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Abstract—In this paper, we consider a channel whose the input
is a binary random source X ∈ {x1, x2} with the probability
mass function (pmf) pX = [px1 , px2 ] and the output is a contin-
uous random variable Y ∈ R as a result of a continuous noise,
characterized by the channel conditional densities py|x1

= φ1(y)
and py|x2

= φ2(y). A quantizer Q is used to map Y back
to a discrete set Z ∈ {z1, z2, . . . , zN}. To retain most amount
of information about X , an optimal Q is one that maximizes
I(X;Z). On the other hand, our goal is not only to recover
X but also ensure that pZ = [pz1 , pz2 , . . . , pzN ] satisfies a
certain constraint. In particular, we are interested in designing a
quantizer that maximizes βI(X;Z)−C(pZ) where β is a trade-
off parameter and C(pZ) is an arbitrary cost function of pZ . Let

the posterior probability px1|y = ry =
px1φ1(y)

px1φ1(y) + px2φ2(y)
, our

result shows that the structure of the optimal quantizer separates
ry into convex cells. In other words, the optimal quantizer has
the form: Q∗(ry) = zi, if a∗i−1 ≤ ry < a∗i , for some optimal
thresholds a∗0 = 0 < a∗1 < a∗2 < · · · < a∗N−1 < a∗N = 1. Based
on this optimal structure, we describe some fast algorithms for
determining the optimal quantizers.

Keyword: quantization, mutual information, constraints.

I. INTRODUCTION

Motivated by the use of quantizers in the decoders for polar
codes [1] and LDPC codes [2], designing the quantizers that
maximize the mutual information between input and quantized
output has received much attention in recent years. Over the
past decade, many algorithms and theoretical results on de-
signing such quantizers have been proposed [3]–[13]. Finding
an optimal quantizer for an arbitrary number of discrete inputs
and outputs remains a difficult problem [14]. Existing practical
algorithms typically find a locally optimal solution or an
approximate globally optimal solution [4], [6], [7], [9], [12],
[15], [16]. Under some certain restrictions, there are efficient
algorithms to find the globally optimal quantizer that maximize
the mutual information between the input and the quantized
output [3], [10], [11]. One such important case is when the
channel input is binary, then the optimal quantizer has the
structure of convex cells in the space of posterior distribution.
In particular, let X ∈ {x1, x2} be a binary random input with

the probability mass function (pmf) pX = [px1 , px2 ] to a given
channel, Y be the continuous output due to a continuous noise
source where Y is characterized by the channel conditional
densities py|x1

= φ1(y) and py|x2
= φ2(y). A quantizer Q is

used to map Y back to a discrete set Z ∈ {z1, z2, . . . , zN}. To
retain the most amount of information about X , an optimal Q
is one that maximizes I(X;Z). Let the posterior probability

px1|y = ry =
px1

φ1(y)

px1φ1(y) + px2φ2(y)
, then it has been shown

that the structure of the optimal quantizer separates ry into
convex cells [3]. In other words, the optimal quantizer is of
the form:

Q∗(ry) = zi, if a∗i−1 ≤ ry < a∗i , (1)

for some optimal thresholds a∗0 = 0 < a∗1 < · · · < a∗N−1 <
a∗N = 1. These quantizers are called convex cell quantizer
in ry . Using this convex cell structure, an optimal quantizer
can be found efficiently in a polynomial time via dynamic
programming technique. In [5] and [13], the time complexity
can be further reduced to a linear time complexity using the
famous SMAWK algorithm [17]. We note that it is also well
known that if y is used instead of ry , an optimal quantizer
Q∗(y) might not separate y into the N convex regions, i.e.,
multiple disjoint regions of y might map to the same zi.
Consequently, it is more difficult to find an optimal quantizer
from the algorithmic viewpoint.

While there are many results on finding the optimal quan-
tizer that maximizes I(X;Z), the problem of finding an
optimal quantizer that maximizes I(X;Z) while the output
Z must satisfy a certain constraint, receives less attention.
However, we note that finding the optimal quantizer for the
objectives other than the mutual information under some
constraints on the output, has a long history. For example,
the problem of entropy-constrained scalar quantization [18],
[19], [20] and entropy-constrained vector quantization [21],
[22], [23] have been well investigated. The objectives in
these problems are to minimize a specific distortion function,
typically the mean square error between the input and the



output while ensuring that the output entropy H(Z) is less
than a certain amount. The constrained-entropy quantization
is important in compression applications in limited storage
systems. For example, suppose one wants to quantize a data
source before applying entropy coding to gain compression.
Ideally, one wants zero distortion between the original data
and the quantized data for viewing. However, this may result
in high entropy in the quantized data, which after compression
performed on the quantized data might exceed a given storage
capacity. Similarly, in a limited communication channel, it
is important to reduce the entropy in the source in order to
reduce the bit rate to match the channel bandwidth. Constraint
on output entropy is only an example. In many scenarios,
constraints such as power consumption and time delay can
be modeled as constraints on the outputs.

