its hop-count vector.

Figure 3 Localization of a sensor based on its membership in regions cxi and cyj

Location Estimation
Let us focus on the classification along the X-dimension. LSVM organizes the x-classes
into a binary decision tree, illustrated in Figure 4. Each tree node is an x-class and the
two outgoing links represent the outcomes (0: “not belong”, 1: “belong”) of classification
on this class. The classes are assigned to the tree nodes such that if we traverse the tree in
the order {left-child→ parent→ right-child}, the result is the ordered list cx1→ cx2 → ...
→ cxM-1. Given this decision tree, each sensor S can estimate its x-coordinate using the
following algorithm:

Figure 4 Decision tree: m = 4

cxi cxi+1

cyj

cyj+1

Algorithm: X-dimension Localization
Estimate the x-coordinate of sensor S:

1. Initially, i = M/2 (start at root of the tree cxM/2)
2. IF (SVM predicts S not in class cxi)

- IF (cxi is a leaf node) RETURN x'(S) = (i - 1/)D/M
- ELSE Move to left-child cxj and set i = j

3. ELSE
- IF (cxi is a leaf node) RETURN x'(S) = (i + 1/2)D/M
- ELSE Move to right-child cxt and set i = t

4. GOTO Step 2

Similarly, a decision tree is built for the Y-dimension classes and each sensor S estimates
its y-coordinate y'(S) based on the Y-dimension Localization algorithm (like the X-
dimension Localization algorithm). The estimated location for node S, consequently, is
(x'(S), y'(S)). Using these algorithms, localization of a node requires visiting log2M nodes
of each decision tree, after each visit the geographic range that contains node S
downsizing by a half. The parameter M (or m) controls how close we want to localize a
sensor.

SVM is subject to error and so is LSVM. A misclassification with respect to a class G
occurs when SVM predicts that a sensor is in G but in fact it is not or predicts that the
sensor is not in G but it actually is. In [Tran & Nguyen (2007)], it is shown that for a
uniformly distributed sensor field, the location error expected for any node is bounded by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

−
−

−
−+= ++ 321 2

)34(
2

)2(
2

)1(
8
7

2
12 m

m

m

m

m

m

m
u DE εεε

where ε is the worst-case SVM classification error. This error expectation is decreased
with smaller ε. Figure 5 plots the location error expectation Eu according to various SVM
error ε. There exists a choice for m (no larger than 8) that minimizes the error
expectation. In real implementation, it is recommended that we use this optimal m. A nice
property of SVM is that ε is typically bounded and under certain assumptions on the
choice of the kernel function, the bound diminishes if the training size is sufficiently
large. In the evaluation study of [Tran & Nguyen (2007)], when simulated on a network
of 1000 sensors with non-uniform coverage, of which 5% serves as beacon nodes, the
error ε is no more than 0.1. This shows that the SVM approach can offer good accuracy.

LOCALIZATION BASED ON REGRESSION
Trilateration is a geometrical technique that can locate an object based on its distances
from three or more other objects. In our case, to locate a sensor we do not know its true
distances from the k beacon nodes. We can use a regression tool (e.g., libsvm [Chang &
Lin (2008)]) to learn about these distances based on hop-count information. The beacon
leader constructs a linear regression function f: N → R with the following training data

f(hc(Si, Sj)) = d(Si, Sj) for all i, j ∈ [1, k]

Once this regressor f is computed, it is broadcast to all the sensors. Since each sensor
receives a HELLO message from each beacon, the sensor knows its hop-count distances
from all the beacons and can apply the regressor f to compute its location. A similar
approach, but applied on signal strength data, was considered by Kuh et al (2006).

Figure 5 Upper bound on the expectation of worst-case location error under various values of SVM
classification error. A lower SVM error corresponds to a lower-appearing curve

When the network is sufficiently small, each sensor can hear from all the beacon nodes. It
is observed that if two sensors Si and Sj receive similar signal strengths from the beacons,
they should be near each other in the physical space. Thus, one could be able to exploit
directly the high correlation statistics between the similarity of signal strengths and that
of sensor locations. This insight was observed by [Pan et al. (2006)], who proposed to use
Kernel Canonical Correlation Analysis (KCCA) [Hardoon et al. (2004)] for the
regression that maps a vector in the signal-strength space to a location in the physical
space. We briefly present KCCA below and then how it is used for the localization
problem.

