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Abstract—We investigate an underlying mathematical model
and algorithm for optimizing the performance of a class of
distributed systems over the Internet. Such a system consists
of a large number of clients who communicate with each other
indirectly via a number of intermediate servers. Optimizing the
overall performance of such a system then can be formulated as
a client server assignment problem whose aim is to assign the
clients to the servers in such a way to satisfy some pre-specified
requirements on the communication cost and load balancing.
Under the proposed mathematical model, we show that 1) the
total communication load and load balancing are two opposing
metrics, and consequently, their trade-off is inherent to this class
of distributed systems; 2) in general, finding the optimal client-
server assignment for some pre-specified requirements on the
total load and load balancing is NP-hard, and therefore; 3) we
propose a heuristic via relaxed convex optimization for finding
the approximate solution to the client-server assignment problem.
Our simulation results indicate that the proposed algorithm
produces superior performance than other heuristics, including
the popular Normalized Cuts algorithm.

I. INTRODUCTION

An Internet distributed system consists of a number of nodes
(e.g., computers) that are linked together in ways that allow
them to share resources and computation. An ideal distributed
system is completely decentralized, and that every node is
given equal responsibility and no node is more computational
or resource powerful than any other. However, for many real-
world applications, such a system often has a low performance
due to a significant cost of coordinating the nodes in a
completely distributed manner. In practice, a typical distributed
system consists of a mix of servers and clients. The servers are
more computational and resource powerful than the clients. A
classical example of such systems is Email. When a client A
sends an email to another client B, A does not send the email
directly to B. Instead, A sends its message to its email server
which has been previously assigned to handle all the emails
to and from A. This server relays A’s email to another server
which has been previously assigned to handle emails for B. B
then reads A’s email by downloading it from its local server.
Importantly, the email servers communicate with each other on
behalf of their clients. The main advantage of this architecture
is specialization, in the sense that the powerful dedicated email
servers release their clients from the responsibility associated
with many tasks including processing and storing emails, and
thus making email applications more scalable.
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Email systems assign clients based primarily on the organi-
zations that the clients belong to. Two employees working for
the same company will have their email accounts assigned to
the same email server. Thus, the client server assignment is
trivial. A more interesting scenario is the Instant Messaging
System (IMS). IMS allows real-time text-based communica-
tion between two or more participants over the Internet. Each
IMS client is associated with an IMS server which handles all
the instant messages for its clients. Similar to email servers,
IMS servers relay instant messages to each other on behalf
on their clients. In an IMS that uses the XMPP (Jabber) [1]
protocol, clients can be assigned to servers independent of
their organizations. Furthermore, the client-server assignment
can be made dynamic as deemed suitable, and thus making
this problem much more interesting.

In XMPP, a username is set as user@domain (e.g.,
nishida@jabber.org) just like an email account, where domain
usually stands for a server name in which user is registered.
When a user (aaa @domain) sends a message to another user in
the same domain (bbb @domain), the message is delivered only
through the domain server (i.e., aaa — domain server — bbb).
The clients do not directly exchange their messages each other.
When a user (aaa@domainl) sends a message to another user
in a different domain (bbb@domain?2), the message is sent as:
aaa — domainl server — domain2 server — bbb. This design
is indeed simple and scalable. If the number of users increases,
another server can be added to accommodate the new users.
That said, we want to consider how to optimally assign clients
to servers, beginning with the following observations:

o If two users who exchange many messages with each
other are assigned to two different servers, then the
amount of communication between their servers in-
creases, and thus the overall load due to communication
increases. On the other hand, if these two users are
assigned to the same server, all their communication are
local, thus it is more efficient. So it makes sense to assign
all the clients to as few servers as possible.

« However, if we have multiple servers and try to use as
few number of servers as possible, it may happen that
some servers are heavily loaded while others are not.
Since a heavily loaded server typically exhibits a low
performance, we would like to avoid this situation. There-



fore, we want a client-server assignment that produces an
overall fair load balance among the servers.

Given the observations above, we must strike a balance be-
tween reducing the overall communication load, equivalently
the communication cost among the servers, and increasing the
load fairness among the servers, i.e., the load balance. The
primary contribution of this paper is a heuristic algorithm via
relaxed convex optimization that takes a given communication
pattern among the clients as an input, and produces an
approximately optimal client-server assignment for a pre-
specified trade-off between load balance and communication
cost. Next, we describe a number of emerging applications that
have the potential to benefit from the client-server assignment
problem.