The most related works of this paper are that of Strouse
et al. [24] and Gyorgy and Linder [20]. In [24], Strouse et
al. proposed an iterative algorithm to find a local optimal
quantizer that maximizes the mutual information under the
entropy constraint on the output. In [25], the authors gen-
eralized the results in [24] to find a local optimal quantizer
that minimizes an arbitrary impurity function while output
constraint can be an arbitrary concave function. However,
to the best of our knowledge, there is no work that can
determine a globally optimal quantizer that maximizes the
mutual information between input and quantized-output for
a given output constraint, even for the binary input channels.
On the other hand, our work is similar to the work of Gyorgy
and Linder that proves the optimality of convex cell quantizers
[20].

To that end, we investigate the problem of designing a
quantizer that maximizes F (X,Z) = βI(X;Z) − C(pZ)
where β is a trade-off parameter and C(pZ) is an arbitrary cost
function of pZ . Our contribution is to show that, similar to the
result in [3], the structure of the optimal quantizer does not
change, i.e., Q∗(y) separates ry into convex cells as defined in
Eq. (1). Our approach to obtain this result is to show that for
any given quantizer Q(y), there exists a convex cell quantizer
Q̄(ry) such that: (1) Q̄(ry) produces the same pZ as that of
Q(y) (therefore, the same C(pZ)) and (2) I(X;Z) produced
by Q̄(ry) is at least as large as that produced by Q(y). Thus,
the optimal quantizer must belong to the class of convex cell
quantizers. It is worth noting that our approach is very similar
to the work in [20] that characterizes the optimal structure of
entropy-constrained scalar quantizers. In addition, we outline
a fast algorithm for finding an optimal quantizer for the case
N = 2 and discuss a sufficient condition for which a single
threshold quantizer is optimal. Furthermore, under a certain
mild restriction on C(pZ), we describe an efficient algorithm
for finding the optimal quantizers for N > 2.

II. PROBLEM FORMULATION

Fig. 1 illustrates the problem setting. The binary random
input X = {x1, x2} with a given pmf pX = [px1

, px2
] =

[p1, p2] is transmitted over a noisy channel. Due to a con-
tinuous noise source, the output Y is a continuous random

Figure 1: Problem setting: X is a binary random variable, Y
is a continuous random variable, and Z is discrete random
variable resulted from the quantization of Y .

variable value specified by two given conditional densities
py|x1

= φ1(y) and py|x2
= φ2(y). A quantizer Q is used

to quantize the continuous output Y to a discrete output set
Z = {z1, z2, . . . , zN}. Let C(pZ) = C(pz1 , pz2 , . . . , pzN ) be
an arbitrary cost function of pZ . Our objective is to find the
solution to the following optimization problem.

max
Q

βI(X;Z)− C(pZ), (2)

where β is pre-specified parameter to control the trade-off
between maximizing I(X;Z) and minimizing C(pZ).

III. PRELIMINARIES

A. Notations and definitions

In this paper, the capital letter denotes the set and the
bold letter denotes the vector. For convenience, we use the
following notations and definitions:

1) ry = px1|y denotes the conditional probability of X = x1

given Y = y. Let φ1(y) = py|x1
and φ2(y) = py|x2

then

ry =
p1φ1(y)

p1φ1(y) + p2φ2(y)
.

2) vy = px|y = [px1|y, px2|y] denotes the conditional
probability vector of X given Y , vy = [ry, 1− ry].

3) µ(y) denotes the density function of Y , µ(y) =
p1φ1(y) + p2φ2(y).

4) Zi denotes the set of y that is quantized to the ith output
zi. Zi = {y : Q(y) = zi}.

