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Abstract—In this paper we study the problem of assigning
users to servers and data replication in a distributed manner
for online social networking (OSN) applications. Typical OSN
applications such as Facebook and Twitter are built on top of
an infrastructure of servers, which handle the users data storage
and communications. Thus, for a given user’s communication
pattern, the loads of the servers depend critically on the as-
signment of users to servers. A good assignment will reduce
the overall load of the system. Furthermore, by replicating
data across the servers judiciously, the overall load can also
be further reduced. Unfortunately, this optimal assignment and
data replication problem is NP-hard. Therefore, we introduce
a distributed heuristic algorithm in which the servers perform
local computations and exchange information among each other
iteratively in such a way that the algorithm converges to a
good assignment and replication in terms of reducing the overall
system load as well as balancing the loads among the servers.
In contrast with a centralized algorithm, a distributed algorithm
offers the advantage of balancing the computations among all
the servers as well as the ability to naturally adapt to time-
varying user’s communication patterns. Simulations results show
promising performance for the proposed algorithm.

Index Terms—Distributed optimization, social network, large
scale distributed systems, data replication

I. INTRODUCTION

For scalability, online social networks (OSNs) such as
Facebook, Twitter, Linkedin, etc. employ an underlying in-
frastructure of servers which handle the communications and
data storage on behalf of the users. Specifically, each user is
assigned to a primary server. When data is transferred from one
user to another, the users do not set up a network connection
directly with each other. Instead, their primary servers will
perform the data transfer on their behalf. If the two users are
assigned to the same primary server, then intercommunication
between two servers are not needed. As a result, for a given
users communication pattern, the loads of the servers depend
critically on the assignment of users to servers. To be concrete,
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in this paper we consider the following protocol used in a
typical scenario of OSN applications wall posts in FaceBook.

When a user u goes online, it will (1) issue a read request to
its primary server su for stored personal data and then request
for its friends’information; (2) If its friends are assigned on
the same su, the read request for friends’ messages is simply
reading data from the local storage; (3) However, if some of
its friends are assigned to different servers, then the primary
server forwards the read request to every primary servers of
its friends. In response to the request, the friends’ primary
servers read the data (e.g., the previously posted message by
its friends) from their databases, and send them back to su.
su then returns the data to user u.

In this scenario, the server load is incurred by (1) read-
ing data from the database and (2) communication between
servers. As an example, let us consider a user u, its two friends,
users v and w with their different primary servers su, sv , and
sw, respectively. When user u goes on line, it will read data
from its primary server Su which incurs a read load. Next, Su

send two requests to sv and sw to request the updated data
from v and w on behalf on u. This incur a communication load
on three servers. sv and sw then read the updated data from
their databases which incur a read load on them. sv and sw
then return the updated data back to su which further incurs
a communication cost. We note that the read cost is primarily
due to time and computation involved with reading data from
disk while the communication cost is primarily due to the
bandwidth cost.

The communication cost is reduced if users v and w reside
on the same primary server su. In that case, no inter-server
communication is needed, thus no communication load is
incurred. On the other hand, the read load remains the same
since three reads from the databases are still required. Thus, to
reduce the overall load, it makes sense to assign friends to the
same server. However, this is not always possible. One way
to reduce the load is to replicate the user data across multiple
servers.

Replication. If the data of user v is replicated on the
primary server of its friend user u. Then when u goes online,



no inter-server communication load is incurred. Furthermore,
replicating users’ data on different servers also make the
system less susceptible to bottleneck failures. However, data
replication incurs a load of writing additional data to the
database. Thus, there is a trade-off in terms of the commu-
nication load and writing load which in turn depends on the
frequency of reading versus writing for different users.

Load Balance. Another important aspect affecting the sys-
tem performance is to balance the loads among the servers, i.e.,
to prevent the scenarios where some servers are overloaded
while others are idle. It is well-known that these scenarios can
substantially degrade the performance of a distributed system.