Kernel Canonical Correlation Analysis (KCCA)

KCCA is an efficient non-linear extension of Canonical Correlation Analysis (CCA)
[Hardoon et al. (2004)]. Suppose that there are two sets of multidimensional variables, s
= (s1, s2, …, sk) and l = (l1, l2, …, lk). CCA finds two canonical vectors, ws and wl, one for
each set such that the correlation between these two sets under the projections, (ws ° s1, ws
° s2, …, ws ° s1) and (wl ° l1, wl ° l2, …, wl ° lk), is maximized. While CCA only exploits linear
relationship between s and l, its extension using kernels KCCA can work with non-linear
relationships. KCCA defines two kernels, Ks(.) for the s space and Kl(.) for the l space.
Each kernel Ks (or Kl) represents implicitly a feature vector space Φs (or Φl) for the
corresponding variable s (or l). Then, a mapping that maximizes the correlation between s

and l in the feature space is found using the kernel functions only (requiring no
knowledge about Φs and Φl).

KCCA for Localization

[Pan et al. (2006)] applies KCCA to find a correlation-maximizing mapping from the
signal-strength space to the physical location space (because the relationship is non-
linear, KCCA is more suitable than CCA). Firstly, two kernel functions are defined, a
Gaussian kernel Ks(.) for the signal space

)exp(),(
2

jijis ssssK −−= γ

and a Matern kernel Kl(.) for the location space

)2(
)(

)(2
),(21

jiv

v

jil llwvK
v

llwv
llK −

Γ
−

=

where v is a smoothness parameter, Γ(v) the gamma function, and Kv(.) the modified
Bessel function of the second kind. The signal strengths between the beacon nodes and
their location form the training data. In other words, the k instances (s1, l1), (s2, l2), …, (sk,
lk), where (si, li) represents the signal-strength vector and the location of beacon node si,
serve as the training data.

After the training is completed, suppose that T canonical vectors P1, P2, …, PT are found.
A sensor S ∈ {Sk+1, Sk+2, …, SN} is localized as follows:

- Computer the signal-strength vector s of sensor S: s = (ss(S1, S), ss(S2, S), …,
ss(Sk, S))

- Compute the projection of P(s) = (P1(s), P2(s), …, PT(s))
- Choose from the set of beacon nodes m nodes Si whose projections P(si) are

nearest P(s). The distance metric used is a weighted Euclidean distance where
the weights are obtained from the KCCA training procedure.

- Compute the location for S as the mean position of these m neighbors

APPLICATION TO TARGET TRACKING
An appealing feature of the learning approach is that the localization of a sensor can be
done independently from that of another sensor. The training procedure involves the
beacon nodes only, whose result is a prediction model any sensor can use to localize itself
without knowledge about other sensors. This feature is suitable for target tracking in a
sensor network where to save cost not every sensor needs to run the localization
algorithm; only the target needs to be localized. For example, consider a target tracking
system with k beacon nodes at known locations deployed. When a target T occurs in an
area, and is detected by a sensor ST, the detecting sensor reports the event to the k beacon
nodes. The hop-count vector [hc(ST, Si)] (i = 1, 2, …, k) is forwarded to the sink station
who will use the prediction model learned in the training procedure to estimate the
location of target T.

An important issue in the learning approach is that its accuracy depends on the size of the
training data; in our case, the number of beacon nodes. However, in many situations, the
beacon nodes are deployed incrementally, starting with a few beacon nodes and gradually
with more. In other cases, the set of beacon nodes can also be dynamic. The beacon
nodes that are made available to the sensor (or target) under localization may change
depending on the location of the sensor (or target). We need a solution that learns based
on not only the current measurements but also the past. For example, reconsider the target
tracking system mentioned above. When a target is detected, sending the event to all the
beacon nodes can be very costly. Instead, the detecting sensor reports the event to a few,
possibly random, beacon nodes. The learning based on the current measurements (signal
strengths or hop-counts) may be inaccurate because of the sparse training data, but as the
target moves, by combining the past learning information with the current, we can better
localize the target. Sequential prediction techniques [Cesa-Bianchi & Lugosi (2006)] can
be helpful for this purpose.

[Letchner et al. (2005)] propose a localization technique aimed at such dynamism of the
beacon nodes. The technique is based on a hierarchical Bayesian model which learns
from signal strengths to estimate the target’s location. It is able to incorporate new
beacon nodes as they appear over time. Alternatively, [Oh et al. (2005)] consider a
challenging problem of multiple-target tracking by Markov chain Monte Carlo inference
in a hierarchical Bayesian model. Recently, [Pan et al. (2007)] addresses the problem of
not only locating the mobile target but also dynamically located beacon locations. The
solution proposed in [Pan et al. (2007)] is based on online and incremental manifold-
learning techniques [Law & Jain (2006)] which can utilize both labeled and unlabeled
data that come sequentially.