A. Emerging Applications

The client-server assignment problem is also relevant to a
host of emerging applications ranging from social network
applications such as Facebook and Twitter to online distributed
auction systems such as eBay. Facebook is a system that allows
circles of friends to exchange messages and pictures among
themselves. Since friends are likely to communicate with each
other than non-friends, assigning friends to the same server
will reduce the inter-server communication. At the same time,
it is preferable to balance the communication load. This is
exactly the client-server assignment problem encountered in
the IMS.

Online distributed auction systems is another candidate for
applying the client-server assignment. If a user logged in a
server which has content that is not of interest to the user, it
will generate the communication overhead between multiple
servers every time the user searches for an item. Therefore,
letting a user log in the server that has contents that the user is
interested in will raise the efficiency. In this case, the contents
(or the categories of the contents) also need to be classified
as clients.

The client-server assignment also has the potential to be
applicable to distributed database systems, such as MapReduce
[2]. Assigning the search keywords which are often queried
together to the same servers will reduce the inter-server
communication. In this case, the search keywords correspond
to the clients in the above instant messenger systems.

B. Model for Communication

We model the load incurred on a server for sending and re-
ceiving messages. We call the load incurred by communication
the communication load. This model will be important for the
precise formulation of the client-server assignment problem in
Section III

We begin with an example shown in Fig. 1. The IMS of
interest operates according to the following rules:

a) If client ¢ and j are logged in the same server and
exchange messages each other, then their messages are
processed only through the server (Fig. 1(a)).

b) If client ¢ and j are logged in different servers (¢ is in
server 1, j is in server 2) and suppose ¢ sends a message

- Server 2

\
(b) Client ¢ is logged in server 1
and client j is logged in server
2. The messages are passed

through server 1 and 2, which
causes extra communication.

Server 1 Server 2 Server 1

é)
(a) Client ¢ and j are logged
in server 1. The messages

between them are passed
only via server 1.

Fig. 1. Example of client assignment to servers
Server 1 Server 2
7 and j are Receive from 1,
in server 1 send to j
7 1s 1n server 1 Receive from 2, | Receive from 1,
7 is in server 2 | send to 2 send to j
TABLE I

MESSAGE PROCESSING SUMMARY IN FIG. 1

to 7, then server 1 forwards the message to server 2 and
server 2 sends it to j (Fig. 1(b)). This causes an extra
communication overhead compared to case a), because it
generates an additional message passing between servers
1 and 2.

We assume that all messages are encrypted and the server load
by communication is proportional to the amount of messages
sent from and received by the server. Specifically,
o If both clients ¢ and j are logged in server 1, server 1
receives the messages from ¢ and sends them to j.
o If client 7 is logged in server 1 and j is in server 2, server
1 receives the messages from ¢ and sends them to server
2, then server 2 receives them and sends to j.

As a result, the message processing can be summarized in
Table I. As seen, the amount of processing by server 1, i.e.,
the communication load, does not change by assigning client j
to server 2. Only the difference is the receiver to whom server
1 sends the messages; if both client ¢ and j are logged in server
1, then the receiver is client j, and if j is assigned to server
2, then the receiver is server 2. Furthermore, by assigning j
to server 2, the new load is generated on server 2, whose
amount is the same as the one on server 1. If clients ¢ and j
seldom contact each other, assigning them to different servers
will minimally increase the overall communication load. On
the other hand, if they contact frequently, separating them
increases the communication load. Thus, assigning them to
the same server is more efficient. In most distributed systems
however, load balance is an important consideration. If all
clients are assigned to a single server, the amount of inter-
server communication is zero. Although this is optimal in
terms of the communication overhead, it implies that one
server does all the work while others are idle, resulting in
an extreme load unbalance, leading to degraded performance.