Based on the discussion above, for a given user’s commu-
nication pattern, the loads of the servers depend critically on
the assignment of users to servers. The user communication
patterns are defined by not only the social network of friends
(typically represented as a relationship graph among friends),
but also how often users log in Facebook (read), post messages
(write), and the length of the posted messages. A good assign-
ment will reduce the overall load and balance the individual
loads among the servers. Furthermore, by replicating data
across the servers judiciously, the overall load can also be
further reduced.

II. BACKGROUND

There are two main tasks of data management in OSNs:
assignment users to servers and data replication. There are
much work focusing on these such problems. In [1], author
proposed a centralized algorithm for partitioning the network
of user based on a relaxation of an integer program. The dy-
namical changes of the network as well as replication problem
were not considered in this work. Algorithms proposed in [2]
and are based on the community structure of the networks.
Modularity is a very good parameter which represents the
structure of the network as well as how users are related among
themselves. However, computing modularity for the whole
network is computationally expensive. Replication schemes
proposed in [3] and [4] relies on a fixed partition scheme
and a fixed number of replica is applied for all user data.
When network structure changes, i.e nodes addition/deletion,
a new assignment scheme might be needed to achieved before
changing replication scheme would lead to better system
performance. Moreover, social networks are very skew where
most users having low degree of friend; and with a good
assignment scheme the required replica is minimal and the
redundant replica merely supports load balance among servers.

Our work focuses on distributed algorithm which adapts
to the dynamical changes of the network and minimizes the
global objective function value which is the sum of load
incurred by users’ activities. Unfortunately, this optimal as-
signment and data replication problem is NP-hard. Therefore,
we introduce a distributed heuristic algorithm in which the
servers perform local computations and exchange information
among each other iteratively in such a way that the algorithm
converges to a good assignment and replication in terms of
(1) reducing the overall system load as well as (2) balancing

the loads among the servers. In contrast with a centralized
algorithm, a distributed algorithm offers the advantages of bal-
ancing the computations among all the servers and the ability
to naturally adapt to the time-varying users communication
patterns which is often the case for OSN applications.

III. PROBLEM FORMULATION

We first define the following notations and derive the
quantities of interest:
• N , M : Number of users and servers, respectively.
• V , S: A set of all users and servers, respectively.
• N(v): set of users who has relationship with user v (v’s

neighbors).
• crv, c

w
v , c

t
v: average cost of reading/writing and transfer-

ring v’s data respectively. These costs are functions of
v’s total load amount.

• P ∈ {0, 1}N×M : An assignment matrix where pus = 1
if user u is assigned to a primary server s, and pus = 0
otherwise. Since a user is assigned exactly to one primary

server,
M∑
s=1

pus = 1 and 0 ≤
N∑

u=1
pus ≤ N , ∀i .

• X ∈ {0, 1}N×M : A replication matrix where xup = 1
if user u’s data is replicated on server p, and xus =
0 otherwise. Since user data is never replicated on its
primary server, xus ≤ pus.If user u’s data is replicated

on K servers,
M∑
s=1

xus = K.

• rv, wv: the user v’s average rates of reading and writing,
respectively.

In this section, we first derive different types of load for
a given user-server assignment without replication. These are
necessary for the mathematical formulation and are the build-
ing blocks for the proposed distributed algorithms. Replication
will be considered shortly. We now start with the read and
communication load.

