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Abstract— This paper proposes a stochastic framework for
detecting anomalies or gathering interesting events in a noisy
environment using a sensor network consisting of binary sensors.
A binary sensor is an extremely coarse sensor, capable of
measuring data to only 1-bit accuracy. Our proposed stochastic
framework employs a large number of cheap binary sensors
operating in a noisy environment, yet collaboratively they are able
to obtain accurate measurements. The main contributions of this
paper are: (a) The theoretical accuracy analysis of the proposed
stochastic binary sensor network, (b) an adaptive data collection
framework based on the current measurements in order to
reduce the energy consumption, and (c) a novel coding scheme
for energy-efficient routing. To quantify the performance of our
proposed stochastic approach, we present the simulation results
of two stochastic binary sensor networks for anomaly detection
using our proposed coding scheme and adaptive data gathering
framework. For many scenarios, our proposed framework can
reduce the energy consumption over the traditional approach by
an order of magnitude.

I. I NTRODUCTION

In recent years, sensor networks have emerged as an im-
portant class of networks for many military and commercial
applications [1][2][3]. A sensor network is a collection of wire-
less communication nodes. Each node is capable of sensing
the environment and communicating the measured data to the
neighboring nodes, and eventually to the external users. The
majority of sensor networks are designed to collect data [4][5]
or to perform anomaly detection [6][7] while achieve the goal
of high accuracy and minimum energy consumption.

Accuracy. A special and important situation arises when all
the sensors measure the same underlying signalx. However
due to the environmental noise, each sensori measures a
different valuexi = x + ni where ni is an additive noise
sample. In this scenario, the objective of a sensor network
is to accurately determine the underlying valuex through
collaborations among the sensors. For example, the nodes in
a sensor network for anomaly or intrusion detection often
exchange data among each other to increase the detection
accuracy. In a real-world scenario, these sensors can be the
magnetic sensors in the ocean whose tasks are to determine the
magnetic signature of a submarine. This collaboration of nodes
for the accurate estimation of data in the sensor networks is
one of the main contributions of our paper.

Energy Efficiency. Since a sensor is typically a battery-
operated device, minimizing energy consumption should also
be considered. If the measured data among the nodes are
spatially correlated, a node can jointly compress its data
and its neighbor’s data in order decrease the transmission
energy[8][9]. The higher correlation of data measured among
the sensors results in more energy saving. In our proposed
stochastic binary sensor network, the underlying measured
data at each sensor are assumed to be identical or highly
correlated. This high correlation enables us to employ a novel
coding scheme to reduce the energy consumption. The energy
saving is further reduced by using our adaptive data gathering
framework.

In this paper, we present a stochastic binary sensor network
that (a) achieves good accuracy, (b) enables the graceful
degradation of data quality in the presence of sensor’s failures,
and (c) reduces the energy due to the adaptive data collection
technique and a novel coding scheme. In the proposed sensor
network, each sensor employs only 1 bit of information per
measurement, but collectively, accurate data measurements can
be obtained. By allowing only 1-bit measurement, the sensors
can be made at low cost and, therefore, are easy to replace or
to discard. Furthermore, the higher number of working sensors
results in higher data quality. In this paper, we assume that the
data from the working sensors can be routed to the processing
node. Thus, the data quality depends only on the number of
working sensors.

Our paper is organized as follows. In Section II, we discuss
the assumptions and objectives of the stochastic binary sensor
network. Section III is devoted to the theoretical accuracy
analysis of the stochastic binary sensor network in a variety
of environments. In Section IV, we present a novel coding
scheme to be used for energy-efficient routing. Section V
provides the simulation results for two binary sensor networks
that employ the adaptive data collection technique and the
coding scheme to reduce energy consumption. Finally, we
provide a few concluding remarks in Section VI.