II. RELATED WORK

Clustering Algorithms. To a certain extent, the client-
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Fig. 2. Example of Normalized Cuts

server assignment problem can be viewed as an instance
of the clustering problem. Specifically, the clients and their
communication patterns can be represented as a graph whose
vertices denote the clients, an edge between two vertices
denote a communication between two corresponding clients.
The weight of an edge between two vertices represents how
frequent the two clients communicate with each other. The
goal of many clustering algorithms is to cluster the clients
into a fixed number of groups so that a certain objective,
e.g., the ratio of inter-communication among groups to intra-
communication within a group, is minimized. Therefore, we
briefly discuss a few approaches to the clustering problem.
The most related clustering algorithm to our problem is the
Normalized Cuts (NC) [3] that partitions an undirected graph
into two disjoint partitions so that
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is minimized, where W ; is the sum of the weights of all edges
that connect the vertices in group ¢ and j (see Fig. 2). The
less the amount of inter-group communication and the more
balanced the volumes of the groups (volume = the sum of the
weights of all edges in the group), the less Fj,.,; we have. In
this sense, F), ¢ 1S very similar to our objective (see Section
III-C). NC utilizes the eigenvalues of the adjacency matrix
and solves (1) efficiently. The NC is especially suitable for
segmenting an image, and is also widely used in bioinformatics
and machine learning communities.

Different from methods such as [4] that minimizes the
largest inter-group flow, the NC considers balancing the vol-
umes of the groups. However, the NC tends to isolate vertices
which do not have strong connection to others and causes
unbalance in the volumes of the groups, especially in the
power-law graphs [5] [6] [7]. In [6], the authors examine
some balanced-clustering algorithms for power-law graphs.
Interestingly, [6] simulates with a graph based on the buddy
lists of Yahoo IM, which is also an instant messenger system,
and concludes that the combination of solving a semidefi-
nite program and multiple tries of a randomized flow-based
rounding methods yields effective results. Though this seems
relevant to our research, there is a significant difference. [6]
focuses on balancing each group size which is the number
of vertices in a group, while our research requires to balance
the sum of weights of inner- and inter-group edges in each
group which corresponds to the communication load in our
case (see Section III-B). Therefore, [6]’s research cannot be
directly adopted to our problem. To the best of knowledge,
there is no clustering algorithm which achieves our goal:
minimizing the communication between servers and balancing
the communication load.

Load Balancing Distributed Virtual Environment Sys-
tems. In [8] [9] [10], efficient client-server assignment for
distributed virtual environment (DVE) systems is studied.
The DVE systems allow multiple users working on different
client computers to interact in a shared virtual world. The
DVE systems are generally operated by multiple servers, and
therefore exhibit the same set of issues as ours: balancing
the workload and reducing the communication between the
servers. However, unlike our problem, their overall workload
is assumed to be constant regardless of the client-server
assignment.

III. OPTIMAL CLIENT-SERVER ASSIGNMENT

As discussed in Section I, the total communication load
and load balance are two opposing metrics. Thus, different
applications will allow for different trade-offs between these
two quantities. Our goal in this section is to derive the
expressions for the total communication load and the load
balance for a given communication pattern among the clients.
Based on these, we will formulate a mathematical optimization
problem for this trade-off. We begin with the notations.

A. Notation

The following is the notation used in this paper for vector
v and matrix A:

Norm-1 of the vector v, i.e., the sum of all elements
in v.

IlA]l1: Elementwise norm of matrix A, i.e., the sum of all
elements in A.

|v]1:

Also, we define the followings parameters:

M: The number of servers in the system.

N: The number of clients in the system, N > M.

S: A [0,1]V*N matrix whose element S; ; represents the
rate of messages sent from client ¢ to j in the system.
S represents the communication patterns among the
clients. Note ||S|l; = 1 and in many systems, we
will have S;; = 0 Vi because messages sent to itself
will be processed by a client software, not through
a server. Alternatively, if two clients ¢ and j are
selected uniformly at random, S; ; can be viewed as
the probability that client ¢ sends a message to client
j. As a result, S can be viewed as the distribution on
the ordered pair of clients.

X: An unknown matrix, X € {0,1}V*M where X; ; = 1
if client ¢ is assigned to server s and X;, = 0
otherwise. Since a client is assigned to only one server,
Ziw:l Xi,s = 1 Vi. We can view each row of X as a
point mass distribution.

Next we will derive the expressions for the communication
load, i.e., the number of messages processed by a server in
terms of .9, the client communication pattern and X, the client-
server assignment.



