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Abstract—This paper proposes a stochastic framework for ~ Energy Efficiency. Since a sensor is typically a battery-
detecting anomalies or gathering interesting events in a noisy operated device, minimizing energy consumption should also
environment using a sensor network consisting of binary sensors. be considered. If the measured data among the nodes are
A binary sensor is an extremely coarse sensor, capable of - . .
measuring data to only 1-bit accuracy. Our proposed stochastic spatially correlated, a node can jointly compress its data
framework employs a large number of cheap binary sensors and its neighbor's data in order decrease the transmission
operating in a noisy environment, yet collaboratively they are able energy[8][9]. The higher correlation of data measured among
to obtain accurate measurements. The main contributions of this the sensors results in more energy saving. In our proposed
paper are: (a) The theoretical accuracy analysis of the proposed stochastic binary sensor network, the underlying measured

stochastic binary sensor network, (b) an adaptive data collection . . .
framework based on the current measurements in order to data at each sensor are assumed to be identical or highly

reduce the energy consumption, and (c) a novel coding schemeCOrTelated. This high correlation enables us to employ a novel
for energy-efficient routing. To quantify the performance of our coding scheme to reduce the energy consumption. The energy

proposed stochastic approach, we present the simulation results saving is further reduced by using our adaptive data gathering
of two stochastic binary sensor networks for anomaly detection framework.

using our proposed coding scheme and adaptive data gathering In thi t a stochastic bi work
framework. For many scenarios, our proposed framework can n this paper, we present a stochasuc binary sensor networ

reduce the energy consumption over the traditional approach by that (a) achieves good accuracy, (b) enables the graceful
an order of magnitude. degradation of data quality in the presence of sensor’s failures,

and (c) reduces the energy due to the adaptive data collection
|. INTRODUCTION technique and a novel coding scheme. In the proposed sensor
network, each sensor employs only 1 bit of information per
In recent years, sensor networks have emerged as an iffeasurement, but collectively, accurate data measurements can
portant class of networks for many military and commerci@e obtained. By allowing only 1-bit measurement, the sensors
applications [1][2][3]. A sensor network is a collection of wirecan be made at low cost and, therefore, are easy to replace or
less communication nodes. Each node is capable of sensingliscard. Furthermore, the higher number of working sensors
the environment and communicating the measured data to tbeults in higher data quality. In this paper, we assume that the
neighboring nodes, and eventually to the external users. Tdwta from the working sensors can be routed to the processing
majority of sensor networks are designed to collect data [4][Abde. Thus, the data quality depends only on the number of
or to perform anomaly detection [6][7] while achieve the goalorking sensors.
of high accuracy and minimum energy consumption. Our paper is organized as follows. In Section I, we discuss
Accuracy. A special and important situation arises when athe assumptions and objectives of the stochastic binary sensor
the sensors measure the same underlying sign&éowever network. Section Il is devoted to the theoretical accuracy
due to the environmental noise, each sensoneasures a analysis of the stochastic binary sensor network in a variety
different valuez; = = + n, wheren; is an additive noise of environments. In Section IV, we present a novel coding
sample. In this scenario, the objective of a sensor netwaskheme to be used for energy-efficient routing. Section V
is to accurately determine the underlying valwethrough provides the simulation results for two binary sensor networks
collaborations among the sensors. For example, the nodeshat employ the adaptive data collection technique and the
a sensor network for anomaly or intrusion detection oftezoding scheme to reduce energy consumption. Finally, we
exchange data among each other to increase the detecfiomide a few concluding remarks in Section VI.
accuracy. In a real-world scenario, these sensors can be the
magnetic sensors in the ocean whose tasks are to determine thd -
magnetic signature of a submarine. This collaboration of nodes
for the accurate estimation of data in the sensor networks idn this section, we discuss the mathematical model of data
one of the main contributions of our paper. estimation in a stochastic binary sensor network. For the

M ODEL FOR THESTOCHASTIC BINARY SENSOR
NETWORK



purpose of illustration, we begin with a simple scenario in 1) Signal z(t) is a random process with zero mean. The
which four nodes in a sensor network are aligned in a straight zero-mean assumption is for ease of analysis.