II. M ODEL FOR THESTOCHASTIC BINARY SENSOR

NETWORK

In this section, we discuss the mathematical model of data
estimation in a stochastic binary sensor network. For the



purpose of illustration, we begin with a simple scenario in
which four nodes in a sensor network are aligned in a straight
line as shown in Figure 1. We assume that the datax(t) at
time t is identical (or highly correlated) within the coverage
of the sensors. In other words, the data may vary temporally
but not spatially. Each nodei is to measure the underlying
datax(t) at timet. Theoretically, without noise, all the nodes
would obtain identical measurements at timet. However, in
non-ideal situations where either internal or external noise is
present, an accurate measurement cannot be obtained using
only a single node. Another argument against using a single
accurate sensor is the lack of robustness since a single failure
would stop the entire data collection process.

Based on the discussion above, our model consists of
many sensors. Each sensor measures its data at timet as
xi(t) = x(t)+ni(t) whereni(t) is independent and identically
distributed noise at nodei. The measurements from different
nodes are forwarded to a processing node whose task is to
accurately determine the valuex(t). For example, if node
4 is chosen to be the processing node, then such node is
responsible for determining the value ofx(t) based on all
the measurements it receives from nodes 1, 2, and 3. Figure 1
shows how measurements are forwarded from nodes 1, 2, and
3 to node 4.

1 2 3 4

x1(t)

x1(t),

x2(t)
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x2(t),

x3(t)

Fig. 1. A simple sensor network. Measured data are relayed to node 4.

The classical method for estimating value ofx(t) [10] is
given by x̂(t) = 1

N

∑N
i=1 xi(t). where N is the number of

sensors. The larger the value ofN , the higher the accuracy.
This method assumes an accurate representation ofxi(t).
Theoretically, if we have an infinite precision representation of
xi(t), then the mean estimated error

√
E[(x− x̂)2] using the

classical method would decrease by a factor of1√
N

. However,
an accurate representation ofxi(t) implies that each sensor
must be able to resolve a small difference in the measured
data. For example, when measuring the temperature, a sensor
node must be able translate temperatures to electrical signals
in a fairly precise manner. For example, 68.2F and 68.5F
would result in two electrical signals of 0.90 volts and 0.92
volts, respectively. In addition, an accurate representationxi(t)
requires a larger number of bits, hence more bits must be
transmitted per measurement per sensor.

Based on the discussion above, our proposed framework
eliminates the need for high resolution sensors. In particular,
each sensor only makes a decision whether its measured data is
greater or smaller than a certain threshold. This simplification
allows one to build a sensor network consisting of cheap
and simple sensors. In particular, we make the following
assumptions:

1) Signal x(t) is a random process with zero mean. The
zero-mean assumption is for ease of analysis.

2) Additive noiseni(t) is independent and identically dis-
tributed around zero. This assumption holds for geo-
graphically far-apart nodes which are likely to have
uncorrelated environmental noise samples.

3) Each sensor node is only able to detect the sign ofxi(t).
This mean the the threshold value is equal to0.

Accuracy. Based on the above assumptions,our goal is to
estimatex(t) as x̂(t) = f(y1(t), ..., yN (t)) for some function
f(.), whereyi(t) = sgn(xi(t)), given the statistics ofx(t)
and of the noiseni(t). We do not make any assumption on
temporal correlation of the data, i.e.,x(t− a) cannot be used
to estimatex(t). Thus, we shall omit the indext in all the
variables, e.g.,xi(t) will becomexi.

There are two important performance indicators for our
sensor network: the Mean Square Error (MSE) and the
Conditional Mean Square Error (CMSE) which are defined
as

MSE
∆= E[(x− f(y1, ..., yN ))2], (1)

CMSE
∆= E[(x− f(y1, ..., ym))2|y1, ..., ym], (2)

where m ≤ N . The MSE characterizes the measured data
quality of a sensor network, whileCMSE characterizes the
average amount of errors given a set of observations. Thus,
the MSE enables us to characterize the performance of our
sensor network in a certain environment. On the other hand,
theCMSE is useful for adaptive data gathering to reduce the
energy consumption.

