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Abstract—CAN is a well-known DHT technique for content-
based P2P networks, where each node is assigned a zone in a
virtual coordinate space to store the index of the data hashed
into this zone. The dimension of this space is usually lower than
the data dimension, thus we have the problem of dimension
mismatch. This problem is widely addressed in the context
of data retrieval that follows the traditional request/response
model. However, little has been done for the publish/subscribe
model, which is the focus of our paper. We show that dimension
mismatch in CAN-based publish/subscribe applications poses new
challenges. We furthermore investigate how a random projection
approach can help reduce the negative effects of dimension
mismatch. Our theoretical findings are complemented by a
simulation-based evaluation.

Index Terms—P2P, publish/subscribe, random projection,
CAN, DHT

I. INTRODUCTION

Search applications can be categorized into two models:
request/response and publish/subscribe (in short, pub/sub). In
the former, a search query is submitted on demand expecting
the results to return immediately; if they do not exist, a
response indicating so is returned. Contrarily, a query in
the pub/sub model is submitted and stored in advance. The
results may already exist, which will be returned immediately;
otherwise, the query subscriber will be notified when the
matching results later become available. Thus, a main problem
for request/response search systems is to manage existing data
in advance for fast data retrieval at a later time, while the
corresponding problem for pub/sub systems is to manage the
queries in advance for fast query matching in the future.

We are interested in the pub/sub service deployed in a P2P
network. We particularly work on the case the network overlay
is structured according to the CAN technique [1], one of
the well-known Distributed Hash Tables (DHTs) designs [1]–
[4] for self-organizing and scalable P2P networks. In CAN,
each node is given a unique identifier that represents a non-
overlapping rectangular zone partitioned from a virtual multi-
dimension space, called the CAN space. For routing purposes,
each node has a list of neighbor nodes whose zones are
adjacent to its zone. Consequently, the number of neighbors
per node is proportional to the dimension of the CAN space,

which is independent from the network size (i.e., the number
of nodes in the network). Although the other DHT techniques
have a node overhead increasing with the network size, CAN
is favored over them only when the CAN dimension is low.

The motivation behind CAN is distributed search applica-
tions that follow the request/response model. In the indexing
phase, each data object is hashed into a point in the CAN
space and its index is stored at the node whose zone contains
this hash point. Thus, when a query for an object is initiated,
we route the query to the node owning the query’s hash point
and search there locally for the object.

Deploying a pub/sub service on top of CAN is not as
straightforward. From the database perspective, because we
typically model a data object as a point and a query as a range
of points, we need to address the range indexing problem in
pub/sub systems, which is more challenging than the point
indexing problem as in request/response systems.

From the networking perspective, due to its range, a sub-
scription query may be replicated at multiple nodes to wait for
notification of all possible matching data objects. Hence, the
number of subscriptions stored in the network can be large,
resulting in not only the communication cost to replicate the
subscriptions, but also high storage cost for each node and
long time to match an object against a subscription query. We
need to minimize unnecessary replications, yet at the same
time store the queries in the network intelligently so that data
notification remains efficient. Such issues are not present in
request/response systems.

Because of the low dimensionality of the CAN space,
another challenge to a CAN-based pub/sub system is due
to the mismatch between the CAN dimension and the data
dimension. Data can be, and usually, of high dimension,
such as in applications searching documents, multimedia,
and sensor data, which normally are associated with many
attributes. It is difficult to hash similar high-dimension data
objects into zones in a low-dimension space which are close to
each other, making the search for a continuous range of data
highly inefficient. For the request/response model, in which
data need to be preprocessed and queries are subsequent and
on-demand, dimension mismatch can be resolved effectively
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by locality-sensitive dimensionality reduction techniques such
as Locality Sensitive Hashing [5], Latent Semantic Indexing
[6], and Random Projection [7].

