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LOCALIZATION PROBLEM IN SENSOR NETWORKS: 
THE MACHINE LEARNING APPROACH 
 
Abstract – A vast majority of localization techniques proposed for sensor networks are 
based on triangulation methods in Euclidean geometry. They utilize the geometrical 
properties of the sensor network to imply about the sensor locations. In this chapter, we 
present a fundamentally different approach that is based on machine learning.  Under this 
approach, we work directly on the natural (non-Euclidean) coordinate systems provided 
by the sensor devices. The known locations of a few sensors in the network and the 
sensor readings can be exploited to construct signal-based function spaces that are useful 
for learning unknown sensor locations, as well as other extrinsic quantities of interest. 
We discuss the applicability of two learning methods: the classification method and the 
regression method. We show that these methods are especially suitable for target tracking 
applications. 
 
Keywords – Sensor networks, localization, kernel-based learning methods, regression, 
classification, support vector machines, kernel canonical correlation analysis. 

INTRODUCTION 
A sensor knows its location either via a built-in GPS-like device or a localization 
technique. A straightforward localization approach is to gather the information (e.g., 
connectivity, pair-wise distance measure) about the entire network into one place, where 
the collected information is processed centrally to estimate the sensors' locations using 
mathematical algorithms such as Semidefinite Programming [Doherty et al.  (2001)] and 
Multidimensional Scaling [Shang et al. (2003)]. 
 
Many techniques attempt localization in a distributed manner. The relaxation-based 
techniques [Savarese et al. (2001), Priyantha et al. (2003)] start with all the nodes in 
initial positions and keep refining their positions using algorithms such as local 
neighborhood multilateration and convex optimization. The coordinate-system stitching 
techniques [Capkun et al. (2001), Meertens & Fitzpatrick (2004), Moore et al. (2004)] 
divide the network into overlapping regions, nodes in each region being positioned 
relatively to the region's local coordinate system (a centralized algorithm may be used 
here). The local coordinate systems are then merged, or “stitched”, together to form a 
global coordinate system. Localization accuracy can be improved by using a set of 
beacons and extrapolate unknown node locations from the beacon locations [Bulusu et al. 
(2002), Savvides et al. (2001), Savvides et al. (2002), Niculescu & Nath (2003a), Nagpal 
et al. (2003), He et al. (2003)]. 
 
Most current techniques assume that the distance between two neighbor nodes can be 
measured, typically via a ranging procedure. For instance, pair-wise distance can be 
estimated based on Received Signal Strength Indication (RSSI) [Whitehouse (2002)], 
Time Difference of Arrival (TDoA) [Priyantha (2005), Kwon et al. (2004)], or Angle of 
Arrival (AoA) [Priyantha et al. (2001), Niculescu & Nath (2003a)]. To avoid the cost of 



ranging, range-free techniques have been proposed [Bulusu et al. (2002), Meertens & 
Fitzpatrick (2004), He et al. (2003),  Stoleru et al. (2005), Priyantha et al. (2005)]. APIT 
[He et al. (2003)] assumes that a node can hear from a large number of beacons. Spotlight 
[Stoleru et al. (2005)] requires an aerial vehicle to generate light onto the sensor field. 
[Priyantha et al. (2005)] uses a mobile node to assist pair-wise distance measurements 
until converged to a “global rigid” state where the sensor locations can be uniquely 
determined. DV-Hop [Niculescu & Nath (2003b)] and Diffusion [Bulusu et al. (2002), 
Meertens & Fitzpatrick (2004)] are localization techniques requiring neither ranging nor 
external assisting devices.  
 
All the aforementioned techniques use (Euclidean) geometrical properties to imply about 
the sensor location. Recently, a number of techniques that employ the concepts from 
machine learning have been proposed [Brunato & Battiti (2005), Nguyen et al. (2005), 
Pan et al. (2006), Tran & Nguyen (2006), Tran & Nguyen (2007)]. The main insight of 
these methods is that the topology implicit in sets of sensor readings and locations can be 
exploited to in the construction of possibly non-Euclidean signal-based function spaces 
that are useful for the prediction of unknown sensor locations, as well as other extrinsic 
quantities of interest. Specifically, one can assume a set of sensors with known locations, 
which are called the beacon nodes, and use them as the training data for a learning 
procedure. The result of this procedure is a prediction model that will be used to localize 
the sensors that are of previously unknown positions.  
 