B. Communication Load

Let P;, represent the rate of messages sent from server s
to ¢, then we have:

N N
Por=> 8, Xis X0, )
i=1 j=1
that is:
P=XTsX, 3)

where P € [0,1)*M and ||P||; = 1. Similar to S, if two
servers s and t are selected uniformly at random, P, ; can
be viewed as the probability that server s sends a message to
server t, and consequently P can be viewed as the distribution
on the ordered pair of servers.

As described in Section I, when messages are passed
between two clients only through a single server, i.e., the
two clients are assigned to the same server, the amount of
processing on the server is 1 x (receive+send). However, when
the two clients are assigned to different servers, the amount
of processing is 1x (receive+send) for each server and 2x
(receive+send) in total (see Table I). Thus, to calculate the
communication load, two different types of message passing
should be considered:

1) Message passing through a single server, i.e., intra-server
communication.
2) Message passing through two servers, inter-server com-
munication.
The communication load for 1) is proportional to Ps ;. The
communication load for 2) is proportional to P;; + P; s (for
each server of s and t) because both sending and receiving
causes message processing. As a result, let L € [0, 1] *M
represent the load generated by the message exchanges, then

L=pP+pPr_pD, 4)

where P is the transpose of P and PP is the diagonal matrix
of P (ie., PQDg = P, s Vs and PD = 0 Vs # t). Note L is
symmetric and 1 < ||L||1 < 2.

Since P = XTSX, PT = (XTSX)T = XTSTx, pP =
(P+ PP /2 = (XTSX + XTSTX)P /2, we have:

L=XTSX +XTsTXx — %(XTSX + XTsTX)P. (5

Let A= S+ ST, we have:

Q=Xx7TAx (6)

1
L=Q-3Q" ()
Note A (€ [0,1]V*Y) is symmetric and A4;; = A;, can
be interpreted as the rate of messages ‘exchanged’ (= sent
1= [QlL =2

As a result, let [ € [0,1]" be a vector denoting the
communication load for M servers, then

l=11, ®)

where 1 denotes a column vector whose all elements are 1.

C. Metrics

In this subsection, we will define the total communication
load and load balance, the two important metrics to be used
in our optimization problem.

Total Communication Load. Total communication load is
the total load on all servers which can be defined as:

L] = [|Q — QP 9)
=13Q+ 3(Q — Q") (10)
—1+H5Q—Q%m (11)
=1 +Zs 1 t 1 (12)
Let
M s—1
Fo=>Y L, (13)
s=1t=1

then F is the the sum of non-diagonal entries of L divided by
2, and thus represents the amount of inter-server communica-
tion. The total communication load equals to the intra-server
communication load plus the inter-server communication load.
From the above equation, the intra-server communication load
is a constant, i.e., 1, only the inter-communication load F, is
optimized. Note that 0 < F. < 1. The smaller F, results less
total communication load.

Load Balance. Intuitively, load balance should be a metric
that represents the degree of load variations among different
servers. Some popular metrics are variance, entropy, and Gini
coefficient. The Gini coefficient is used often in economics to
measure the inequality of income distribution in a society. In
this paper, we consider the Gini coefficient as a load balance
metric as it empirically captures the requirements of load
balance on the servers better than other metrics. Specifically,
for large M, the Gini coefficient is more sensitive to a slight
change in the load balance than the entropy and variance.

Mathematically, in the context of the total server load, the
Gini coefficient is defined as:

) Moo

F = o GRsrT - 48 (14)
M s

= i CEr - M -1), (15)

where [; < [y < ... < [j;. As mentioned, F) is scaled to
0 < F; <1, and the smaller Fj is, the better load balance we
have.

To see why the Gini coefficient is more sensitive to a
slight change in the load balance than the entropy and
variance, we consider the following example. If M = 10
and HéT =15 Vs (i.e., the uniform distribution), then we
have the entropy — Zi\il H;ﬁlog M ”éﬁ = 1, the variance
(742N ( Héﬁl — +)? = 0 and the Gini coefficient (15)
= 0 Where the metrics are all scaled to [0, 1]. However, if
lul =0, Hl||1 = 51), II§T|1 = 1 for 2 < s <9, then we have

e entropy = 0.94, the varlance = 0.025, the Gini coefficient
= 0.2, and the corresponding differences are 0.06, 0.025 and
0.2 respectively.