For the pub/sub model, because subscription queries are
submitted in advance, we need to store similar subscriptions
in nodes of close proximities so as to make the data notifi-
cation process efficient. While the aforementioned reduction
techniques apply only to singular points whose similarity can
be defined by a distance metric, this metric is not applicable
to queries which are ranges of points.

In this paper, we explore the application of Random Projec-
tion in pub/sub networks that are specifically built on CAN.
We investigate how Random Projection is used to map the
pub/sub data and queries into a CAN space of lower dimen-
sion. We also propose a strategy aimed to avoid replicating
subscriptions, guaranteeing that any query is matched with all
possible data objects using an efficient notification process.

Next, we discuss the related work in Section II. We present
some preliminary information in Section III, then the random
projection approach in Section IV. Simulation results are
reported in Section V. The paper is concluded in Section VI.

II. RELATED WORK

The simplest architecture for a distributed pub/sub network
is the broadcast approach, in which a subscription traverses a
broadcast tree to reach all the nodes. This approach is not cost-
effective. A much better option is to replicate a subscription in
a set of select nodes where satisfying data may likely be sent
to. Most techniques of this option employ a Distributed Hash
Table (DHT) [1]–[4]. A DHT is used to send a subscription
query or data object to a node that is the result of the hash
function. The goal is that the node storing a subscription and
that receiving a satisfactory data object are either identical or
within a proximity of each other. Scribe [8] uses Pastry [3] to
map a subscription to a node based on topic hashing, thus those
subscriptions and data objects with the same topic are mapped
to the same node. Instead of Pastry, the CAN DHT [1] and the
Chord DHT [2] structures are employed in Meghdoot [9] and
[10], respectively. A technique that can be used atop any such
DHT structure was proposed in [11]. Non-DHT techniques
also exist, such as Sub-2-Sub [12] and R-tree-based [13].

Meghdoot [9] is the only existing CAN-based pub/sub
technique that works for multi-dimensional data space. In
Meghdoot, each query in d dimensions is mapped a point in
2d dimensions. Therefore, the P2P network is virtualized in a
CAN space of 2d dimensions. Our work is different. First, our
mapping is based on random projection. Second, our purpose
is to reduce the data dimension to a lower CAN dimension.
Lastly, while the design of the CAN network in Meghdoot is
built dependently on the pub/sub data, we can work with the
case that the CAN network already exists on which we build
the pub/sub service later.

III. PRELIMINARIES

In CAN, each node V is virtualized as a point at location
Point(V ) owning a zone Zone(V ) in a k-dimension unit cube

C = [0, 1]k. For a network of n nodes {V1, V2, ..., Vn}, ranked
in the time order they join the network, its construction is
explained recursively as follows:

• Case n = 1, i.e., there is only one node V1 in the network
Point(V1) = (1/2, 1/2, ..., 1/2)︸ ︷︷ ︸

k

and Zone(V1) = C

• Case n > 1: n − 1 nodes {V1, V2, ..., Vn−1} already
assigned their location and zone, the corresponding as-
signment for node Vn is determined as follows:

1) Choose a point p ∈ C uniformly in random
2) Let Vi be the node such that p ∈ Zone(Vi). Suppose

that j is the dimension of this zone’s largest side
[minj ,maxj ]

3) Halve Zone(Vi) into Z1 and Z2 that share every
side with Zone(Vi) except that the jth-dimension
side of Z1 is [minj , (minj +maxj)/2] and that of
Z2 is [(minj + maxj)/2,maxj ]

4) Node Vi will be reassigned to new zone Z1 and
located at the center of this zone

5) Node Vn will be assigned to zone Z2 and located
at the center of this zone

For routing in CAN, each node V is required to main-
tain a list of neighbor nodes that own zones adjacent to
Zone(V ). Routing from one zone to another is by relaying
via neighbor nodes, greedily getting as close geometrically to
the destination as possible. The routing and node overhead
costs of CAN are therefore O(n1/k) and O(k), respectively.
In particular, the neighborhood size of a node in CAN is at
least 2k, making CAN potentially favorable over other DHT
techniques (whose neighborhood size is typically log (n)) only
when 2k ≤ log(n).