Definition 1. (Kullback-Leibler (KL) divergence) KL di-
vergence of two probability vectors a = (a1, a2, . . . , aJ) and
b = (b1, b2, . . . , bJ) is defined by

D(a||b) =

J∑
i=1

ai log(
ai
bi

). (3)

Definition 2. (Centroid) Centroid of subset Zi ⊂ R is a two
dimensional vector ci = [ci, 1 − ci] that globally minimizes
the total KL divergence vy to ci from all y ∈ Zi:

ci = argmin
c

∫
y∈Zi

D(vy||c)µ(y)dy. (4)

Definition 3. (Distortion measurement) The total distortion
of a quantizer Q with N output sets (Z1, Z2, . . . , ZN ) is
denoted by:

D(Q) =

N∑
i=1

∫
y∈Zi

D(vy||ci)µ(y)dy, (5)

where ci is the centroid of Zi.



y
-6 -4 -2 0 2 4 6

r y

0

0.1

0.2

0.3

0.4

0.5

0.6

Z
2

Z
1

a
1

Z
1

Figure 2: Illustration of a convex cell quantizer for N = 2
corresponding to two output sets Z̄1 and Z̄2. Z̄1 ≤ Z̄2 and
ry∈Z̄1

≤ a1 = 0.25 ≤ ry∈Z̄2
. px1

= px2
= 0.5, φ1(y) =

N(0,
√

3) and φ2(y) = 0.5N(−1,
√

6 + 0.5N(1,
√

5)).

Definition 4. (Vector order) For two given conditional prob-
ability vectors vy1

and vy2
, we define vy1

≤ vy2
if and only

if px1|y1
≤ px1|y2

or ry1
≤ ry2

. Similarly, for two centroid
vectors ci = [ci, 1 − ci] and cj = [cj , 1 − cj ], ci ≤ cj if and
only if ci ≤ cj .

Definition 5. (Set order) Given two arbitrary sets A ⊂ R and
B ⊂ R , we define A ≤ B if and only if for all ya ∈ A and
any yb ∈ B, we have vya ≤ vyb

. We define A ≡ B if and
only if A ⊂ B and B ⊂ A.

As an illustration, Figure 2 shows ry as a function of y
for a convex cell quantizer Q̄(ry) for N = 2. In this case,
Z̄1 ≤ Z̄2 since ∀ y1 ∈ Z1 and ∀ y2 ∈ Z2, we have
px1|y1

= ry1
≤ ry2

= px1|y2
. Note that Q̄(ry) is equivalent

to the quantizer Q(y) where Q(y) = z2 if y ∈ (−4, 3.8) and
Q(y) = z1, otherwise. As defined, Q(y) is not a convex cell
quantizer since Z1 consists of two disjoint sets. On the other
hand, using ry as a variable in the quantizer, Q̄(ry) is a convex
cell quantizer since ry is separated into two disjoint sets.

B. Optimal quantizer and Kullback-Leibler divergence
Interestingly, one can show that finding the optimal quan-

tizer Q∗ that maximizes the mutual information I(X;Z) is
equivalent to determining the optimal clustering that min-
imizes the distortion using KL divergence as the distance
metric. The proof was given in [4] in discrete domain but it
can be extended into continuous domain. For convenience, we
just provide a sketch of proof using our notations. For a given
y and a given quantizer that produces zi = Q(y) having the
centroid ci, the KL-divergence between the conditional pmf
vy and ci is denoted as D(vy||ci). If the expectation is taken
over Y , then from Lemma 1 in [4], we have:

EY [D(vy||ci)] = I(X;Y )− I(X;Z).

Since pX and φi(y), i = 1, 2 are given, I(X;Y ) is
given and independent of the quantizer Q. Thus, maximizing
I(X;Z) over Q is equivalent to minimizing EY [D(vy||ci)]
with optimal quantizer:

Q∗ = min
Q

EY [D(vy||ci)] = min
Q

N∑
i=1

∫
y∈Zi

D(vy||ci)µ(y)dy.

Noting that for a given output set Zi 6= ∅, the centroid ci can
be computed by a closed-form expression [26].

IV. STRUCTURE OF OPTIMAL QUANTIZERS

In this section, we show that any arbitrary quantizer can
be replaced by a better convex cell quantizer in the sense of
maximizing βI(X;Z)−C(pZ). Thus, an algorithm for finding
the best quantizer in the set of all convex cell quantizers will
find the globally optimal quantizer. The main point for doing
this is that it is easier from an algorithmic viewpoint to search
for an optimal quantizer in a set of convex cell quantizers than
to search in through all the possible quantizers. We begin with
a special case N = 2.