Both [Letchner et al. (2005)] and [Pan et al. (2007)] learn from signal strength
information, thus suitable for small networks where measurements of direct signals from
beacons are possible. The ideas could be applicable to a large network where hop-count
information is used in the learning procedure rather than signal strengths. The
effectiveness, however, has not been evaluated. Investigation in this direction would be
an interesting problem for future research.

SUMMARY
This chapter provides a nonconventional perspective to the sensor localization problem.
In this perspective, sensor localization can be seen as a classification problem or a
regression problem, two popular subjects of Machine Learning. In particular, the
presented localization techniques borrow the ideas from kernel methods.

The learning approach is favored for its simplicity and modest requirements. Localization
of a node is independent from that of others. Also, past information is useful in the
learning procedure and, therefore, this approach is highly suitable for target tracking
applications where the information about the target at each time instant is partial or
sparse, insufficient for geometry-based techniques to work effectively.

Although the localization accuracy can improve as more training data is available,
collecting large training data or having many beacon nodes results in significant
processing and communication overhead. A challenge for future research is to reduce this
overhead. Also, it would be interesting to make one or more beacon nodes mobile and
study how learning can be helpful in such an environment.

REFERENCES
[Brunato & Battiti (2005)] Brunato, M. & Battiti, R.. Statistical learning theory for
location fingerprinting in wireless LANs. Computer Networks, 47(6): 825-845.

[Bulusu et al. (2002)] Bulusu, N., Bychkovskiy, V., Estrin, D., & Heidemann, J. (2002).
Scalable ad hoc deployable rf-based localization. In Grace Hopper Celebration of
Women in Computing Conference. Vancouver, Canada.

[Capkun et al. (2001)] Capkun, S., Hamdi, M., & Hubauz, J.-P. (2001). Gps-free
positioning in mobile ad hoc networks. In Hawai International Conference on System
Sciences.

[Cesa-Bianchi & Lugosi (2006)] Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction,
Learning, and Games. Cambridge University Press. ISBN-10 0-521-84108-9.

[Cortes & Vapnik (1995)] Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273-297.

[Chang & Lin (2008)] Chang, C.-C., & Lin, C.-J. (2008). LIBSVM – A library for
Support Vector Machines. National Taiwan University. URL http://www.csie.ntu.edu.tw/
cjlin/libsvm

[Doherty et al. (2001)] Doherty, L., Ghaoui, L. E., & Pister, K. S. J. (2001). Convex
position estimation in wireless sensor networks. In IEEE Infocom.

[Hardoon et al. (2004)] Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. Canonical
correlation analysis; an overview with application to learning methods. Neural
Computation, 16:2639–2664, 2004.

[He et al. (2003)] He, T., Huang, C., Blum, B., Stankovic, J., & Abdelzaher, T. (2003).
Rangefree localization schemes in large scale sensor networks. In ACM Conference on
Mobile Computing and Networking.

[Kwon et al. (2004)] Kwon, Y., Mechitov, K., Sundresh, S., Kim, W., & Agha, G.
(2004). Resilient localization for sensor networks in outdoor environments. Tech. rep.,
University of Illinois at Urbana-Champaign.

[Ku et al. (2006)] Kuh, A., Zhu, C., & Mandic, D. P. (2006). Sensor network localization
using least squares kernel regression. In Knowledge-Based Intelligent Information and
Engineering Systems, 1280-1287

[Law & Jain (2006)] Law, M. H. C., & Jain, A. K. (2006). Incremental nonlinear
dimensionality reduction by manifold learning. IEEETransaction on Pattern Analysis and
Machine Intelligence, 28(3):377–391.

[Letchner et al. (2005)] Letchner, J., Fox, D., & LaMarca, A (2005). Large-Scale
Localization from Wireless Signal Strength. In Proc. of the National Conference on
Artificial Intelligence (AAAI)

[Meertens & Fitzpatrick (2004)] Meertens, L., & Fitzpatrick, S. (2004). The distributed
construction of a global coordinate system in a network of static computational nodes
from inter-node didstances. Tech. rep., Kestrel Institute.

[Moore et al. (2004)] Moore, D., Leonard, J., Rus, D., & Teller, S. (2004). Robust
distributed network localization with noisy range measurements. In ACM Sensys.
Baltimore, MA.