Search services can be implemented on CAN. Suppose that
the data space D is d dimensional; hence, each data object
is represented as a d-tuple. CAN works best for exact-match
lookup. Given a data object with value x ∈ D, we hash it to
a point in the CAN space h(x) ∈ C and store the index of x
at the node whose zone contains h(x). A query searching for
a data value x can be easily answered by routing to the zone
containing the hash point h(x) of the query value.

For pub/sub applications on CAN, we need to store and
index subscription queries rather than data objects. A sub-
scription query is usually specified as a region of points in D.
We assume that each query q is a sphere. Simple to express,
spherical queries are more convenient than queries of other
types when the data space is high dimensional. We need to
find two mapping methods, hs and ho, so that (1) given a
subscription query q, it will be stored at the set of nodes hs(q);
and (2) given a data object x, it will be advertised at the set
of nodes ho(x). The following requirements are important.
These two mappings should guarantee that if x satisfies q an
advertisement of x must reach at least a node that stores q;
i.e., ho(x) ∩ hs(q) �= ∅. The sets hs(q) and ho(x) should be
small to keep the cost of storage and communication low. For
search efficiency, subscription locality and data locality should
also be preserved. In other words, similar data objects should



be mapped to similar sets of nodes and so should similar
subscription queries.

If the data dimension d equals the CAN dimension k, it is
easy to find hs and ho because no dimensionality reduction is
needed. For example, first, we can use a linear scaling to fit
the data space into the CAN space. Then, for each subscription
query q, we find the node containing the center point of q and
conduct an expanded search in the surrounding nodes to find
the other nodes whose zones intersect with q; query q will be
stored at those visited nodes. When a data object is published,
its publication is advertised to the node whose zone contains
point x. It is more challenging, though, when d is larger than
k because of the reasons explained in Section I. We propose
our approach in the next section.

IV. THE RANDOM PROJECTION APPROACH

We base our solution on Random Projection. Inspired
originally by Johnson-Lindenstrauss Lemma [7] and then
by its subsequent related work (e.g., [14]–[16]), projection
onto k << d random dimensions can be applied on a d-
dimension point set such that the distance between two points
after the projection remains within a small constant factor of
the original distance. Let {−→u1, −→u2, ..., −→uk} be k random d-
dimension orthonormal vectors. Because, for high dimensions
d and k, generating these vectors can be computationally
expensive, we use the random vectors as recommended in [14]:
they are chosen to be the column vectors of the matrix U =
{uij}d×k generated from the following distribution

uij =
√

1/d ×
{

+1 with prob 1/2
−1 with prob 1/2

(1)

Without loss of generality, suppose that the data space D
is the d-dimension unit cube: D = [0, 1]d. We explore two
strategies of using Random Projection for CAN-based pub/sub
networks: the PURE strategy and the SMART strategy. The
PURE strategy is a simple way of mapping the data space
into the CAN space using Random Projection. The SMART
strategy is aimed at avoid replicating the subscriptions by
taking into account their overlapping relationships.

A. The PURE strategy

Consider a subscription query q = (s, r), which is a sphere
centered at point s ∈ D with radius r ≥ 0. Projecting this
sphere on to the k random vectors, we obtain the following
hyperrectangle in k dimensions: (see Figure 1)

(s, r) → u(s, r) = u1(s, r) × u2(s, r) × ... × uk(s, r)

where each side ui(s, r) = [〈ui, s〉 − r, 〈ui, s〉 + r] (〈·, ·〉
denotes the inner product).