In a real distributed system, Uﬁﬁ = 0 i.e., no load on server
1 is supposed to be a serious issue, but it is not sufficiently
reflected when using the variance and entropy as metrics.

D. Problem Formulation and Hardness Result

After deriving the expressions for communication load F,
and load balance Fj in terms of client communication patterns
and a client-server assignment, we are now ready to formulate
our optimization. Let

F=aF.+(1-a)F, (16)

where 0 < a < 1 is an arbitrary coefficient. We want
to minimize F'. Note that 0 < F < 1, and the smaller
F is, the more optimal the system is. The value of « is
set to select a certain trade-off between load balance and
total communication load; if one places more importance on
reducing the total communication load, o should be large. To
simplify our discussion, we use a = 0.5 in the rest of the
paper, namely:

F =0.5F, + 0.5F). (17)

Formally, our optimization problem is cast as:
Minimize F

Subject to X € {0,1}V*M ™M X, ;= 1Vi. (18)

Note that our optimization problem is one of many optimiza-
tion problems that we can formulate after having the mathe-
matical expressions for load balance and total communication
load.

Proposition 3.1: Our optimization problem in (18) is NP-
hard, i.e., there is no polynomial time algorithm to find the
optimal solution unless P = N P.

Proof: (Proof Sketch) The main idea is to show that the
well-known partition problem is an instance of our problem.
The partition problem is to decide whether a given set of inte-
gers can be partitioned into two sets with identical sums. For a
given set of integers, we can always construct a corresponding
special graph that represents the communication pattern of the
clients such that an optimal partition of integers into two sets
will result in the optimal client-server assignment.

Specifically, if there are K integers in a set, we will
construct N = 2K clients, each client is to communicate
with exactly one other client. Therefore, there is a total of K
edges connecting between K pairs of clients. We can assign
the weight of an edge between a pair of clients as exactly one
of the integers in the given set of the integers. Fig. 3(a) shows
the construction of such a graph for the given set of integers
{8,3,4,5,6,2}. We let the number of servers M = 2. Clearly,
F.=0.

If we find an optimal partition, i.e., one that minimizes Fj,
or equivalently, the one that makes the sum of the edges in the
two partitions equal, then clearly this is also a solution to the
partition problem. In this example, our problem is equivalent
to splitting {8,3,4,5,6,2} into two groups with equal sums
as shown in Fig. 3(b). Since the partition problem is known
to be NP-complete, our problem is NP-hard. ]
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Fig. 3. Special case of our problem is equivalent to partition problem

IV. APPROXIMATE METHODS VIA RELAXED CONVEX
OPTIMIZATION

Since our problem is NP-hard, in this section we present an
approximation method via relaxed convex optimization. The
main idea of our approach is to solve the special case with
the number of servers M = 2 via relaxed convex optimization.
Specifically, we will approximate both the objective and the
solution domain with convex functions and a convex set,
respectively. Next, we show how to apply this result to the
general case for M > 2. The main idea is to split the servers
into two groups sequentially. For each group of servers, we
then recursively solve the problem for M = 2. Empirical re-
sults show that this method approximates the optimal solution
very well.

A. Two-Server Solution

Suppose there are only two servers and  is a {0, 1} vector
whose element z; indicates that client 7 is assigned to server
z; + 1 (so, if ; = 0, ¢ is assigned to server 1, if x; = 1,
1 is assigned to server 2). Then, the amounts of inter- and
inner-server messages are:

T
1-=x) Ax) ’ (19)

2t A(1 — x) 12T Az

where 1 is a vector with N ones, LY = $(1—z)TA(1 - z)
is the amount of messages exchanged only through server
1, LYy, = (1 —2)TAz = LP, = 2TA(1 — 2) is the
amount of messages exchanged between server 1 and 2,
Lgl = %ITAI’ is the amount of messages exchanged only
through server 2. Suppose D is a diagonal matrix such
that D, ;, = Z;V:lAi’j Vi, then we have (1 — z)TAx =
2TA(1 — 2) = 27 (D — A)z, that is, the amount of inter-
server communication can be expressed as:
FB =2T(D - A)z,