Consider a sensor S whose true (unknown) position is (x, y) on a 2-D field. There are 
more than one way we can learn. For example, we can model the localization problem as 
a classification problem [Nguyen et al. (2005), Tran & Nguyen (2006), Tran & Nguyen 
(2007)]. Indeed, we can define a set of classes (e.g., A, B, and C as in Figure 1), which 
are geographic regions chosen appropriately in the sensor area. We then run a 
classification procedure to decide the membership of S in these classes. Based on these 
memberships, we can localize S. For example, in Figure 1, if the classification procedure 
outputs that S is a member of class A, of B, and of C, then S must be in the intersection A 
∩ B ∩ C.  
 

 
Figure 1 If we can define a set of classes which are geographic regions, a sensor’s location can be 
estimated based on its memberships in these classes 
 
We can also solve the localization problem as a regression problem [Pan et al. (2006)]. 
We can use a regression tool to learn about the distances between S and the beacon nodes 
based on the signal strengths that S receives from these nodes, or when S cannot hear 
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directly from them, based on the hop-count lengths between S and these nodes. After 
these distances are learned, trilateration can be used to estimate the location of S. 
Alternatively, we can apply a regression tool that maps the signal strengths that S 
receives from the beacon nodes directly to a location. One such a tool was proposed by 
[Pan et al. (2006)], which is based on Kernel Canonical Correlation Analysis [Hardoon et 
al. (2004)]. 
 
Compared to geometric-based localization techniques, the requirements for the learning-
based techniques to work are modest. Neither ranging nor external assisting devices is 
needed. The only assumption is the existence of a set of beacon nodes at known 
locations. The information serving as input to the learning can be signal strengths 
[Nguyen et al. (2005), Pan et al. (2006)] or hop-count information [Tran & Nguyen 
(2006), Tran & Nguyen (2007)], which can be obtained easily at no cost. 
 
The correlation between the signal-strength (and/or hop-count) space and the physical 
location space is generally non-linear. It is also usually not possible to know a priori, 
given a sensor, the exact features that uniquely identify its location. A versatile and 
productive approach for learning correlations of this kind is based on the kernel methods 
for statistical classification and regression [Scholkopf & Smola (2002)]. Central to this 
methodology is the notion of a kernel function, which provides a generalized measure of 
similarity for any pair of entities (e.g., sensor locations, sensor signals, hop-counts). The 
functions that are output by the kernel methods (such as support vector machines and 
kernel canonical correlation analysis) are sums of kernel functions, with the number of 
terms in the sum equal to the number of data points.  Kernel methods are examples of 
nonparametric statistical procedures – procedures that aim to capture large, open-ended 
classes of functions. 
 
Given that the raw signal readings in a sensor network implicitly capture topological 
relations among the sensors, kernel methods would seem to be particularly natural in the 
sensor network setting.  In the simplest case, the signal strength/ hop-count would itself 
be a kernel function. More generally, and more realistically, derived kernels can be 
defined based on the signal strength/ hop-count matrix.  In particular, inner products 
between vectors of received signal strengths/ hop-counts can be used in kernel methods.  
Alternatively, generalized inner products of these vectors can be computed – this simply 
involves the use of higher-level kernels whose arguments are transformations induced by 
lower-level kernels.  In general, hierarchies of kernels can be defined to convert the initial 
topology provided by the raw sensor readings into a topology more appropriate for the 
classification or regression task at hand. This can be done with little or no knowledge of 
the physical sensor model. 
 
In this chapter, we describe localization techniques that build on kernel-based learning 
methods for classification and regression/ correlation analysis. 