This hyperrectangle may not fit in the CAN cube. To do so,
we apply the following linear transformation. Suppose that
rmax is the maximum radius possible. Letting αi = −rmax +∑d

j=1 min (0, uij) and βi = rmax +
∑d

j=1 max (0, uij), the
following rectangle, called the CAN-projection of query q,

uC(q) =
k∏

i=1

[ 〈ui, s〉 − r − αi

βi − αi
,
〈ui, s〉 + r − αi

βi − αi

]

1

i
2

1

2 i

Fig. 1. Projection of a sphere onto random vectors

which is linearly transformed from u(s, r), is inside the
unit CAN cube. The center of this hyperrectangle is the k-
dimension point

CenterC(q) =
( 〈u1, s〉 − αi

βi − αi
,
〈u2, s〉 − αi

βi − αi
, ...,

〈uk, s〉 − αi

βi − αi

)
1) Query Subscription: Our subscription strategy is to store

the query q in the following set of nodes whose zone intersects
with q’s CAN-projection:

hs(q) = {node Vi | Zone(Vi) ∩ uC(q) �= ∅}
To implement this strategy in the CAN network, we follow
the protocol below:

1) Use the CAN routing protocol to send q to the node Vq

such that Zone(Vq) contains CenterC(q).
2) For each node V that receives q, forward it to each

neighbor node V ′ such that Zone(V ′) ∩ uC(q) �= ∅.
Node V ′ follows the same procedure as V does.

2) Data Notification: Using the same random projection
method explained earlier, each data object x ∈ D is mapped
to the following point in the CAN cube (imagine x as a zero-
radius query (x, 0)):

x → uC(x) =
( 〈u1, x〉 − αi

βi − αi
,
〈u2, x〉 − αi

βi − αi
, ...,

〈uk, x〉 − αi

βi − αi

)
When a data object x ∈ D becomes available, using CAN

routing, we advertise it to the node Vx such that Zone(Vx)
contains the point uC(x); i.e., ho(x) = {Vx}.

It is obvious that if x satisfies a query q, then uC(x) ∈
uC(q). Consequently, Zone(Vx) must intersect with uC(q) and
the query q must be stored at node Vx. Thus, given any data
object x and subscription query q, if they match each other,
they are guaranteed to always find each other.

Furthermore, given two objects x and y, their similar-
ity is retained in the CAN space. Indeed, denoting the
Euclidean distance by d(., .), we have d(uC(x), uC(y)) =√∑k

i=1

(
〈ui,x−y〉

βi−αi

)2

≤
√∑k

i=1

(
‖x−y‖

2rmax+
∑ d

j=1 |uij |

)2

=
√

k
2rmax

d(x, y)



It is also true that given two overlapping queries q and q′,
we have uC(q ∩ q′) ⊆ uC(q)∩ uC(q′). Therefore, if we define
the similarity between two subscription queries by the number
of common data objects, it is preserved in the CAN space.

B. The SMART Strategy

The PURE strategy allows for quick and cost-effective data
notification because each data object is advertised to only
one node. However, PURE may incur a large amount of
subscription replicas in the network.

Since subscription queries are likely to overlap, we should
take advantage of this property to minimize their replication in
the network. As illustrated in Figure 3, if query q′ covers query
q, it must be true that uC(q′) covers uC(q) and, consequently,
hs(q′) ⊇ hs(q). In other words, if a new query is covered by
an existing query, the nodes that the former query is mapped
to must already store the existing query. Because those data
objects that satisfy q′ will be returned to notify q′ anyway,
which will be filtered to match q, there is no need to replicate
query q further.

It should, however, be noted that as the data dimensionality
increases, the number of subscription coverings is decreased
because the subscription set is more sparse. As such, merely
using this relationship might not be sufficiently effective in
reducing the subscription load.

We propose the SMART strategy, which does not replicate
a query q if an existing query q′ is found such that uC(q′) ⊃
uC(q) (instead of using the condition q′ ⊃ q). The likelihood
of uC(q′) ⊃ uC(q) is much higher than that of q′ ⊃ q, thus
SMART can reduce the replication cost significantly; SMART
does not replicate a query not only if it is covered by an
existing query, but also if its CAN-projection is covered by
the CAN-projection of an existing query.