[Nagpal et al. (2003)] Nagpal, R., Shrobe, H., & Bachrach, J. (2003). Organizing a
global coordinate system from local information on an ad hoc sensor network. In
International Symposium on Information Processing in Sensor Networks.

[Nguyen et al. (2005)] Nguyen, X., Jordan, M. I., & Sinopoli, B. (2005). A kernel-based
learning approach to ad hoc sensor network localization. ACM Transactions on Sensor
Networks, 1: 134-152.

[Niculescu & Nath (2003a)] Niculescu, D., & Nath, B. (2003a). Ad hoc positioning
system (aps) using aoa. In IEEE Infocom.

[Niculescu & Nath (2003b)] Niculescu, D., & Nath, B. (2003b). Dv based positioning in
ad hoc networks. Telecommunication Systems, 22(1-4), 267–280.

[Oh et al. (2005)] Oh, S., Sastry, S., & Schenato, L. (2005). A Hierarchical Multiple-
Target Tracking Algorithm for Sensor Networks. In Proc. International Conference on
Robotics and Automation.

[Pan et al. (2007)] Pan, J. J., Yang, Q., & Pan, J. (2007). Online Co-Localization in
Indoor Wireless Networks by Dimension Reduction. In Proceedings of the 22nd National
Conference on Artificial Intelligence (AAAI-07)

[Pan et al. (2006)] Pan, J. J., Kwok, J. T., & Chen, Y. Multidimensional Vector
Regression for Accurate and Low-Cost Location Estimation in Pervasive Computing.
IEEE Transactions on Knowledge and Data Engineering, 18(9): 1181-1193.

[Priyantha et al. (2001)] Priyantha, N., Miu, A., Balakrishnan, H., & Teller, S. (2001).
The cricket compass for context-aware mobile applications. In ACM conference on
mobile computing and networking (MOBICOM).

[Priyantha (2005)] Priyantha, N. B. (2005). The Cricket Indoor Location System. Ph.D.
thesis, Massachussette Institute of Technology.

[Priyantha et al. (2003)] Priyantha, N. B., Balakrishnan, H., Demaine, E., & Teller, S.
(2003). Anchor-free distributed localization in sensor networks. In ACM Sensys.

[Priyantha et al. (2005)] Priyantha, N. B., Balakrishnan, H., Demaine, E., & Teller, S.
(2005). Mobile-Assisted Localization in Wireless Sensor Networks. In IEEE INFOCOM.
Miami, FL.

[Savarese et al. (2001)] Savarese, C., Rabaey, J., & Beutel, J. (2001). Locationing in
distributed ad-hoc wireless sensor networks. In IEEE International Conference on
Acoustics, Speech, and Signal Processing. Salt Lake city, UT.

[Savvides et al. (2001)] Savvides, A., Han, C.-C., & Strivastava, M. B. (2001). Dynamic
fine-grained localization in ad hoc networks of sensors. In ACM International Conference
on Mobile Computing and Networking (Mobicom), (pp. 166–179). Rome, Italy.

[Savvides et al. (2002)] Savvides, A., Park, H., & Srivastava, M. (2002). The bits and
flops of the n-hop multilateration primitive for node localization problems. In Workshop
on Wireless Networks and Applications (in conjunction with Mobicom 2002). Atlanta,
GA.

[Shang et al. (2003)] Shang, Juml, Zhang, & Fromherz (2003). Localization from mere
connectivity. In ACM Mobihoc.

[Scholkopf & Smola (2002)]. Scholkopf, B., & Smola, A. (2002). Learning with kernels.
MIT Press, Cambridge, MA.

[Stoleru et al. (2005)] Stoleru, R., Stankovic, J. A., & Luebke, D. (2005). A high-
accuracy, low-cost localization system for wireless sensor networks. In ACM Sensys. San
Diego, CA.

[Tran & Nguyen (2006)] Tran, D. A., & Nguyen, T. (2006). Support vector classification
strategies for localization in sensor networks. In IEEE Int’l Conference on
Communications and Electronics.

[Tran & Nguyen (2007)] Tran, D. A., & Nguyen, T. (2007). Localization in Wireless
Sensor Networks based on Support Vector Machines. IEEE Transactions on Parallel and
Distributed Systems.

 [Whitehouse (2002)] Whitehouse, C. (2002). The design of calamari: an ad hoc
localization system for sensor networks. Master’s thesis, University of California at
Berkeley.