NOTATIONS AND ASSUMPTIONS 
We consider a wireless sensor network of N nodes {S1, S2, …, SN} deployed in a 2-D 
geographic area [0, D]2  (D > 0). (Here, we assume two dimensions for simplicity, 



though the techniques to be presented can work with any dimensionality.) We assume 
that the network is connected and an underlying routing protocol exists to provide a path 
path(Si, Sj) to navigate from any sensor node Si to any other Sj, whose hop-count length is 
denoted by hc(Si, Sj). The sensor coverage is not necessarily uniform; hence, path(Si, Sj) 
may not equal path(Sj, Si) and hc(Si, Sj) may not equal hc(Sj, Si). 
 
We assume the existence of k < N beacon nodes {S1, S2, …, Sk} that know their own 
location. When the network is small enough that any sensor can hear from these beacons, 
we denote by ss(Si, S) the signal strength a sensor S receives from each beacon Si. 
Nevertheless, without specified otherwise, we assume that each node can communicate to 
a beacon not necessarily direct but via a multi-hop path. This assumption is applicable to 
more types of sensor networks. 
 
We need to devise an algorithm each remaining node {Sk+1, Sk+2, …, SN} can use to 
estimate its location. Before we present its details, the localization procedure is 
summarized as follows: 
 

1. The beacon nodes communicate with each other so that for each beacon node Si, 
we can obtain the following k-dimension hop-count vector 

 
hi =  ( hc(S1, Si) hc(S2, Si) ... hc(Sk, Si) ) 
 
or, for the case the network is small, the k-dimension signal-strength vector 
 
si =  ( ss(S1, Si) ss(S2, Si) ... ss(Sk, Si) ) 
 

2. One beacon node is chosen, called the head beacon, to collect all these vectors 
from the beacon nodes and run a learning procedure (regression or classification). 
After the learning procedure, the prediction model is broadcast to all sensors in 
the network. Furthermore, each beacon node broadcasts a HELLO message to the 
network also. 

 
3. As a result of receiving the HELLO message from each beacon, each sensor Sj ∈ 

{Sk+1, Sk+2, …, SN} computes the following k-dimension hop-count vector 
 

hj =  ( hc(S1, Sj) hc(S2, Sj) ... hc(Sk, Sj) ) 
 
or, for the case the network is small, the k-dimension signal-strength vector 
 
sj =  ( ss(S1, Sj) ss(S2, Sj) ... ss(Sk, Sj) ) 
 
The sensor then applies the prediction model it has obtained previously to this 
hop-count (or signal-strength) vector to estimate the sensor’s location. 



LOCALIZATION BASED ON CLASSIFICATION 
As we mentioned in the Introduction section, the localization problem can be modeled as 
a classification problem. The idea was initiated in [Nguyen et al. (2005)]. The general 
steps are as follows: 
 

• Class definition: Define a set of classes {C1, C2, …, Cm}, each class Ci being a 
geographical region in the sensor field 

• Training data: Because the beacon locations are known, the membership of each 
beacon node in each class Ci is known. The hop-count (or signal-strength) vector 
of each beacon node serves as its feature vector. The feature vector and 
membership information serves as the training data for the classification 
procedure on class Ci 

 
We then run the classification procedure to obtain a prediction model which is used to 
output, for each given sensor S and class Ci, the membership of S in class Ci. As a result, 
we can determine the location of S. To solve the classification problem, an efficient tool 
is Support Vector Machines (SVM). A brief background on SVM is presented below and 
then how it is used for sensor localization. 

SVM Classification 
Consider the problem of classifying data in a data space X into either class G or not. 
Suppose that each data point x has a feature vector x’ in some feature space X’ ⊂ Rn. We 
are given  k data points x1, x2, ..., xk, called the training points, with labels  y1, y2, ..., yk, 
respectively (where  yi   =  1 if  xi ∈ G  and  -1  otherwise). We need to predict whether a 
new data point x is in G or not. 
 