line as shown in Figure 1. We assume that the ddta at 2) Additive noisen;(t) is independent and identically dis-
time ¢ is identical (or highly correlated) within the coverage tributed around zero. This assumption holds for geo-
of the sensors. In other words, the data may vary temporally  graphically far-apart nodes which are likely to have

but not spatially. Each nodgeis to measure the underlying uncorrelated environmental noise samples.
datax(t) at timet¢. Theoretically, without noise, all the nodes 3) Each sensor node is only able to detect the sign; 0f).
would obtain identical measurements at timeHowever, in This mean the the threshold value is equalto

present, an accurate measurement cannot be obtained Ugifimatex(t) as2(t) = f(y1(t), ..., yn(t)) for some function
only a single node. Another argument against using a singte) wherey;(t) = sgn(z;(t)), given the statistics of:(t)
accurate sensor is the lack of robustness since a single failgfg| of the noisen; (). We do not make any assumption on
would stop the entire data collection process. ~ temporal correlation of the data, i.e:(t — a) cannot be used

Based on the discussion above, our model consists tgfestimater(¢). Thus, we shall omit the indek in all the
many sensors. Each sensor measures its data atiti® yariables, e.q.z;(¢) will becomeu;.

z;(t) = x(t)+n;(t) wheren,(t) is independent and identically  There are two important performance indicators for our
distributed noise at node The measurements from differentsensor network: the Mean Square Errdv/$E) and the

nodes are forwarded to a processing node whose task isciénhditional Mean Square Error (CMSE) which are defined
accurately determine the valug(t). For example, if node gg
4 is chosen to be the processing node, then such node is

responsible for determining the value oft) based on all MSE £ El(z— f(y1,..yn))?, (1)
the measurements it receives from nodes 1, 2, and 3. Figure 1 CMSE 2 El(z - f(y1, -~-,ym))2|y17 ]y (2)
shows how measurements are forwarded from nodes 1, 2, and
3 to node 4. wherem < N. The M SFE characterizes the measured data
quality of a sensor network, whil€' M SE characterizes the
X, (t), §18 average amount of errors given a set of observations. Thus,
%,(t) ~ %,(t) ~ xz(t)’ the M SE enables us to characterize the performance of our
Q =\\/ =U =© sensor network in a certain environment. On the other hand,

the CM SFE is useful for adaptive data gathering to reduce the
energy consumption.

Fig. 1. A simple sensor network. Measured data are relayed to node 4. Adaptive Data Ga_the“ng' To .'"usuate the .energy reduc'.
tion based on adaptive processing, we consider the following
example. Suppose that a sensor network consistingVof

The classical method for estimating value «fft) [10] is nodes is designed to continuously measure a signahd
given by i(t) = + Zﬁil z;(t). where N is the number of alarms the population whenever it deteats> a. In a real
sensors. The larger the value Bf, the higher the accuracy.world scenario,z > a may represent an anomaly such as
This method assumes an accurate representatiom;@j. the presence of an intruder or a dangerous chemical agent.
Theoretically, if we have an infinite precision representation ¢fsing all N data points, the processing node can estimate
z;(t), then the mean estimated errgfE[(z — #)2] using the  f(y1,ya, ..., yn) and determine whethef(y1, v, ..., yn) > a.
classical method would decrease by a facto%. However, Since f(y1,y2, ..., yn) IS @an estimation of, it is also useful
an accurate representation ®f(¢) implies that each sensordetermine the confidence level of this estimation in order
must be able to resolve a small difference in the measuredreduce the number of false alarms or to avoid missing
data. For example, when measuring the temperature, a sergoranomaly. As will be shown shortly, the accuracy of the
node must be able translate temperatures to electrical sigredimation depends on the current estimated value ahd
in a fairly precise manner. For example, 68.2F and 68.5/ the number of data samples. Thus, if after a number of
would result in two electrical signals of 0.90 volts and 0.9fansmissions < N, the intermediate nodes can estimate that
volts, respectively. In addition, an accurate representatiof) = < a, i.e., no anomaly, with high confidence, then subsequent
requires a larger number of bits, hence more bits must transmissions will be not be necessary, resulting in an overall
transmitted per measurement per sensor. energy reduction of the network.