C

(20)

which is equivalent to F,. (13) for M =2 and 0 < FCB <1

Note (D — A) is a Laplacian matrix and therefore is symmetric

positive semidefinite. Hence, FCB is a convex function, and the

smaller FCB is, the less inter-server communication we have.
Also,

1(1-2)TAQ1 —2) =
%:cTA:c =

{d"(1—x) - FF}
(dT2 — FF),

2n
(22)

1
2
1
2

where d = 17 A = AT'1 is a vector composed of D’s diagonal

elements and |d|; = ||A]l1 = 2. Consequently, we have:
17T B B
B __ §{d (1_‘r)_Fc} Fc
v = (0 s rp) @



and the communication loads are:

lh=L8 +LP,=31{d"(1—=2)+ FP},
lp=L§ + L8, =4(d"x+ FP).

(24)
(25)

Based on (24) (25), we propose two convex functions that
approximate our original objective function, i.e., the Gini
coefficient.

The first convex function is based on the difference between
ll and ZQ. Since llflg = %(|d‘172dT£ZJ) and ‘d‘l = 2, (11712)2
ie.,

Fij =(1—d"x)? (26)
can be utilized as a new load balance metric. Note Flg is
convex and 0 < Flg < 1. Since the Gini coefficient herein is
lli — l2|/(la + 12) = |l1 — I2]/(1 + EB) and we also have to
minimize £, minimizing (26) approximately minimizes the
Gini coefficient.

The second convex function is based on the entropy of
l1 and 5. In (24) (25), Ff is common for both Iy and I5.
Therefore, in order to balance /; and [5, balancing dT(l — )
and d”z is enough. Consequently, we can use the following
minus entropy function as another load balance metric:

d¥ (1—x)

dT(1— T, T
Flf = (2 L log, 2 + dTT log, de 27)
Since w + d% = ldh _ 1, Flf is also convex and

0 < Fl]f < 1. The smaller Flf is, the better load balance.
In an ideal case, both the negative of entropy and the Gini
coefficient are minimized when the server load distribution
is uniform. Thus, we approximate Gini coefficient with the
negative entropy function which is convex.

As a result, (20) + (26) and (20) + (27), i.e.,

FP =BFP +(1-B)Fj
FP =pFF +(1-p3)Ff

(28)
(29)

become our new metrics, and optimal solutions are obtainable
by minimizing them, because both are convex functions. Note
B (0 < B < 1)is an arbitrary coefficient to balance FZ and
FB (or FP), and 8 = « is thought to be reasonable.

Next, we relax the constraint of z; being binary, to allow
x; € [0,1]. However, (28) (29) with a weak constraint such
as 0 <z < 1loutput xy = 29 = --- = xy = 0.5, which
is undesirable in our case because x must be binary integers.
Therefore, we use a quantization technique in the following
algorithm for finding the optimal assignment.

Algorithm 1.

1) We start with picking up one arbitrary x; and set it O.

2) Afterwards, we solve (28) (29) by convex optimization.

3) However, in most cases, other elements of x will still
remain non-binary. Therefore, we choose x. whose
value is closest to O or 1, then set it O or 1 whichever
z. is closer to.

4) Repeat 2) - 3) until no more non-binary element exists
in x.

Fig. 4. Example of splitting servers binarily

B. General Solution

Thus far, we have described the basic idea of our relaxed
convex optimization approach for the two-server scenario. We
can achieve the nearly optimal client-server assignment for M
servers by splitting M servers into two groups and recursively
splitting within each group as shown in Fig. 4.

How to split M servers is the central question. If M is
even, then it makes sense to split M servers into two equal
groups with M /2 servers in each group. In the ideal case,
optimizing the load balance between these two groups will
result in individual servers in these two groups having identical
server loads. On the other hand, when making the number of
servers in these groups is not same, optimizing the objectives
in (28) or (29) will result in two groups having total identical
server loads. However, since the two groups have different
number of servers, a server within a group with fewer servers
will likely to have a higher load than a server in the group with
more servers. This reduces the load balance. Therefore, when
M is not even, it is necessary to modify the objective at each
step, depending on how splitting is done, so as to maintain
the similar load at individual servers. Intuitively, the modified
objective should reflect the number of servers in each group.