Support Vector Machines (SVM) [Cortes & Vapnik (1995)] is an efficient method to 
solve this problem. For the case of finite data space (e.g., location data of nodes in a 
sensor network), the steps typically taken in SVM are as follows: 
 

- Define a kernel function K:  X × X → R. This function must be symmetric and the 
k×k matrix [K(xi, xj)]  (i, j ∈ [1, k])  must be positive semi-definite (i.e., has non-
negative Eigen values) 

- Maximize the function 
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Suppose that {α1

*, α2
*, ..., αk

*} is the solution to this optimization  problem. We choose  b   
=   b*  such that  yihK(xi)   =  1 for all  i  with 0  <  αi

*   <   C. The training points 
corresponding to such (i, αi

*)'s are called the support vectors. The decision rule to 
classify a data point x is:  x ∈ G  iff  sign(hK(x))   =  1, where 



 
∑ += ** ),()( bxxKyxh iiiK α  

According to Mercer's theorem [cf., Scholkopf & Smola (2002)], there exists a feature 
space X’ where the kernel K defined above is the inner product of X’ (i.e., K(x, z) = x’° z’ 
for every x, z ∈ X). The function hK(.) represents the hyperplane in X’ that maximally 
separates the training points in X (G-points in the positive side of the plane,  not(G)-
points in the negative side). Under standard assumptions in statistical learning, the SVM 
is known to yield bounded (and small) classification error when applied to test data.  
 
The main property of the SVM is that it only needs a kernel function K(.,.) that represents 
a similarity measure between two data points. This is a nice property because other 
classifier tools usually require a known feature vector for every data point, which may 
not be available or derivable in many applications. In our particular case of a sensor 
network, it is impossible to find the features for each sensor, that uniquely and accurately 
identify its location. However, we can provide a similarity measure between two sensors 
based on their relationships with the beacon nodes. Thus, SVM is highly suitable for the 
sensor localization problem. 

Class Definition 
There are more than one way to define classes {C1, C2, …, Cm}. For example, as 
illustrated in [Nguyen et al. (2005)], each class Ci can be an equi-size disk in the sensor 
area such that any point in the sensor field must be covered by at least three such disks. 
Thus, after the learning procedure, if a sensor S is found to be a member of three classes 
Ci, Cj, and Ck, the location of S is estimated as the centroid of the intersection Ci ∩ Cj ∩ 
Ck.  
 
Using the disk partitioning method, or any method that defines classes as overlapping 
regions, the number of classes in the learning procedure could be high. Alternatively, 
[Tran & Nguyen (2006), Tran & Nguyen (2007)] propose the LSVM technique which 
partitions the sensor field using a fixed number of classes, thus bounding the learning 
cost. Hereafter, unless specifically mentioned, the technique we describe is LSVM. Let M 
= 2m. LSVM defines (2M-2) classes as follows (illustrated in Figure 2):  
 

- M-1 classes for the X-dimension {cx1, cx2, ..., cxM-1}, each class  cxi  containing 
nodes with  x ≥  iD/M  

- M-1 classes for the Y-dimension {cy1, cy2, ..., cyM-1}, each class  cyi  containing 
nodes with  y ≥  iD/M 

 
We need to solve (2M-2) binary classification problems. Each problem, corresponding to 
a class cxi (or cyi), outputs a SVM prediction model that decides whether a sensor belongs 
to this class or not. If the SVM learning predicts that a node S is in class cxi but not class  
cxi+1, and in class  cyj  but not class  cyj+1, we conclude that  S  is inside the square cell  
[iD/M, (i+1)D/M] × [jD/M, (j+1)D/M]. We then simply use the cell's center point as the 
estimated position of node S (see Figure 3). If the above prediction is indeed correct, the 
localization error for node S is at most D/(M√2). However, every SVM is subject to some 



classification error, and so we should maximize the probability that S is classified into its 
true cell, and, in case of misclassification, minimize the localization error. 
 