Based on the discussion above, our proposed frameworkCoding. Energy consumption can be further reduced by
eliminates the need for high resolution sensors. In particulamploying our coding scheme which exploits the network
each sensor only makes a decision whether its measured datepslogy. The main idea is that, to estimate the signal, the
greater or smaller than a certain threshold. This simplificatigmocessing node only needs to know the summary information
allows one to build a sensor network consisting of cheauch as the number of 1's. Thus, each node can reduce the
and simple sensors. In particular, we make the followingumber of transmitted bits accordingly based on its positions.
assumptions: We discuss this in detail in Section IV. We now begin with
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the accuracy analysis. Given z, j is a binomial random variable, hence

[1l. ACCURACY ANALYSIS Eljlz] = Ng, 9)
In this section, we analyze the accuracy of theSE and E[j%2] = (Ng)*+ Nq(1—q), (20)
CMSE for the proposed binary stochastic sensor network . .
operating in a typical environment where the signal and ghereq is the probability thatgn(a + ni) > 0,
additive noise are both uniformly distribufedWe compute 1 /x
MSE 2 E[(z — #)?] andCMSE 2 E[(z — 2)?|3]. =3 (5 + 1) :

Given a signalr and the observations at different nodes o . ol .
Y1, Y2, -y, WE want to determine a good estimator— NOW, substitutingE[jlz] and E[j*|z] into Equation (8), we

fy1,y2,...,yn) for z, wherey; = sgn(z + n;). When the obtain

(11)

2 .2
signal and noise distributions are uniformly distributed over E[(z —2)3|z] = bl ) (12)
[—a, o] and[-g4, 3], respectively, and > «, a good estimator N
is Next, the mean square error is
N

. B ~

b DI @ wsp-ple-22 = [ Ble- 9Pl
We note that, althoughr € [—«,«], the estimatori = _ /O‘ B —a? idm
a sV v is actually less accurate than= 2 SN 4, in « N 22
terms of MSE. We prove the following theorem regarding 36% — a?
the accuracy of our stochastic binary sensor network. - 3N

Theorem 3.1:If the signal and the additive noise are To obtain CMSE, let f(x|j) be the conditional density

uniformly distributed in the intervalg—a, o] and [, 5], function of z given j-the number of non-negative samples
respectively, with3 > «, then using the estimator in Equation 9 J 9 Pies,

(3) with N sensors, it is we have:

2 _ 2 El(x —2)%2] = E[(z—2)%j (13)
P @ (=212 = Bl -2
N — [ @@ falids
CMSE = —, (5) o ‘ N
B SO (=) (1—q)" Vda
where ffa g1 — q)N—jdx
A= Z : J ] T qitht1 Replacingg in Equation (13), we have
k=0 i=0 ﬁH_k k ¢ N—i
e : ; @ (@ — @)1+ 2)i(1-2)N 4
Q2 DT (B ) DTt Bi(e — 7)) = 1a = DU+ 5N fo. Y 14
i+k+3 N i+k+2 Jo A+ 5)i(1—5)" Vdr
. 2 _1\i+k N ) iy
+3? (?\i — 1) 1+ D™ z++(k142 I ) (6) Now, letting A = [© _(z — 3)2(1 +5) (1= %)N Jdx and
B = [ (1+2)(1-2)" da, then E(x — £)?|j] = 4,
and Using binomial expansion, we obtaid and B in Equation

j N—j (1) (5 (N = {\ 1+ (=1)itF (6) and Equation (7) respectively. Q.E.D.
( > ( )kl ke Theorem 3.1 states that thié SE is inversely proportional
ttkt to N. This agrees with our intuition that a largéf leads

. (_7_) to a smaller estimation error. Theorem 3.1 also implies that
Proof (outline) Let f,(x) and f(x) be the probability e 175 is minimized whens = a, or when the signal

density functions of the noise and of the signal, respectively, noise have identical statistics. As seen in Figure 2(a), the
Also denote the number of non-negative sampleg,aen »,qp curve for the noise in the range-1,1] is minimal.

&= p(F —1)- Now, Furthermore, theM SE becomes larger as the gap between
the noise range and the signal range increases. One important
m] observation is that thé/SE asymptotically vanishes as the
number of sensor$V increases. This is important since we
I] (8) can guarantee an arbitrarily small estimation error, even in
an environment with an arbitrarily large noise when using
IWe also have results for the case that the signal and the additive n an approprlately Iarge number of nodes. Figure 2(a) shows

ise .
are Gaussian distributions, but because of the limit of the paper, we do%ﬁls asymptotical decrease 8f SE as the number of nodes
illustrate it here Increases.

g

Bl —#)s] = o QxﬁE[ (i’f _ 1)
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Data range=[~1,1] is already established. Our objective is to further improve