Adaptive Data Gathering. To illustrate the energy reduc-
tion based on adaptive processing, we consider the following
example. Suppose that a sensor network consisting ofN
nodes is designed to continuously measure a signalx and
alarms the population whenever it detectsx > a. In a real
world scenario,x > a may represent an anomaly such as
the presence of an intruder or a dangerous chemical agent.
Using allN data points, the processing node can estimatex as
f(y1, y2, ..., yN ) and determine whetherf(y1, y2, ..., yN ) > a.
Sincef(y1, y2, ..., yN ) is an estimation ofx, it is also useful
determine the confidence level of this estimation in order
to reduce the number of false alarms or to avoid missing
an anomaly. As will be shown shortly, the accuracy of the
estimation depends on the current estimated value ofx and
on the number of data samples. Thus, if after a number of
transmissionsn < N , the intermediate nodes can estimate that
x < a, i.e., no anomaly, with high confidence, then subsequent
transmissions will be not be necessary, resulting in an overall
energy reduction of the network.

Coding. Energy consumption can be further reduced by
employing our coding scheme which exploits the network
topology. The main idea is that, to estimate the signal, the
processing node only needs to know the summary information
such as the number of 1’s. Thus, each node can reduce the
number of transmitted bits accordingly based on its positions.
We discuss this in detail in Section IV. We now begin with



the accuracy analysis.

III. A CCURACY ANALYSIS

In this section, we analyze the accuracy of theMSE and
CMSE for the proposed binary stochastic sensor network
operating in a typical environment where the signal and the
additive noise are both uniformly distributed1. We compute
MSE

∆= E[(x− x̂)2] andCMSE
∆= E[(x− x̂)2|x̂].

Given a signalx and the observations at different nodes
y1, y2, ..., yN , we want to determine a good estimatorx̂ =
f(y1, y2, ..., yN ) for x, whereyi = sgn(x + ni). When the
signal and noise distributions are uniformly distributed over
[−α, α] and[−β, β], respectively, andβ ≥ α, a good estimator
is

x̂ =
β

N

N∑

i=1

yi. (3)

We note that, althoughx ∈ [−α, α], the estimatorx̂ =
α
N

∑N
i=1 yi is actually less accurate than̂x = β

N

∑N
i=1 yi in

terms of MSE. We prove the following theorem regarding
the accuracy of our stochastic binary sensor network.

Theorem 3.1:If the signal and the additive noise are
uniformly distributed in the intervals[−α, α] and [−β, β],
respectively, withβ ≥ α, then using the estimator in Equation
(3) with N sensors, it is

MSE =
3β2 − α2

3N
, (4)

CMSE =
A

B
, (5)

where

A =
j∑

k=0

N−j∑

i=0

(−1)i

βi+k

(
j

k

)(
N − j

i

)
αi+k+1

(
α2 1 + (−1)i+k

i + k + 3
+ 2βα

(
2j

N
− 1

)
(−1)i+k − 1
i + k + 2

+β2

(
2j

N
− 1

)2 1 + (−1)i+k

i + k + 1

)
(6)

and

B =
j∑

k=0

N−j∑

i=0

(−1)i

βi+k

(
j

k

)(
N − j

i

)
1 + (−1)i+k

i + k + 1
αi+k+1.

(7)
Proof (outline): Let fn(x) and f(x) be the probability

density functions of the noise and of the signal, respectively.
Also denote the number of non-negative samples asj, then
x̂ = β( 2j

N − 1). Now,

E[(x− x̂)2|x] = x2 − 2xβE

[(
2j

N
− 1

) ∣∣∣∣x
]

+β2E

[(
2j

N
− 1

)2∣∣∣∣x
]

(8)

1We also have results for the case that the signal and the additive noise
are Gaussian distributions, but because of the limit of the paper, we do not
illustrate it here

Given x, j is a binomial random variable, hence

E[j|x] = Nq, (9)