 

 

 

 

 

 

 

 

Kernel Function 
The kernel function K(Si, Sj) provides a measure for similarity between two sensors Si and 
Sj. We defined the kernel function as a Radial Basis Function because of its empirical 
effectiveness [Chang & Lin (2008)]: 
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2
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where γ is a constant to be computed during the cross-validation phase of the training 
procedure, and hi the hop-count vector of sensor Si. More examples for the kernel 
function are discussed in [Nguyen et al. (2005)]. 
 

Training Data 
For each binary classification problem (for a class c ∈ {cx1, cx2, ..., cxM-1, cy1, cy2, ...,  
cyM-1}), the training data is the set of values {y1, y2, ..., yk}, where yi = 1  if beacon node Si 
belongs to class c and -1 otherwise. 
 
Now that the training data and kernel function have been defined for each class c, we can 
solve the SVM optimization problem aforementioned  to obtain {α1

*, α2
*, ..., αk

*} and b*. 
We then use the decision function hK(.) to decide whether a given sensor S belongs to 
class c: 
 

∑ += ** ),()( bSSKySh iiiK α  

The training procedure is implemented as follows. The head beacon obtains the hop-
count vector and location of each beacon. Then, it runs the SVM training procedure (e.g., 

Figure 2 Definition of class cxi 
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X ≥ iD/2m 



using a SVM software tool like libsvm [Chang & Lin (2008)] on all (2M-2) classes cx1, 
cx2, ..., cxM-1, cy1, cy2, ..., cyM-1 and, for each class, computes the corresponding b* and the 
information (i, yiαi

*). This information is called the SVM model information. This model 
information is used to predict the location of any sensor given its hop-count vector. 
 
 

 
 
Figure 3 Localization of a sensor based on its membership in regions cxi and cyj 

Location Estimation 
Let us focus on the classification along the X-dimension. LSVM organizes the x-classes 
into a binary decision tree, illustrated in Figure 4. Each tree node is an x-class and the 
two outgoing links represent the outcomes (0: “not belong”, 1: “belong”) of classification 
on this class. The classes are assigned to the tree nodes such that if we traverse the tree in 
the order {left-child→ parent→ right-child}, the result is the ordered list cx1→ cx2 → ... 
→ cxM-1. Given this decision tree, each sensor S can estimate its x-coordinate using the 
following algorithm: 
 

 
Figure 4 Decision tree: m = 4 
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Algorithm: X-dimension Localization  
Estimate the x-coordinate of sensor S: 

1. Initially, i   =   M/2  (start at root of the tree  cxM/2 ) 
2. IF (SVM predicts  S  not in class  cxi) 

- IF (cxi  is a leaf node) RETURN  x'(S)   =  (i - 1/ )D/M  
- ELSE Move to left-child  cxj  and set  i   =   j  

3. ELSE 
- IF (cxi  is a leaf node) RETURN  x'(S)   =  (i + 1/2)D/M  
- ELSE Move to right-child  cxt  and set  i   =   t  

4. GOTO Step 2 
 
Similarly, a decision tree is built for the Y-dimension classes and each sensor S estimates 
its y-coordinate y'(S) based on the Y-dimension Localization algorithm (like the X-
dimension Localization algorithm). The estimated location for node S, consequently, is 
(x'(S), y'(S)). Using these algorithms, localization of a node requires visiting log2M nodes 
of each decision tree, after each visit the geographic range that contains node S 
downsizing by a half. The parameter M (or m) controls how close we want to localize a 
sensor. 
 
SVM is subject to error and so is LSVM. A misclassification with respect to a class G 
occurs when SVM predicts that a sensor is in G but in fact it is not or predicts that the 
sensor is not in G but it actually is. In [Tran & Nguyen (2007)], it is shown that for a 
uniformly distributed sensor field, the location error expected for any node is bounded by 
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where ε is the worst-case SVM classification error. This error expectation is decreased 
with smaller ε. Figure 5 plots the location error expectation Eu according to various SVM 
error ε. There exists a choice for m (no larger than 8) that minimizes the error 
expectation. In real implementation, it is recommended that we use this optimal m. A nice 
property of SVM is that ε is typically bounded and under certain assumptions on the 
choice of the kernel function, the bound diminishes if the training size is sufficiently 
large. In the evaluation study of [Tran & Nguyen (2007)], when simulated on a network 
of 1000 sensors with non-uniform coverage, of which 5% serves as beacon nodes, the 
error ε is no more than 0.1. This shows that the SVM approach can offer good accuracy. 