0.12

—e— Noise range=[-1,1] energy efficiency through coding. We assume that the energy
—#— Noise range=[-1.1,1.1] i i i
01l e Noise rangec[-12.1.2] ] consumption by the sensor nodes is proportional to the number

of transmitted bits. Therefore, our objective is to minimize the
number of bits sent in the network. To illustrate our approach,
we consider two topologies of networks: straight line and tree.
Consider four sensor nodes arranged in a straight line as
shown in Figure 1. In our stochastic sensor network, a node
sends one bit per its measured samg(lg, and depending on
its position, it also relays many bits from other nodes. Thus,
without coding, the total number of bits to send in this simple
‘ ‘ ‘ ‘ network is 1 + 2 + 3 = 6 bits.
0 20 40 60 80 100 However, the processing node 4 only needs to know the
Number of sensors number of non-negative samples. In other words, to estimate
(a) x, node 4 does not need to know whether the measured values
N Data range=[-1,1N=110 at each node is -1 or 1. Thus, instead of sending all 6 bits, node
3 may need to send to node 4 only 2 bits (4 possible patterns)
to represent whether the number of non-negative samples is
0, 1, 2, or 3. Given this topology, it is impossible for node
4 to receive a number of non-negative samples greater than
4. Similarly, node 2 needs to send only 2 bits to node 3 to
represent whether the number of non-negative samples that it
has received so far is 0, 1, or 2.
While the example above shows a modest energy reduction,
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—6— Noise range=[-1,1] for a sensor network consisting of a large number of nodes
4 —#—Noise range=[-1.1,1.1] arranged in a straight line, this coding technique can result in
, 8~ Noise range=[~12.1.2) substantial energy reduction. We prove the following theorem.
-1 -0.5 0 0.5 1 Theorem 4.1:Given N sensor nodes arranged in a straight
Estimated x line with the processing node at one end, then the maximum
(b) number of bits which need to be sent per sample in the
Fig. 2. Performance of a binary sensor network with uniform signal ove?tOChaStIC bmary sensor network with COdmg IS
[—1, 1] under the different uniform noises. (&) SE as a function of number 1
of sensors; (b)C'MSE as a function oft, with the number of noded” = Bi=N(m+1)+1- 2mH, (15)
110. . N
and without coding is
N(N -1
| | | | g = Y1 (16)
Computing theCM SE is rather complicated; however, it 2

can be computed once for all the possible values ahd the wherem = |log, N|.

results are stored in a table at each sensor. When the adaptieroof: Assume that nod&/ is the processing node. Without
data collection technique is used, each sensor can determg¥ of generality, we have™ < N < 2™+l for m =
the corresponding’M SE given @ using the look-up table. |log, N|. Then, the total number of bits sent by nodes 1 to
We note that the” M SE depends ort (& = 5(% —1)and 2m _1is

N. In particular, for a uniform signal and a uniform noise, N i1
the CM SFE increases when the magnitude ©fdecreases, A= Zﬂ ’
and vice versa as shown in Figure 2(b). Thus, an intermediate

node can compute after collecting a number of samples from/Ve can easily find out
oth_er ngdes and paseq on the valueg aind the corrgsponding Ay = (m+1)2m —2m+ 41, (18)
estimation error, it decides whether or not to continue relaying

the data to next node in order to save energy. This decisiorAlso, the total number of bits sent by the remaining nodes is
application dependent as will be discussed in Section V. Ay = (N —2™)(m + 1). (19)

17)

i=1

IV. ENERGY EFFICIENT CODING Adding A; and A,, we obtainB;. B, is easily obtained using

In this section, we present the energy efficient codingrithmetic sum. Q.E.D.
Most often, the energy saving is obtained through efficient For the tree topology wittk branches, we prove the follow-
routing. However, we do not address the routing issue in thigy theorem for data gathering. Data gathering starts from the
paper. Instead, we assume that the route for gathering datales in the lowest to highest level.