E[j2|x] = (Nq)2 + Nq(1− q), (10)

whereq is the probability thatsgn(x + ni) > 0,

q =
1
2

(
x

β
+ 1

)
. (11)

Now, substitutingE[j|x] and E[j2|x] into Equation (8), we
obtain

E[(x− x̂)2|x] =
β2 − x2

N
. (12)

Next, the mean square error is

MSE = E[(x− x̂)2] =
∫ ∞

−∞
E[(x− x̂)2|x]f(x)dx

=
∫ α

−α

β2 − x2

N

1
2α

dx

=
3β2 − α2

3N

To obtain CMSE, let f(x|j) be the conditional density
function of x given j-the number of non-negative samples,
we have:

E[(x− x̂)2|x̂] = E[(x− x̂)2|j] (13)

=
∫ ∞

−∞
(x− x̂)2f(x|j)dx

=

∫ α

−α
(x− x̂)2qj(1− q)N−j

dx
∫ α

−α
qj(1− q)N−j

dx

Replacingq in Equation (13), we have

E[(x− x̂)2|j] =

∫ α

−α
(x− x̂)2(1 + x

β )j(1− x
β )N−j

dx
∫ α

−α
(1 + x

β )j(1− x
β )N−j

dx
(14)

Now, lettingA =
∫ α

−α
(x− x̂)2(1 + x

β )j(1− x
β )N−j

dx and

B =
∫ α

−α
(1 + x

β )j(1− x
β )N−j

dx, then E[(x− x̂)2|j] = A
B ,

Using binomial expansion, we obtainA and B in Equation
(6) and Equation (7) respectively. Q.E.D.

Theorem 3.1 states that theMSE is inversely proportional
to N . This agrees with our intuition that a largerN leads
to a smaller estimation error. Theorem 3.1 also implies that
the MSE is minimized whenβ = α, or when the signal
and noise have identical statistics. As seen in Figure 2(a), the
MSE curve for the noise in the range[−1, 1] is minimal.
Furthermore, theMSE becomes larger as the gap between
the noise range and the signal range increases. One important
observation is that theMSE asymptotically vanishes as the
number of sensorsN increases. This is important since we
can guarantee an arbitrarily small estimation error, even in
an environment with an arbitrarily large noise when using
an appropriately large number of nodes. Figure 2(a) shows
this asymptotical decrease ofMSE as the number of nodes
increases.



0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of sensors

M
ea

n 
S

qu
ar

 E
rr

or

Data range=[−1,1]

Noise range=[−1,1]
Noise range=[−1.1,1.1]
Noise range=[−1.2,1.2]

(a)

−1 −0.5 0 0.5 1
2

4

6

8

10

12

14
x 10

−3

Estimated x

C
on

di
tio

na
l M

ea
n 

S
qu

ar
e 

E
rr

or

Data range=[−1,1],N=110

Noise range=[−1,1]
Noise range=[−1.1,1.1]
Noise range=[−1.2,1.2])

(b)

Fig. 2. Performance of a binary sensor network with uniform signal over
[−1, 1] under the different uniform noises. (a)MSE as a function of number
of sensors; (b)CMSE as a function of̂x, with the number of nodesN =
110.

Computing theCMSE is rather complicated; however, it
can be computed once for all the possible values ofx̂ and the
results are stored in a table at each sensor. When the adaptive
data collection technique is used, each sensor can determine
the correspondingCMSE given x̂ using the look-up table.
We note that theCMSE depends on̂x (x̂ = β( 2j

N − 1)) and
N . In particular, for a uniform signal and a uniform noise,
the CMSE increases when the magnitude ofx̂ decreases,
and vice versa as shown in Figure 2(b). Thus, an intermediate
node can computêx after collecting a number of samples from
other nodes and based on the value ofx̂ and the corresponding
estimation error, it decides whether or not to continue relaying
the data to next node in order to save energy. This decision is
application dependent as will be discussed in Section V.