LOCALIZATION BASED ON REGRESSION 
Trilateration is a geometrical technique that can locate an object based on its distances 
from three or more other objects. In our case, to locate a sensor we do not know its true 
distances from the k beacon nodes. We can use a regression tool (e.g., libsvm [Chang & 
Lin (2008)]) to learn about these distances based on hop-count information. The beacon 
leader constructs a linear regression function f: N → R with the following training data 
 
f(hc(Si, Sj)) = d(Si, Sj) for all i, j ∈ [1, k] 



 
Once this regressor f is computed, it is broadcast to all the sensors. Since each sensor 
receives a HELLO message from each beacon, the sensor knows its hop-count distances 
from all the beacons and can apply the regressor f to compute its location. A similar 
approach, but applied on signal strength data, was considered by Kuh et al (2006).  
 
 

 
Figure 5 Upper bound on the expectation of worst-case location error under various values of SVM 
classification error. A lower SVM error corresponds to a lower-appearing curve 
 
When the network is sufficiently small, each sensor can hear from all the beacon nodes. It 
is observed that if two sensors Si and Sj receive similar signal strengths from the beacons, 
they should be near each other in the physical space.   Thus, one could be able to exploit 
directly the high correlation statistics between the similarity of signal strengths and that 
of sensor locations. This insight was observed by [Pan et al. (2006)], who proposed to use 
Kernel Canonical Correlation Analysis (KCCA) [Hardoon et al. (2004)] for the 
regression that maps a vector in the signal-strength space to a location in the physical 
space. We briefly present KCCA below and then how it is used for the localization 
problem. 

Kernel Canonical Correlation Analysis (KCCA) 
 
KCCA is an efficient non-linear extension of Canonical Correlation Analysis (CCA) 
[Hardoon et al. (2004)]. Suppose that there are two sets of multidimensional variables, s 
= (s1, s2, …, sk) and l = (l1, l2, …, lk). CCA finds two canonical vectors, ws and wl, one for 
each set such that the correlation between these two sets under the projections, (ws ° s1, ws 
° s2, …, ws ° s1) and (wl ° l1, wl ° l2, …, wl ° lk), is maximized. While CCA only exploits linear 
relationship between s and l, its extension using kernels KCCA can work with non-linear 
relationships. KCCA defines two kernels, Ks(.) for the s space and Kl(.) for the l space. 
Each kernel Ks (or Kl) represents implicitly a feature vector space Φs (or Φl) for the 
corresponding variable s (or l). Then, a mapping that maximizes the correlation between s 



and l in the feature space is found using the kernel functions only (requiring no 
knowledge about Φs and Φl). 

KCCA for Localization 
 
[Pan et al. (2006)] applies KCCA to find a correlation-maximizing mapping from the 
signal-strength space to the physical location space (because the relationship is non-
linear, KCCA is more suitable than CCA).  Firstly, two kernel functions are defined, a 
Gaussian kernel Ks(.) for the signal space  
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and a Matern kernel Kl(.) for the location space 
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where v is a smoothness parameter, Γ(v) the gamma function, and Kv(.) the modified 
Bessel function of the second kind.  The signal strengths between the beacon nodes and 
their location form the training data. In other words, the k instances (s1, l1), (s2, l2), …, (sk, 
lk), where (si, li) represents the signal-strength vector and the location of beacon node si, 
serve as the training data. 
 
After the training is completed, suppose that T canonical vectors P1, P2, …, PT are found. 
A sensor S ∈ {Sk+1, Sk+2, …, SN}  is localized as follows: 

- Computer the signal-strength vector s of sensor S: s = (ss(S1, S), ss(S2, S), …, 
ss(Sk, S)) 

- Compute the projection of P(s) = (P1(s), P2(s), …, PT(s)) 
- Choose from the set of beacon nodes m nodes Si whose projections P(si) are 

nearest P(s). The distance metric used is a weighted Euclidean distance where 
the weights are obtained from the KCCA training procedure. 