Level 1 consisting of 127 binary sensor nodes. Data are relayed from
the leaf nodes to the internal nodes, and subsequently to the
Level 2 processing node as shown in Figure 3.
The main idea for reducing energy consumption in these
networks is for a node to stop relaying data to the processing
Level 3 node if it determines with high confidence that the current
estimated data is not anomalous. In particular, in these simu-
_ _ lations, we consider a data pointanomalous if the estimated
Fig. 3. Tree topology for data gathering. abs(2) > a andCMSE = E|[(z — #)2|#] < b wherea andb
are some threshold values set by the applications. Using this
framework, each node would estimate the current data based
Theorem 4.2:Using coding, the maximum number of transen its own measurement and the measurements relayed to it
mitted bits per sample in a tree topology withbranches is from other nodes. We note that tlieM SE is employed in
_ ; the decision making of a node to express the confidence level
By, = k™1 4 Z {10& k- -‘ gmi (20) in the estimated data.
i—2 k— Using this model, a node in both straight-line and tree sensor
networks operates as follows.

wherem is the number of levels. Fot = 2,
1) Initially, if a node is a leaf node in a tree topology or
the first node in a line topology, it would send its data
to the next node.

An internal node may send data only if it receives
data from at least one node. This implies that, if all
the predecessor nodes of a node determine that no
further transmission is necessary, that node will honor
the predecessor’s decision.

) If a node receives data from its predecessor node(s),

By =2(2" —m —1). (21)

Proof. For anm-level tree, there aré™~! leaf nodes and
each leaf node sends 1 bit of data. Therefore, the total numbe )
of bits sent by the leaf nodes i&$"~! bits. Now, each internal
node needs to relay data for all its predecessors. If a node is at
leveli > 1, it has’“ *1 — 1 predecessors (using the geometric
sum). Since nod@ also needs to send 1 bit of its measured
data, the maximum total number of coded bits sent by node 3

is PO& = 1-‘ Finally, there aré:™~* nodes at level, hence it estimates the current value and theC M SE based
the total number of coded bits sent by all the nodes (excluding  on its own measurement and the relayed measurements

the processing node at level) is from other node(s). lfibs(2) < « and CMSE < b, it
m—1 stops relaying data to the next node. Otherwise, it sends

B =k""1+ {10& T -‘ Lmet (22) data to the next node.
i=2 To characterize the energy reduction due to our proposed
For k = 2, we have coding technigue and the adaptive data collection, for each
m topology, we perform the simulations for sensor network with
By =2" Z 27 (23) coding and without coding. The threshold valugs set to 0.5,

while b is varied to characterize the trade-off between energy

consumption and accuracy. Figure 4 shows the number of

transmitted bits per data measurement as a functia”\afs £

%_:1 - [ m+ 1] for the straight-line topology. It can be noticed that, using
VA =

We can prove that

1- om coding reduces the number of transmitted bits approximately
by a factor of 10 compared to without using coding. Also, if

Finally, B, = 2™ Z?:ll 27t =2(2™ —m —1). Q.E.D. an application allows a larger estimation error, further energy
reduction can be obtained, e.g., the number of transmitted bits
V. SIMULATION RESULTS FORBINARY SENSOR with the CM SE = 0.18 is 8 times smaller than that of using
NETWORKS the CMSE = 0.01. Similarly, Figure 5 shows substantial

In this section, we characterize the trade-off between tlaving of using coding in the tree topology. On the other hand,
energy consumption and the accuracy of the stochastic bin#ing adaptive data collection technique does not reduce the
sensor networks for detecting anomalies through simulatioemergy consumption as much. We note that the tree topology is
In particular, we consider two special topologies for simulanuch more energy efficient that the straight-line topology. This
tions. The first topology is a straight-line topology consistinig because a transmitted bit in a tree topology does not have
of 128 binary sensor nodes arranged in a straight line, with ttee be relayed many times as in the line topology. However,
processing node at one end. The measured data flow from time coverage of a straight-line topology is larger than that of
end of the line to the processing node at the other end. Dataisree topology. At the limit, if all the nodes reside on one
accumulated along the way so that the processing node hahé, then the energy would be minimum since no off-chip
all the measured data. The second topology is a tree topoldggnsmission is necessary.
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VI. CONCLUSIONS

In summary, we have proposed a stochastic framework for
detecting anomalies or gathering interesting events in a noisy
environment using a sensor network consisting a large number
of cheapbinary sensors operating in a noisy environment.
We present the theoretical analysis of the accuracy of such
sensor networks in different environments. We also propose
an adaptive data collection framework based on the current
measurements and a novel coding scheme in order to reduce
the energy consumption. The simulation results of two sto-
chastic binary sensor networks for anomaly detection using
our proposed coding scheme and adaptive data gathering show
that energy consumption can be reduced substantially, e.g., a
factor of 10 for many scenarios.
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