IV. ENERGY EFFICIENT CODING

In this section, we present the energy efficient coding.
Most often, the energy saving is obtained through efficient
routing. However, we do not address the routing issue in this
paper. Instead, we assume that the route for gathering data

is already established. Our objective is to further improve
energy efficiency through coding. We assume that the energy
consumption by the sensor nodes is proportional to the number
of transmitted bits. Therefore, our objective is to minimize the
number of bits sent in the network. To illustrate our approach,
we consider two topologies of networks: straight line and tree.

Consider four sensor nodes arranged in a straight line as
shown in Figure 1. In our stochastic sensor network, a node
sends one bit per its measured samplex(t), and depending on
its position, it also relays many bits from other nodes. Thus,
without coding, the total number of bits to send in this simple
network is 1 + 2 + 3 = 6 bits.

However, the processing node 4 only needs to know the
number of non-negative samples. In other words, to estimate
x, node 4 does not need to know whether the measured values
at each node is -1 or 1. Thus, instead of sending all 6 bits, node
3 may need to send to node 4 only 2 bits (4 possible patterns)
to represent whether the number of non-negative samples is
0, 1, 2, or 3. Given this topology, it is impossible for node
4 to receive a number of non-negative samples greater than
4. Similarly, node 2 needs to send only 2 bits to node 3 to
represent whether the number of non-negative samples that it
has received so far is 0, 1, or 2.

While the example above shows a modest energy reduction,
for a sensor network consisting of a large number of nodes
arranged in a straight line, this coding technique can result in
substantial energy reduction. We prove the following theorem.

Theorem 4.1:GivenN sensor nodes arranged in a straight
line with the processing node at one end, then the maximum
number of bits which need to be sent per sample in the
stochastic binary sensor network with coding is

B1 = N(m + 1) + 1− 2m+1, (15)

and without coding is

B2 =
N(N − 1)

2
, (16)

wherem = blog2 Nc.
Proof: Assume that nodeN is the processing node. Without

loss of generality, we have2m ≤ N < 2m+1, for m =
blog2 Nc. Then, the total number of bits sent by nodes 1 to
2m − 1 is

A1 =
m∑

i=1

i2i−1. (17)

We can easily find out

A1 = (m + 1)2m − 2m+1 + 1. (18)

Also, the total number of bits sent by the remaining nodes is

A2 = (N − 2m)(m + 1). (19)

Adding A1 andA2, we obtainB1. B2 is easily obtained using
arithmetic sum. Q.E.D.

For the tree topology withk branches, we prove the follow-
ing theorem for data gathering. Data gathering starts from the
nodes in the lowest to highest level.
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Fig. 3. Tree topology for data gathering.

Theorem 4.2:Using coding, the maximum number of trans-
mitted bits per sample in a tree topology withk branches is

Bk = km−1 +
m−1∑

i=2

⌈
log2

ki − 1
k − 1

⌉
km−i, (20)

wherem is the number of levels. Fork = 2,

B2 = 2(2m −m− 1). (21)
Proof: For anm-level tree, there arekm−1 leaf nodes and

each leaf node sends 1 bit of data. Therefore, the total number
of bits sent by the leaf nodes iskm−1 bits. Now, each internal
node needs to relay data for all its predecessors. If a node is at
level i > 1, it has ki−1

k−1 − 1 predecessors (using the geometric
sum). Since nodei also needs to send 1 bit of its measured
data, the maximum total number of coded bits sent by nodei

is
⌈
log2

ki−1
k−1

⌉
. Finally, there arekm−i nodes at leveli, hence

the total number of coded bits sent by all the nodes (excluding
the processing node at levelm) is

Bk = km−1 +
m−1∑

i=2

⌈
log2

ki − 1
k − 1

⌉
km−i. (22)

For k = 2, we have

B2 = 2m
m−1∑

i=1

i2−i. (23)

We can prove that

m−1∑

i=1

i2−i = 2
[
1− m + 1

2m

]

Finally, B2 = 2m
∑m−1

i=1 i2−i = 2(2m −m− 1). Q.E.D.