Claim 4.1: When splitting M servers into two groups con-
sisting of m and M —m servers in each group, the load balance
metrics in (26) and (27) should be replaced by:

Ff = il (0™ — dT2)?, (30)
and
FZ =1} logy I + Iy ogy Iy, 31)
where
I, = {dT(I;f:v) oM }/2(1%;7@) (32)
Iy = 4t /20 (33)

Due to lack of space, the justification for this claim is omitted.
The full justification can be found in [11]. We would like
to mention that the modified load balance metrics allocate a
higher load to groups with more servers, and is intuitively
plausible. Importantly, both metrics in Claim 4.1 are convex
functions, therefore we can employ the Algorithm 1 embedded
in the Algorithm 2 below for finding an approximate solution.
Algorithm 2.

1) Split the number of servers into two groups with m =
411 and M —m = [ 4] | servers in each group.

2) Run Algorithm 1 with modified load balance metrics
stated in Claim 4.1.

3) Repeat steps 1 and 2 for each of the two groups, until

the number of servers in each group equal to 1.
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Fig. 5. Examples of clustering with twenty clients and three servers

C. Time Complexity

Our algorithms run the convex optimization and quanti-
zation for N clients and repeat it for log M depth degrees.
Suppose the convex optimization routine takes f(NV), then the
overall time complexity is O(N(N + f(N))log M). f(N)
depends on the optimization algorithm but takes at least O (V).
As a result, the time complexity of our algorithms is at least
O(N?log M), which is considerably expensive.

Though standard calculation of eigenvectors takes O(N3) in
the Normalized Cuts, it reduces the time complexity to O(N)
by 1) utilizing sparse graphs 2) calculating only the top of
few eigenvectors 3) lowering the precision. Our algorithms
have much room for improvement, and speeding up remains
as our future work.

V. SIMULATION RESULTS

In this section, the algorithm names are abbreviated as
follows:

BCO-D: The binary splitting via relaxed convex optimiza-
tion based on (28)
The binary splitting via relaxed convex optimiza-
tion based on (29)
NC: The Normalized Cuts
Random: We assign the clients to each server at random.

We used 5 = 0.5 for (28) (29).

BCO-E:

A. Examples of Graph Clustering

Fig. 5-6 show our simulation results with small graphs. For
the comparison, we added the results by the NC. We used a
MATALB code [12] written by an author of [3] et al. for the
NC algorithm. F' is the metric in (17), and the smaller, the
better client-server assignment we have.

As shown in the figures, the NC tends to isolate small
volumes of groups that do not have strong connection to
others, while with our BCO methods, the the volumes of the
groups are well balanced, which appears as smaller F' values.

B. Optimality
To verify how close the outputs by our algorithms are to
the optimal solutions, we made the following examination:

1) For a each graph, we calculate F's (17) exhaustively for
all M combinations of X. Herein, we suppose the

(¢) BCO-E (F = 0.235)

(d) NC (F = 0.421)

Fig. 6. Examples of clustering with twenty clients and three servers

M=2,N=230

BCO-D BCO-E NC Random

Power-law 93.40% 92.45% 53.57% | 42.06%

Random 94.61% 93.90% 62.32% | 52.70%

Regular 100.00% | 100.00% | 96.32% | 64.73%
M=3,N=20

BCO-D BCO-E NC Random

Power-law | 95.14% 94.69% 79.83% | 47.36%

Random 93.63% 91.96% 77.40% | 50.71%

Regular 99.28% 96.79% 97.99% | 40.84%

TABLE 11
F—Fyorst

2)

3)

4)

OPTIMALITY OF F": Froor— P

best (smallest) ' = Fj.s; and the worst (greatest) F' =
F worst-

For each graph, calculate F' by each of the BCO-D,
BCO-E, NC and a randomly generated X, then calculate
F’s optimality Ff_tlji}‘::j’ We also obtain each F’s
ranking (Fg) out of M*® outputs, and calculate its
optimality 1 — 155?(_11. The greater those values are, the
better optimality.

Do 1)-2) for:

o A hundred different graphs generated by Barabasi-
Albert power-law graph generator algorithm.