1) Query Subscription: We associate with each query q
with a node called the home node home(q) – the node that
stores the first copy of query q if it is replicated multiple times
or the only copy otherwise. The protocol to replicate a query
in the SMART strategy is as follows.

1) Use the CAN routing protocol to send q to the node Vq

such that Zone(Vq) contains CenterC(q).
2) If there is a query q′ currently stored at node Vq such

that uC(q′) ⊇ uC(q), store query q at node home(q′)
3) Else

a) Set home(q) = Vq and store q at Vq

b) Use the PURE strategy to propagate (q, Vq) to
surrounding nodes; at each node V ′,
i) For each existing query q′ stored at V ′ such

that uC(q′) ⊆ uC(q) and home(q′) = Vq,
remove query q′ from node V ′

An illustration on a 2-D CAN network is given in Figure 2.
Queries q1, q2, q3 are submitted into the network at times in
that order. Query q1 is submitted first, whose projection center
CenterC(q1) lies in the zone of node 7 and whose projection
also intersects with the zones of nodes 15, 13, 11, 10, 9, 8, and
2. Therefore, q1 is stored at these nodes and the home node

3

4 5 6

8

9

14

18

17

q3

q1

q2

10

7 13

2

1

12

11

15

16

Fig. 2. Subscription replication using covering relationship: Query q1, which
is inserted first, is stored at nodes 7 (home node), 15, 13, 11, 10, 9, 8, and
2; query q2 is stored at 7 because it is covered by q1 whose home node is 7;
query q3, not covered by any other is stored at nodes 2 (home node) and 3

of q1 is node 7. When q2 is submitted, it is sent to node 10
because this node’s zone contains the projection center of q2.
If we use the PURE strategy, q2 would be stored at nodes 8, 9,
10, 11. Using the SMART strategy, because node 10 already
stores query q1 and uC(q1) ⊇ uC(q2), query q2 will be stored
at the home node of query q1, i.e., node 7 only; hence, a
significant reduction in subscription load. When query q3 is
submitted, because its projection is not covered by any other’s,
it is stored at nodes 2 and 3 because their zones intersect with
uC(q3), node 2 serving as the home node of query q3.

2) Data Notification: When a data object x becomes avail-
able, the data publication procedure is as follows to work with
the SMART strategy:

1) Use CAN routing to advertise it to the node Vx such as
uC(x) ∈ Zone(Vx)

2) For each query q stored at node Vx such that uC(x) ∈
uC(q), forward x to node home(q) – the home node of
q

a) For each home node V that receives x, notify all
queries that match x and call V home

In the PURE strategy, searching node Vx is sufficient to find
all the matching queries of x. In the SMART strategy, there
may be subscriptions matching x, which are not stored at node
Vx; those subscriptions are actually stored at the home nodes
of the queries q stored at Vx such that uC(x) ∈ uC(q). Thus,
we have to visit the home nodes of such queries q to find
all possible matching queries of x. For example, continuing
the illustration earlier in Figure 2, suppose that a data object x
satisfying query q2 is available such that uC(x) lies in zone 11.
An advertisement will be sent to node 11. If we search node 11
alone as in the PURE strategy, we cannot find any other query
beside q1 that x satisfies. This results in a match miss because
x also satisfies q2. Using the modified publication procedure,
we will forward the advertisement of x to the home node 7
of query q1, where we will find query q2.



Fig. 3. Covering relationship is preserved in random projection: if a query
(s’, r’) covers a query (s, r), the former’s projection A’B’ also covers the
latter’s AB

C. Un-Subscription

We should enable a subscription query to be unsubscribed
when necessary. In the case of PURE strategy, a subscription
q is removed easily by visiting all the nodes whose zone
intersects with uC(q), where q will be removed. If we use the
SMART strategy, the removal of a subscription q also involves
some other queries. These queries are those stored at the home
node of q because their CAN-projection is covered by q’s. For
such a covered query q′, firstly we check whether its projection
is covered by that of another query other than q. If so, nothing
needs to be done. Otherwise, the home node of q re-subscribes
q′ to the network.