V. SIMULATION RESULTS FORBINARY SENSOR

NETWORKS

In this section, we characterize the trade-off between the
energy consumption and the accuracy of the stochastic binary
sensor networks for detecting anomalies through simulations.
In particular, we consider two special topologies for simula-
tions. The first topology is a straight-line topology consisting
of 128 binary sensor nodes arranged in a straight line, with the
processing node at one end. The measured data flow from one
end of the line to the processing node at the other end. Data is
accumulated along the way so that the processing node have
all the measured data. The second topology is a tree topology

consisting of 127 binary sensor nodes. Data are relayed from
the leaf nodes to the internal nodes, and subsequently to the
processing node as shown in Figure 3.

The main idea for reducing energy consumption in these
networks is for a node to stop relaying data to the processing
node if it determines with high confidence that the current
estimated data is not anomalous. In particular, in these simu-
lations, we consider a data pointx anomalous if the estimated
abs(x̂) ≥ a andCMSE = E[(x− x̂)2|x̂] < b wherea andb
are some threshold values set by the applications. Using this
framework, each node would estimate the current data based
on its own measurement and the measurements relayed to it
from other nodes. We note that theCMSE is employed in
the decision making of a node to express the confidence level
in the estimated datâx.

Using this model, a node in both straight-line and tree sensor
networks operates as follows.

1) Initially, if a node is a leaf node in a tree topology or
the first node in a line topology, it would send its data
to the next node.

2) An internal node may send data only if it receives
data from at least one node. This implies that, if all
the predecessor nodes of a node determine that no
further transmission is necessary, that node will honor
the predecessor’s decision.

3) If a node receives data from its predecessor node(s),
it estimates the current valuêx and theCMSE based
on its own measurement and the relayed measurements
from other node(s). Ifabs(x̂) < a and CMSE < b, it
stops relaying data to the next node. Otherwise, it sends
data to the next node.

To characterize the energy reduction due to our proposed
coding technique and the adaptive data collection, for each
topology, we perform the simulations for sensor network with
coding and without coding. The threshold valuea is set to 0.5,
while b is varied to characterize the trade-off between energy
consumption and accuracy. Figure 4 shows the number of
transmitted bits per data measurement as a function ofCMSE
for the straight-line topology. It can be noticed that, using
coding reduces the number of transmitted bits approximately
by a factor of 10 compared to without using coding. Also, if
an application allows a larger estimation error, further energy
reduction can be obtained, e.g., the number of transmitted bits
with the CMSE = 0.18 is 8 times smaller than that of using
the CMSE = 0.01. Similarly, Figure 5 shows substantial
saving of using coding in the tree topology. On the other hand,
the adaptive data collection technique does not reduce the
energy consumption as much. We note that the tree topology is
much more energy efficient that the straight-line topology. This
is because a transmitted bit in a tree topology does not have
to be relayed many times as in the line topology. However,
the coverage of a straight-line topology is larger than that of
a tree topology. At the limit, if all the nodes reside on one
chip, then the energy would be minimum since no off-chip
transmission is necessary.
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Fig. 4. Number of transmitted bits per measurement as a function ofCMSE
for a straight line topology.
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VI. CONCLUSIONS

In summary, we have proposed a stochastic framework for
detecting anomalies or gathering interesting events in a noisy
environment using a sensor network consisting a large number
of cheap binary sensors operating in a noisy environment.
We present the theoretical analysis of the accuracy of such
sensor networks in different environments. We also propose
an adaptive data collection framework based on the current
measurements and a novel coding scheme in order to reduce
the energy consumption. The simulation results of two sto-
chastic binary sensor networks for anomaly detection using
our proposed coding scheme and adaptive data gathering show
that energy consumption can be reduced substantially, e.g., a
factor of 10 for many scenarios.
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