A. Structure of optimal quantizer for N = 2

In this section, we consider the quantizer for the case N =
2, i.e., output Y is quantized into a binary Z. We show that
for any arbitrary quantizer Q(y), there exists a convex cell
quantizer Q̄(ry) that: (1) has the same pZ as Q(y) and (2)
the total distortion D(Q̄) is less than or equal to D(Q), or
equivalently I(X;Z) produced by Q̄(ry) is at least as large
as that produced by Q(y). Thus, to find the optimal quantizer
that maximizes βI(X;Z) − C(pZ), it is sufficient to search
in the set of the convex cell quantizers. The result is formally
stated in Theorem 1.

Theorem 1. Let Q be an arbitrary quantizer that produces two
disjoint output sets {Z1, Z2} corresponding to two centroid
vectors c1, c2 such that c1 ≤ c2, there exists a convex cell
quantizer Q̄ with two output sets {Z̄1, Z̄2} and the corre-
sponding centroids {c̄1, c̄2} such that Z̄1 ≤ Z̄2, pZi = pZ̄i

for i = 1, 2 and D(Q̄) ≤ D(Q).

Proof. (Outline). Suppose a quantizer Q(y) produces pZ =
(pZ1 , pZ2). Our first claim is that one can always find a convex
cell quantizer Q̄ that produces pZ̄ such that pZ̄ = pZ . Due
to limited space, we just outline the argument for this using
Fig. 2. For any arbitrary ry , as a1 increases, pZ̄1

increases
and pZ̄2

= 1 − pZ̄1
decreases. Thus, we can always choose

an appropriate value of a1 to make pZ̄1
= pZ1

, and therefore
pZ̄2

= pZ2 . Also, in Fig. 2, we have Z̄1 ≤ Z̄2 by Definition
5.

Now, let A = Z̄1∩Z2 and B = Z̄2∩Z1. Note that if A or B
is empty set then we can show that Z1 ≡ Z̄1, i.e., the quantizer
Q is already a convex cell quantizer. From Z̄1 ≤ Z̄2, we have
A ≤ B. Moreover, let pA and pB be the probabilities that y
is in these sets, respectively, then pA = pB which is proven
in Appendix A. Also, let c1 = [c1, 1− c1] ≤ c2 = [c2, 1− c2],
F (ry) = D(vy||c1)−D(vy||c2) is a non-decreasing function
in ry . Please see a proof for this in the Appendix B. Next, let

Dmax
A = max

y∈A
[D(vy||c1)−D(vy||c2)],

Dmin
B = min

y∈B
[D(vy||c1)−D(vy||c2)].

Since
∫
y∈A µ(y)dy = pA = pB =

∫
y∈B µ(y)dy, we have:∫

y∈A
[D(vy||c1)−D(vy||c2)]µ(y)dy ≤ Dmax

A

∫
y∈A

µ(y)dy=Dmax
A pA.

(11)



∫
y∈A

D(vy ||c1)µ(y)dy −
∫
y∈A

D(vy ||c2)µ(y)dy +

∫
y∈{Z1∩Z̄1}

D(vy ||c1)µ(y)dy +

∫
y∈{Z2∩Z̄2}

D(vy ||c2)µ(y)dy

≤
∫
y∈B

D(vy ||c1)µ(y)dy −
∫
y∈B

D(vy ||c2)µ(y)dy +

∫
y∈{Z1∩Z̄1}

D(vy ||c1)µ(y)dy +

∫
y∈{Z2∩Z̄2}

D(vy ||c2)µ(y)dy. (6)

(∫
y∈A

D(vy ||c1)µ(y)dy +

∫
y∈{Z1∩Z̄1}

D(vy ||c1)µ(y)dy

)
+

(∫
y∈{Z2∩Z̄2}

D(vy ||c2)µ(y)dy +

∫
y∈B

D(vy ||c2)µ(y)dy

)

≤
(∫

y∈B
D(vy ||c1)µ(y)dy +

∫
y∈{Z1∩Z̄1}

D(vy ||c1)µ(y)dy

)
+

(∫
y∈{Z2∩Z̄2}

D(vy ||c2)µ(y)dy +

∫
y∈A

D(vy ||c2)µ(y)dy

)
. (7)

∫
y∈Z̄1

D(vy ||c1)µ(y)dy +

∫
y∈Z̄2

D(vy ||c2)µ(y)dy ≤
∫
y∈Z1

D(vy ||c1)µ(y)dy +

∫
y∈Z2

D(vy ||c2)µ(y)dy. (8)