V. SIMULATION STUDY

Shown in the previous section is that using our random pro-
jection approach subscription queries and their matching data
objects always meet. A main impact of dimension mismatch
in CAN-based pub/sub networks, which is difficult to quantify
theoretically, is how it affects the subscription load and the
efficiency of the notification process. We, therefore, conducted
a simulation-based evaluation to study these aspects. Our
evaluation was based on (1) the subscription replication cost:
the number of replicas of each subscription submitted to the
network and (2) the event notification efficiency: the number
of nodes where the advertisement on the event that a new data
object is produced is sent to find all matching subscriptions.
We also studied the effect of increasing the subscription size.
As discussed in Section II, we are aware of no other research
on CAN-based pub/sub systems that share the same problem
addressed in our paper. This study thus includes the results for
our random projection approach only.

We simulated a CAN network of 1,000 nodes. For CAN
to be preferable over the other DHT techniques, the CAN
dimension k should be smaller than log (n)/2. Thus, we
considered the value of k to be in the range {2, 3, 4, 5}.
We generated two sets of subscriptions, one with 10,000
subscriptions and the other 50,000 subscriptions. The centers
of these subscriptions were generated uniformly in random as
points in the d-dimension unit cube. The radii were chosen to a

maximum of rmax = 0.5 according to two distribution models:
the uniform distribution and the Pareto 80/20 distribution. The
latter one is typical in practice, reflecting the case that most
subscriptions are specific (i.e., small radius), only a few being
extensive (i.e., large radius). We evaluated various choices
for the data dimension but due to the space limit and for
simplicity of conveying the insights we report the results
for d ∈ {4, 8}. Many real pub/sub applications, such as for
watching stock markets and monitoring weather, have this
range of dimensionality.

A. Subscription Replication Cost

When a subscription is submitted, PURE replicates it at
every node whose zone intersects with the subscription’s
projection. SMART aims to avoid this replication using the
covering relationship between subscription projections. Thus,
SMART certainly results in less subscription load in the
network. The load reduction is substantial as shown in Figure
4. It is more obvious when k is smaller no matter the query
model. For example, when k = 2 and the uniform query
model is used, while PURE results in 64 replicas/subscription,
SMART replicates a subscription only 12 times; hence, 80%
saving (Figure 4(a)). The closest case is when k = 5, d = 8;
yet, a 30% saving in subscription load is obtained with
SMART (Figure 4(c) and Figure 4(d)). In any configuration, a
subscription in SMART is replicated at no more than 12 nodes,
or a 1.2% of the network size. We should note that the load
in the Pareto cases is much smaller than in the uniform cases.
This is because with Pareto, most of the subscriptions queries
are highly specific (i.e., small radius), thus their projections do
not intersect with as many nodes as with the uniform model.

It is explanable why as k increases the gap between PURE
and SMART is narrower. This is because of the condition
uC(q′) ⊇ uC(q) when deciding whether to replicate a new
query q at further nodes (see Subsection IV-B). With higher
k, the number of such queries q decreases, thus less saving in
query replication.

Figure 5 summarizes the skewness of subscription-load
distribution by its standard deviation, where different results
are observed between the uniform query model and the Pareto
query model. While SMART distributes the load across the
network significantly better than PURE in the uniform model
(Figure 5(a)), the result is mixed for the Pareto query model
(Figure 5(b)). In the latter model, there is no difference
between PURE and SMART when d = 4. When d = 8, PURE
distributes the load better than SMART when k ≤ 3. However,
as k increases, so is SMART’s distribution fairness and when
k reaches 3 or above, SMART distributes better than PURE,
albeit not as significantly as in the uniform model.