« A hundred different graphs generated by our random
graph generator. In our random graph generator,
each vertex is allocated at most ten randomly se-
lected neighbors.

o Regular graphs in which every node has the equal
number of neighbors (H) with an equal edge weight.
Note H is even and vertex ¢ is connected to 7 +
L...,i+&i—1,...,i— 2 We simulated for
H=2,4,...,N—2, thatis, gfl different regular
graphs for a given {M, N}.

Do 1)-3) for {M, N} = {2,30}, {3, 20}




M =2,N=30

BCO-D BCO-E NC Random
Power-law | 99.978% | 99.976% | 60.73% | 49.99%
Random 99.998% | 99.993% | 66.02% | 51.85%
Regular 100.00% | 100.00% | 99.80% | 72.61%
M=3,N=20
BCO-D BCO-E NC Random
Power-law | 99.998% | 99.996% | 98.45% | 50.58%
Random 99.996% | 99.986% | 94.73% | 50.44%
Regular 99.999% 97.62% 97.65% 18.21%
TABLE III
OPTIMALITY OF Fg (F’S RANKING): 1 — ]Z’}V’_ll
F— Fwors FR 1
Table II and III show average i — and 1 — 74—

values respectively. Overall, the BCO D method shows the
best optimality in spite of the simple and cheap quantization
technique (see Section IV-A). In fact, unlike the NC, the BCOs
constantly output good F' values (close or equal to Ficsy)
regardless of the graph type. The simulation shows that the
BCO-D is most suitable for solving our problem.

On the other hand, the NC tends to isolate vertices that do
not have strong connection to others. This is typically observed
in power-law graphs. As a result, though we have low F, (13)
(the amount of inter-server communication), £ (15) (the load
balance metric) becomes high and we have worse F' than those
of our algorithms.

C. Experiments for Larger Power-law Graphs

As described in Section I-A, our algorithms should perform
better than NC for power-law graphs. We simulated for a
hundred power-law graphs, in which each vertex is connected
to up to a hundred neighbors, with M = 47,10, N = 1000. In
this setting, we cannot find the rankings for each algorithm as
it requires an exhaustive search over all possible assignments
which is infeasible for large N. Instead, Table IV shows the
average F' (17), F. (13), F; (15) values and where
lmax, l;min, are the maximum and minimum elements in (8)

, the maximum and minimum communication load in M
servers respectively. As shown by F; and l"“” values, the
BCO-D and BCO-E fairly balance the load, and at the same
time maintain low total communication load as seen in Fs.
Though the NC yields low F.s, it does not balance the load,
which appears as high (bad) Fjs and F's consequently. Also,
the BCOs reduce the overall communication load (= 1 + F,)
by 33-36% compared to the random assignment.

ma—r

VI. CONCLUSION

In this paper, we present a mathematical model and an al-
gorithmic solution to the client-server assignment problem for
optimizing the performance of a class of distributed systems
over the Internet. We show that in general, finding the optimal
client-server assignment for some pre-specified requirements
on total load and load balancing is NP-hard, and propose
a heuristic via relaxed convex optimization for finding the
approximate solution to the client-server assignment problem.
Our simulation results indicate that the proposed algorithm
almost always finds the optimal solution. Furthermore, the

M =4, N = 1000

BCO-D | BCO-E NC Random
F 0.0918 | 0.0927 | 0.4943 | 0.4016
F. 0.1605 | 0.1601 | 0.0063 | 0.7496
F, 0.0230 | 0.0253 | 0.9824 | 0.0535
m—az 1.09 1.10 | 103271 1.22
M =7, N = 1000
BCO-D | BCO-E NC Random
F 0.1169 | 0.1183 | 0.4882 | 0.4698
F, 0.1962 | 0.1957 | 0.0278 | 0.8574
F, 0.0375 | 0.0419 | 0.9485 | 0.0821
llmar 1.20 1.22 1280.21 1.48
M =10, N = 1000
BCO-D | BCO-E NC Random
F 0.1306 | 0.1318 | 0.4815 | 0.4936
F. 02163 | 02146 | 0.0631 | 0.9002
F, 0.0449 | 0.0491 | 0.8998 | 0.0969
pres | 128 131 [ 131632 [ 172
TABLE IV

RESULTS FOR N = 1000

proposed algorithm outperforms other heuristics, including the
popular Normalized Cuts algorithm.
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