- Compute the location for S as the mean position of these m neighbors 

APPLICATION TO TARGET TRACKING 
An appealing feature of the learning approach is that the localization of a sensor can be 
done independently from that of another sensor. The training procedure involves the 
beacon nodes only, whose result is a prediction model any sensor can use to localize itself 
without knowledge about other sensors. This feature is suitable for target tracking in a 
sensor network where to save cost not every sensor needs to run the localization 
algorithm; only the target needs to be localized.  For example, consider a target tracking 
system with k beacon nodes at known locations deployed. When a target T occurs in an 
area, and is detected by a sensor ST, the detecting sensor reports the event to the k beacon 
nodes. The hop-count vector [hc(ST, Si)] (i = 1, 2, …, k) is forwarded to the sink station 
who will use the prediction model learned in the training procedure to estimate the 
location of target T. 



 
An important issue in the learning approach is that its accuracy depends on the size of the 
training data; in our case, the number of beacon nodes. However, in many situations, the 
beacon nodes are deployed incrementally, starting with a few beacon nodes and gradually 
with more. In other cases, the set of beacon nodes can also be dynamic. The beacon 
nodes that are made available to the sensor (or target) under localization may change 
depending on the location of the sensor (or target). We need a solution that learns based 
on not only the current measurements but also the past. For example, reconsider the target 
tracking system mentioned above. When a target is detected, sending the event to all the 
beacon nodes can be very costly. Instead, the detecting sensor reports the event to a few, 
possibly random, beacon nodes. The learning based on the current measurements (signal 
strengths or hop-counts) may be inaccurate because of the sparse training data, but as the 
target moves, by combining the past learning information with the current, we can better 
localize the target. Sequential prediction techniques [Cesa-Bianchi & Lugosi (2006)] can 
be helpful for this purpose. 
 
[Letchner et al. (2005)] propose a localization technique aimed at such dynamism of the 
beacon nodes. The technique is based on a hierarchical Bayesian model which learns 
from signal strengths to estimate the target’s location. It is able to incorporate new 
beacon nodes as they appear over time. Alternatively, [Oh et al. (2005)] consider a 
challenging problem of multiple-target tracking by Markov chain Monte Carlo inference 
in a hierarchical Bayesian model. Recently, [Pan et al. (2007)] addresses the problem of 
not only locating the mobile target but also dynamically located beacon locations. The 
solution proposed in [Pan et al. (2007)] is based on online and incremental manifold-
learning techniques [Law & Jain (2006)] which can utilize both labeled and unlabeled 
data that come sequentially. 
 
Both [Letchner et al. (2005)] and [Pan et al. (2007)] learn from signal strength 
information, thus suitable for small networks where measurements of direct signals from 
beacons are possible. The ideas could be applicable to a large network where hop-count 
information is used in the learning procedure rather than signal strengths. The 
effectiveness, however, has not been evaluated. Investigation in this direction would be 
an interesting problem for future research. 

SUMMARY 
This chapter provides a nonconventional perspective to the sensor localization problem. 
In this perspective, sensor localization can be seen as a classification problem or a 
regression problem, two popular subjects of Machine Learning. In particular, the 
presented localization techniques borrow the ideas from kernel methods.  
 
The learning approach is favored for its simplicity and modest requirements. Localization 
of a node is independent from that of others. Also, past information is useful in the 
learning procedure and, therefore, this approach is highly suitable for target tracking 
applications where the information about the target at each time instant is partial or 
sparse, insufficient for geometry-based techniques to work effectively. 
 



Although the localization accuracy can improve as more training data is available, 
collecting large training data or having many beacon nodes results in significant 
processing and communication overhead. A challenge for future research is to reduce this 
overhead.  Also, it would be interesting to make one or more beacon nodes mobile and 
study how learning can be helpful in such an environment. 
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