Read Load. User v’s data is interested in by v itself and
its friends. Then the total read load on a server s is:

Lr
s =

∑
v∈V

pvs
(
rvc

r
v +

∑
u∈N(v)

ruc
r
v

)
(1)

Communication Load. If v and u are assigned to the same
primary server s, then there is no communication load. On the
other hand, data need to be transferred between the two, and
thus the total communication load of s is computed as:

Lc
s =

∑
v∈V

pvs
( ∑
u∈N(v)

ruc
t
v(1− pus)

)
. (2)

where pus ∈ [0, 1].
Write Load. Whenever a user v updates its data, a write

load is incurred at its primary server, and total write load at
server s is:

Lw
s =

∑
v∈V

wvc
w
v pvs. (3)



From all the above, the total load of all the servers without
replication Lwor is computed as:

Lwor =
∑
s∈S

Lr
s + Lc

s + Lw
s . (4)

Data Replication.
Up until now we discuss the communication, read, and write

loads assuming no data replication. Now if users’ data is repli-
cated on servers, as discussed previously, the communication
load will be reduced. Therefore, the total change in the system
load due to replication is:

LRep =
∑
v∈V

∑
n∈S

xvn
(
wvc

w
v − ctv

∑
u∈N(v)

rupun
)

(5)

The total load with replication L can be now rewritten as:

L = Lwo + LRep. (6)

Let
L = L

M and ds = Ls − L

denote the average server load and the imbalance load of server
s, respectively. We define our objective function as:

F = L+ αmax
s
ds, (7)

where α ∈ (, 1) is the weighted factor for controlling the
trade-off between load imbalance and the total server load.

The problem of assigning users to servers and replication
data is now casted as an integer programming problem with
the optimization variables being pus and xus, denoting the
primary user-server assignment and the replication scheme,
respectively. Formally, the optimization problem is:

Minimize: F
Subject to: ∑

s

pus = 1 ∀u (8)

pus + xus ≤ 1 ∀u (9)∑
s

xus ≤ K (10)

pus ∈ {0, 1} (11)
xus ∈ {0, 1} (12)

The constraint (8) ensures that every user has exactly one
primary server; constraint (9) guarantees that user u’s data is
never replicated on the same primary server; and constraint
(10) restricts the maximum number of replica within system.

This optimization problem is unfortunately NP-hard. The
proof is omitted due to limited space. Therefore, in the next
sections we will present a distributed algorithm that produces
an approximate solution.

Proposition 1: The global objective function is bounded by:

FL ≤ F < FU (13)

Where

FL =
∑
v∈V

(
wvc

w
v + rvc

r
v +

∑
u∈N(v)

ruc
r
v

)
(14)

FU = FL + max
{
Lc
max, L

Rep
max

}
+ α

N − 1

N
FL (15)

with
Lc
max =

∑
v∈V

∑
u∈N(v)

ruc
t
v(1− pus)

and
LRep
max =

∑
v∈V

wvc
w
v min{|N(v)|, N}

Proof: The detailed proof is omitted due to the lack of
space.

IV. DISTRIBUTED ALGORITHM/PROTOCOL

In this section, we propose an approximate distributed
algorithm for solving the optimization problem above. The
algorithm consists of two parts. The first part is a greedy
method to provide quick convergence to a local solution. The
next part employs simulated annealing method to overcome
the local solutions. For the first part, the main idea is: at each
time step, the most overloaded server is selected to (1) reassign
some of its users to other servers or (2) replicate its user data
to other servers in order to reduce its load. By appropriate
taking either one or two actions above, both the total load
and and load imbalance will be simultaneously reduced over
time. For such an algorithm to work, some small amount of
information must be kept and exchanged among the servers
to allow the servers to know immediately whether (1) it is the
most overloaded server and (2) whether it should take actions
(1) or (2). The second part, simulated annealing methods
will also be computed locally. In what follows, we show the
following information and local computations are sufficient to
perform such a distributed algorithm.

Local information and computation. Each server is as-
sumed to handle a number of users, and thus it maintains
all information pertained to its local users. Specifically, this
information includes a table of total read load incurred by
each users due to its friends from other users. Let us define
the following locally stored information at server s:
• Ns, V s: The number and the set of users primarily

assigned to server s, respectively.
• Ls

Ns×(M−1): A matrix represents the average load due
to v’s data requests from other servers whose entries
Ls(v, n), n ∈ S \ s denotes the load of reading and
transferring v’s data to its friends located on server n.
Recall that Ls(v, n) =

∑
u∈N(v) put(1− xvn)ruc

r
v .