∫
y∈Z̄1

D(vy ||c̄1)µ(y)dy +

∫
y∈Z̄2

D(vy ||c̄2)µ(y)dy ≤
∫
y∈Z̄1

D(y ||c1)µ(y)dy +

∫
y∈Z̄2

D(vy ||c2)µ(y)dy. (9)

∫
y∈Z̄1

D(vy ||c̄1)µ(y)dy +

∫
y∈Z̄2

D(vy ||c̄2)µ(y)dy ≤
∫
y∈Z1

D(vy ||c1)µ(y)dy +

∫
y∈Z2

D(vy ||c2)µ(y)dy. (10)

∫
y∈B

[D(vy||c1)−D(vy||c2)]µ(y)dy ≥ Dmin
B

∫
y∈B

µ(y)dy=Dmin
B pB .

(12)

Since A ≤ B, by Definition 5 and the monotonic non-
decreasing property of F (ry), we have Dmax

A ≤ Dmin
B . Thus,

from (11) and (12),∫
y∈A

[D(vy ||c1)−D(vy ||c2)]µ(y)dy≤
∫
y∈B

[D(vy ||c1)−D(vy ||c2)]µ(y)dy.

(13)

Adding
∫
y∈{Z1∩Z̄1}D(vy||c1)µ(y)dy +∫

y∈{Z2∩Z̄2}D(vy||c2)µ(y)dy to both sides of (13), we
obtain (6).

By moving −
∫
y∈AD(vy||c2)µ(y)dy to the RHS and

−
∫
y∈B D(vy||c2)µ(y)dy to the LHS of (6), we obtain (7).

Now, note that A = {Z̄1 ∩ Z2} and {Z1 ∩ Z̄1} are disjoint
due to Z1 and Z2 are disjoint. Thus, A ∩ {Z1 ∩ Z̄1} = ∅ and
the integral over A and {Z1∩ Z̄1} is equivalent to the integral
over A∪{Z1∩Z̄1} = Z̄1. Similarly, using B∪{Z2∩Z̄2} = Z̄2,
B∪{Z1∩ Z̄1} = Z1 and A∪{Z2∩ Z̄2} = Z2, (8) is obtained
from (7).

Now, by using c̄1 and c̄2 are the new centroids of Z̄1 and
Z̄2, from Definition 2, (9) is constructed.

Finally, from (8) and (9), (10) is established, i.e., D(Q̄) ≤
D(Q).

B. Structure of optimal quantizer for N > 2

Theorem 2. Let Q be a quantizer with arbitrary disjoint
quantized-output sets {Z1, Z2, . . . , ZN} corresponding to N
centroids c1, c2, . . . , cN such that ci ≤ ci+1 ∀ i, there
exists an other convex cell quantizer Q̄ with the out-
put sets {Z̄1, Z̄2, . . . , Z̄N} and the corresponding centroids
{c̄1, c̄2, . . . , c̄N} such that Z̄i ≤ Z̄i+1, pZi

= pZ̄i
∀ i and

D(Q̄) ≤ D(Q).

Proof. Due to limited space, we omit the proof and note that
the proof can be accomplished using the induction method in
which we show that for N = 2, it is true from Theorem 1,
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Figure 3: βI(X;Z)−H(Z) as a function of ry .

and assume that N = k is true, we show that N = k + 1 is
also true.

V. APPLICATIONS

A. Finding optimal quantizer for N = 2 and single threshold
quantizer

When N = 2, based on Theorem 1, the optimal quantizer
has the structure

Q∗(ry) =

{
z1 if ry ≤ a∗1,
z2 if ry > a∗1,

for an optimal value a∗1 ∈ (0, 1). Thus, the optimal quantizer
can be found by an exhaustive searching over a∗1 ∈ (0, 1).

The complexity of this algorithm is O(M) where M =
1

ε
and ε is a small number denotes the precise of the solution.
If one wants to construct an equivalent classical quantizer
Q(y) which compares y to certain thresholds hi’s (rather than
comparing ry with a∗1), then hi’s are the solutions of ry = a∗1.
Thus, there might be multiple hi’s. However, one can show

that if
φ2(y)

φ1(y)
is a strictly increasing/decreasing function, then

there is only one h1, thus the classical one threshold quantizer
is optimal.
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As an example, consider a channel having p1 = 0.7,
p2 = 0.3, φ1(y) = N(1, 1), φ2(y) = N(−1, 1), using β = 5
and C(pZ) = H(Z) is entropy function of output, Fig. 3 plots
βI(X;Z) −H(Z) as a function of ry . As seen, the optimal
r∗y = 0.62 which corresponds to βI(X;Z)−H(Z) = 2.8156.