B. Event Notification Efficiency

We call it an event when a new data object is published.
In the PURE strategy, each event is sent to only one node
and guaranteed to find all of its matching subscriptions. In
SMART, because we try to avoid subscription replication, each
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(d) Pareto Query Model: d = 8

Fig. 4. Number of replicas per subscription
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Fig. 5. Standard Deviation of Subscription Load per Node

event should be sent to more nodes to find its matching sub-
scriptions; hence, some extra communication cost. To estimate
this cost, we generate 10,000 events, uniformly distributed in
the unit cube of d dimensions. We consider both subscription
sizes, 10,000 and 50,000. Figure 6 plots the average number
of nodes hit by each event.

It is observed that there is a significant reduction when k
increases from 2 to 3, and then little changes as k gets higher.
When k = 2, the number of nodes visited by an event on
average is less than 130 nodes (or 13% of network size) in
the uniform case, and 80 nodes (8%) in the Pareto case. For

these cases, respectively, When k is above 2, these numbers
are less than 60 (6% of network size) and 40 (4%). This study
illustrates that although more than 1 node is visited to find all
subscriptions matching an event, on average, the number of
such nodes is a small portion of the network size (less than
13% in all cases). For applications with more subscriptions
than events, SMART is an efficient solution.

The fact that an increase in k mostly results in a better
notification efficiency can also be explained. In CAN, a higher
k implies a higher number of neighbors per node, thus usually
more subscriptions per node. This implies that during the
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(a) Uniform Query Model: d = 4
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(b) Pareto Query Model: d = 4

Uniform Query Model: d = 8
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(c) Uniform Query Model: d = 8
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(d) Pareto Query Model: d = 8

Fig. 6. SMART: Number of nodes visited in the notification upon an event

notification process, we should visit a smaller number of nodes
to find all the matching subscriptions.

C. Increasing the Number of Subscriptions

When more subscriptions are submitted to the network, the
replication cost remains unchanged with PURE, as illustrated
in Figure 7(a) (the uniform query model) and Figure 7(b) (the
Pareto query model). However, the replication cost actually
is improved if we use SMART (see Figures 7(c) and 7(d)).
This is because the more subscriptions submitted, the more
likely projection-covering relationships, and, consequently,
more replication savings.

In terms of the notification efficiency, considered in
SMART, a five-fold increase in the number of subscriptions
results in only slightly more visited nodes per event (Figure
6), especially for the uniform query model. For the Pareto
model, increasing the number of subscriptions has more of an
impact on the number of nodes hit per event. However, except
for k = 2 where the number of nodes is roughly doubled, the
number of additional nodes hit is no more than 50%.

The results of this study show that SMART’s replication
cost and notification efficiency are sustainable under increasing
sizes of subscriptions, which is a desirable property of any
large-scale pub/sub system.

VI. CONCLUSIONS

We have presented a random projection approach to deploy-
ing pub/sub services in CAN-based P2P networks. Hashing
subscriptions from a high dimension to a low dimension so
they can be stored and matched with data objects efficiently in
the CAN network is not trivial. Not only need we preserve data
locality, but also subscription locality. In addition, a desirable
property of any distributed pub/sub system is to minimize the
replication of subscriptions.

Random projection is a well-known method but our work
is the first to explore its applicability in a CAN-based pub/sub
network. We have investigated two strategies, PURE and
SMART. PURE simply projects a subscription query onto
a random space with the same dimension with CAN and
stores the query in the CAN zones intersecting this projec-
tion. SMART reduces the subscription load in the network
by avoid replicating subscriptions whose projection into the
CAN space is covered by another subscription’s projection.
Furthermore, although SMART incurs a non-optimal cost for
the notification process, this cost is modest and sustainable
with the subscription size increases. We would recommend
SMART for applications where the subscriptions outnumber
the publications of new data objects.

Our future work includes more investigation on the sub-
scription load balancing issue and more on the effect of
different choices of the CAN dimension and data dimension.
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Fig. 7. Effect of the number of subscriptions: 10K subscriptions vs. 50K subscriptions
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