• Nrs, V rs: : The number and the set of users whose data
are replicated on server s.

• k(v): number of v’s replica.
Given the information above, the total read and communi-

cation loads at server s can be computed locally as:

Lr
s =

∑
v∈V s

(
rvc

r
v +

∑
n

Ls(v, n)
)

(16)



Similarly, the total write load at server s can be computed
locally as:

Lw
s =

∑
v∈V s

wvc
w
v +

∑
u∈V rs

wuc
w
u (17)

The total load that server s contributes to the overall system
load is:

Ls = Lr
s + Lw

s (18)

Now, each server exchanges their total loads among each
other. Thus, every server will be able to determine whether
it is the maximum load server. Next, given that a server is
the maximum load server, it will either (1) reassign some
of its users to other servers or (2) replicate its user data to
other servers in order to reduce its load. To choose either
of the actions, the maximum load server will use a greedy
approach that takes the action out of two that result in the
maximum reduction of the objective value F . The reduction of
the objective value due to each of the actions can be estimated
locally as follows.

Load Change due to Replication. If user v’s current
data on s, is replicated on server n, then the local read and
communication load at server s will reduce by Ls(v, n) since
Ls(v, n) = 0 after the replication action. The write load at
server t will increase by wr. The load at server s will decrease
by Ls(v, n), the load at server n will increase by wvc

w
v and

the overall system load will change by:

∆L = wvc
w
v − Ls(v, d) (19)

Load Change due to Reassignment of Primary Server.
Assume s is the primary server of v, then by reassigning
user v to another server n, the load at server s will decrease
by Ls(v, n) + wvcwv , the load at server n will increase by∑

u∈N(v) pusruc
r
v + (1 − xvn)wvcwv , and the change in the

overall system load is:

∆L =
∑

u∈N(v)

pusruc
r
v − Ls(v, n)− xvnwvcw (20)

Load Change due to Replication Removal. Often, due
to greedy move, it is possible that one gets a lower objective
value by backtracking via removing a replication. Therefore,
we will calculate the reduced load due to removing a repli-
cation. If we remove u’s replication on server s, the load at
server s will increase by

∑
v∈N(u) pvsrvc

t
u − wucwu , and the

change in overall system load is:

∆L =
∑

v∈N(u)

pvsrvc
t
u − wucwu (21)

For each of the change in load, we will also be able to
compute the change in F which include the load imbalance
since the loads from all other servers are available.

It is important to note that (19),(20),(21) can be computed
locally.

Thus, we propose the following distributed algorithm
(DAROS) for user-server assignment and replication. There

TABLE I: Simulation results

(M,K) % Global cost saved %Inter-server % Repl. cost
(8,1) 46.22 8.14 4.61
(8,3) 46.35 4.37 7.87
(8,7) 46.70 3.42 8.21

(16,1) 46.54 15.06 3.7
(16,3) 46.63 11.42 6.88
(16,7) 43.85 12.86 7.59

are two stages in DAROS: optimization mode and convergence
mode. In optimization mode, only overload servers involve in
the optimization process. Each overload server selects each
currently assigned user and computes the gain of reassigning
user to a new server or replicating user’s data only and/or
removing current replication. The decisions are made based
on which action will result in better gain. The process of
replicating and reassigning user in the optimization mode
will be iterated until no more change in user-assignment is
observed, i.e., the algorithm probably converges to a local
solution. We call this the convergence mode. To overcome
the local solution, in the convergence mode, all servers will
compute the gain of each tentative action (reassign, replicate
or remove replication) and make a decision with probability
of min{1, exp(−∆F/Tb)} where ∆F is the estimated gain
and Tb is an experimental coefficient for controlling the
convergence rate of the overall DAROS. We used TB as a
function of global objective value in such a way that if the
global objective function’s value is near the global optimal
point, the probability of perturbation is low, i.e Tb = β F−FL

FU−FL
.