Since
φ2(y)

φ1(y)
is strictly monotonic, the optimal quantizer

has a single threshold y∗ = −0.17887 that corresponds to
r∗y = a∗1 = 0.62. Fig. 4 shows ry vs. y. Fig. 5 shows
the optimal value pairs of mutual information and entropy
corresponding to β = 2, 3, . . . , 11. As seen, for maximizing
I(X;Z) subject to H(Z) ≤ 0.882, we can pick β = 8 which
produces I∗(X;Z) = 0.73947 and H∗(Z) = 0.8819 ≈ 0.882.

B. Finding optimal quantizer for N > 2

From the convex cells property of the optimal quantizer,
finding the optimal quantizer is equivalent to finding N + 1
scalar thresholds a0 = 0 < a1 < · · · < aN−1 < aN = 1 as
the boundaries such that

Q(y) = zi, if ai−1 ≤ ry = px1|y < ai.

Now, if the constraint of output has the following structure

C(pZ) = g1(pZ1
) + g2(pZ2

) + · · ·+ g(pZN
), (14)

where gi(.) can be an arbitrary function, then the problem
of finding globally optimal quantizer can be cast as a 1-
dimensional scalar quantization problem that can be solved
efficiently using the well-known dynamic programming [3],

[13], [27]. We note that the condition in (14) is not too re-
stricted. In fact, many well-known constraints such as entropy-
constrained satisfy this structure.

VI. DISCUSSION

We list few open problems that may interest the reader.
1) Our preliminary results show that our proof technique

might be applicable to the problems of maximizing
I(X;Z)− βC(pZ) for K-input channels where K > 2.
The convex cell quantizer can be constructed by hyper-
plane cuts in space of posterior probability pX|Y . This
result is similar to the result stated in [28] for maximizing
I(X;Z) without any constraint on the output.

2) The optimal quantizer that maximizes the mutual infor-
mation can be solved using dynamic programming in a
polynomial time complexity [3]. The time complexity
can be further reduced by using SMAWK algorithm
technique [5]. Is it possible to use the SMAWK algorithm
[17] to find the optimal quantizer that maximizes mutual
information under an output constraint? We believe that if
the constraint has the structure in (14) and function gi(.)
is convex, ∀ i, then the SMAWK algorithm is applicable.

VII. CONCLUSION

We describes the structure of an optimal quantizer that
maximizes βI(X;Z) − C(pZ). Our result shows that the
structure of the optimal quantizer separates ry into convex
cells. In other words, the optimal quantizer has the form:
Q∗(ry) = zi, if a∗i−1 ≤ ry < a∗i , for some optimal thresholds
a∗0 = 0 < a∗1 < a∗2 < · · · < a∗N−1 < a∗N = 1. Based on
this optimal structure, we described some fast algorithms for
determining the optimal quantizers.

APPENDIX

A. Proof of pA = pB

pB = pZ̄2∩Z1
= pZ̄2

pZ1|Z̄2
= pZ̄2

(1− pZ2|Z̄2
) (15)

= pZ̄2
− pZ̄2

pZ2|Z̄2
= pZ̄2

− pZ2pZ̄2|Z2
(16)

= pZ̄2
− pZ2(1− pZ̄1|Z2

) (17)
= pZ̄2

− pZ2 + pZ̄1∩Z2
= pZ̄1∩Z2

= pA. (18)

with (15) and (17) are due to pZ1+pZ2 = 1 and pZ̄1
+pZ̄2

= 1,
(16) due to pZ2

pZ̄2|Z2
= pZ̄2

pZ2|Z̄2
= pZ2∩Z̄2

, (18) due to
pZ̄i

= pZi
for ∀ i = 1, 2.

B. Proof of F (ry) is a non-decreasing function
We show that for c1 = [c1, 1− c1] ≤ c2 = [c2, 1− c2] then

F (ry) = D(vy||c1)−D(vy||c2) is a non-decreasing function
in px1|y = ry . Indeed, from Definition 1,

D(vy||c1)−D(vy||c2) = ry log
c2(1−c1)
c1(1−c2)

+ log(
1−c2
1−c1

).(19)

Due to c1 ≤ c2 implies that c1 ≤ c2, then F ′(ry) =

log
c2(1− c1)

c1(1− c2)
≥ 0. Thus, F (ry) is a non-decreasing function.
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