This is the basis of the simulated annealing method. We now
describe with the first stage of the algorithm.

Algorithm 1 DAROS

1: Input: {V s}, {Ls},K
2: Output: pus, xus
3: Assign equal number of users to each server uniformly at

random.
4: Set mode to optimization
5: repeat
6: if mode is optimization then
7: Run algorithm 2
8: if No action has been made then
9: Switch to convegence mode

10: end if
11: else//Convergence mode
12: Run algorithm 3
13: Switch to Optimization mode
14: end if
15: until Freeze

V. SIMULATION RESULT

In this section, we show our preliminary simulation results.
In particular, we use the Facebook data [5] which has N =
63731 users and 817,090 relationships. Simulation parame-



Algorithm 2 Optimization mode

1: At each time step, the servers exchange their loads among
each other.

2: if s is the most overloaded server then
3: for each v in V s do
4: Reassign users based on ∆FReassign (20)
5: Replicate user data based on ∆FRepl (19)
6: end for
7: % Now we perform backtrack since during the previ-

ous greedy move might be suboptimal.
8: for each v in V rs do
9: Let F removing = change in objective value by

removing v’s replication using (21)
10: if Fremoving < 0 then
11: Removing v’s replication on s
12: Decrease k(v)
13: end if
14: end for
15: end if

Algorithm 3 Convergence mode

1: Set TB = β F−FL

FU−FL

2: for each v at every server do
3: for each n ∈ S \ s do
4: Compute FReassign by (20)
5: Reassign v to t with
6: probability min{1, exp(−∆FReassign

Tb
)}

7: if There is no v’s replication on t then
8: ∆FRepl by (19)
9: Replicate v’s data on t

10: with probability min{1, exp(−∆FRepl

Tb
)}

11: end if
12: for each v in V rs do
13: ∆FRemove by (21)
14: Remove v’s data replication s
15: with probability min{1, exp(−∆FRemove

Tb
)}

16: end for
17: end for
18: end for

ters are: ReadRate=1, WriteRate=0.1, ReadCost=0.01, Write-
Cost=1, TransferCost=0.02, α = 0.5; (M,K) = (8,1),(8,3),(8,7).

Fig. 1(a), Fig. 1(b), and 1(c) show the changes in global
objective function’s value, the inter-server communication
cost, and the replication cost, respectively. Initially, the servers
are assigned an equal number of users uniformly at random.
Thus, a simple algorithm of assigning equal number of users
to each server would have the performance similar to that
of the proposed algorithm at iteration = 0. As seen, the
objective function decreases significantly over time, showing
the significant benefit of our proposed algorithm over the naive
method. Each spike in the graph corresponds to the simulated
annealing method to overcome the local minimums. Once the
users are perturbed in convergence mode, the communication

and replication cost increase dramatically. However, at next
iterations, these costs reduce significantly due to appropriate
reassignment and replication. As seen, this helps the algo-
rithm to further reduce the objective value and inter-server
communication cost. The simulation results (table I) show
that the global cost is saved by about 46% compared to
the random assignment/replication scheme. The inter-server
communication cost and the replication cost are just small
fractions of the global cost.
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Fig. 1: (a) Objective function values b) Inter-server commu-
nication cost (%) c) Replication cost (%).

VI. CONCLUSION

We study the problem of assigning users to servers and data
replication in a distributed manner for online social networking
(OSN) applications. This problem is NP-hard. Therefore, we
introduce a distributed heuristic algorithm that finds a good
assignment and replication in terms of reducing the overall
system load as well as balancing the loads among the servers.
In contrast with a centralized algorithm, a distributed algorithm
offers the advantage of balancing the computations among all
the servers and the ability to naturally adapt to time-varying
user’s communication patterns. Simulations results show the
effectiveness of our proposed algorithm.
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