
Multimedia Streaming Using Multiple TCP Connections

Thinh Nguyen Sen-ching S. Cheung

thinhq@eecs.oregonstate.edu cheung@engr.uky.edu

School of EECS ECE Department

Oregon State University University of Kentucky

Corvallis, OR 97330 Lexington, KY 40506

Abstract

As broadband Internet becomes widely available,
multimedia applications over the Internet become in-
creasingly popular. However, packet loss, delay, and
time-varying bandwidth of the Internet have remained
the major problems for multimedia streaming appli-
cations. As such, a number of approaches, includ-
ing network infrastructure and protocol, source and
channel coding have been proposed to either overcome
or alleviate these drawbacks of the Internet. In this
paper, we propose the MultiTCP system, a receiver-
driven, TCP-based system for multimedia streaming
over the Internet. Our proposed algorithm aims at
providing resilience against SHORT TERM insuffi-
cient bandwidth by using MULTIPLE TCP connec-
tions for the same application. Furthermore, our pro-
posed system enables the application to achieve and
control the desired sending rate during congested peri-
ods, which cannot be achieved using traditional TCP.
Finally, our proposed system is implemented at the
application layer, and hence, no kernel modification
to TCP is necessary. We analyze the proposed sys-
tem, and present simulation results to demonstrate its
advantages over the traditional single TCP based ap-
proach.

1 Introduction

In recent years, there have been an explosive growth
of multimedia applications over the Internet. All ma-
jor news networks such as ABC and NBC now provide
news with accompanying video clips. Several com-
panies, such as MovieFlix [1], also offer video on de-
mand to broadband subscribers. However the quality
of videos being streamed over the Internet is often
of low quality due to insufficient bandwidth, packet
loss, and delay. To view a DVD quality video from
an on demand video service, a customer must down-
load either the entire video or a large portion of the
video before playback time in order to avoid pauses

caused by insufficient bandwidth during a streaming
session. Thus, many techniques have been proposed
to enable efficient multimedia streaming over the In-
ternet. The source coding community has proposed
scalable video [2][3], error-resilient coding, and multi-
ple description [4] for efficient video streaming over the
best-effort networks such as the Internet. A scalable
video bit stream is coded in such a way to enable the
server to easily and efficiently adapt the video bit rate
to the current available bandwidth. Error-resilient
coding and multiple description are aimed at improv-
ing the quality of the video in the presence of packet
loss and long delay caused by retransmission. Channel
coding techniques are also used to mitigate long delay
for real-time applications such as video conferencing
or IP-telephony [5]. The main disadvantages of these
approaches are first, specialized codecs are required
and second, their performances are highly affected by
the network traffic conditions.

From a network infrastructure perspective, Differ-
entiated Services [6][7] and Integrated Services [8][7]
have been proposed to improve the quality of multime-
dia applications by providing preferential treatments
to various applications based on their bandwidth, loss,
and delay requirements. More recently, path diver-
sity architectures that combine multiple paths and ei-
ther source or channel coding have been proposed to
provide larger bandwidth, and to combat efficiently
against packet loss [9][10][11]. Nonetheless, these ap-
proaches cannot be easily deployed as they require sig-
nificant changes in the network infrastructure.

The most straightforward approach is to transmit
standard-based multimedia via existing IP protocols.
The two most popular choices are TCP and UDP. A
single TCP connection is not suitable for multimedia
transmission because its congestion control may cause
a large fluctuation in the sending rate. Unlike TCP,
an UDP-based application is able to set the desired
sending rate. If the network is not too much con-

gested, the UDP throughput at the receiver would
approximately equal to the sending rate. Since the
ability to control the sending rate is essential to in-
teractive and live streaming applications, majority of
multimedia streaming systems use UDP as the basic
building block for sending packets over the Internet.
However, UDP is not a congestion aware protocol since
it does not reduce its sending rate in presence of net-
work congestion, and therefore potentially results in a
congestion collapse. Congestion collapse occurs when
a router drops a large number of packets due to its in-
ability to handle a large amount of traffic from many
senders at the same time. TCP-Friendly Rate Control
Protocol (TFRC) has been proposed for multimedia
streaming with UDP in order to incorporate TCP-like
congestion control mechanism [12]. Another drawback
of using UDP is its lack of reliable transmission and
hence the application must deal with the packet loss.

Based on these drawbacks of UDP, we propose a
new receiver-driven, TCP-based system for multime-
dia streaming over the Internet. In particular, our
proposed system, called MultiTCP, is aimed at pro-
viding resilience against short-term insufficient band-
width by using multiple TCP connections for the same
application. Furthermore, our system enables the ap-
plication to achieve and control the sending rate dur-
ing congested period, which in many cases, cannot be
achieved using a single TCP connection. Finally, our
proposed system is implemented at the application
layer, and hence, no kernel modification to TCP is
necessary.

The rest of the paper is organized as follows. In
Section 2, we describe the two major drawbacks of
using TCP for multimedia streaming: short-term in-
sufficient bandwidth and lack of precise rate con-
trol. These drawbacks motivate the use of multiple
TCP connections in our proposed system, which is
described in Section 3. In Section 4, we demonstrate
the performance of our system based on simulations
results using NS[13]. We then describe other related
works that utilize multiple network connections in Sec-
tion 5. Finally, we summarize our contributions in
Section 6.

2 Drawbacks of TCP for multimedia

streaming
In subsections
As discussed briefly in Section 1, TCP is unsuitable

for multimedia streaming due partly to its fluctuating
throughput and its lack of precise rate control. TCP
is designed for end-to-end reliability and fast conges-
tion avoidance. To provide end-to-end reliability, a
TCP sender retransmits the lost packets based on the

packet acknowledgment from a TCP receiver. In or-
der to have fast response to network congestion, TCP
controls the sending rate based on a window-based
congestion control which works as follows. The sender
keeps track of a window of maximum number of unac-
knowledged packets, i.e., packets that have not been
acknowledged by the receiver. In the steady state, the
sender increases the window size W by 1/W upon suc-
cessfully receiving an acknowledged packet, or equiv-
alently, it increases the sending rate by one packet
per round trip time. Upon encountering a loss, the
window size is reduced by half, or equivalently, the
sending rate is cut in half. In TCP, the receiver has
the ability to set a maximum window size for the
unacknowledged packets, hence imposing a maximum
sending rate. Thus, in a non-congestion scenario, the
application at the receiver can control the sending rate
by setting the window size appropriately. On the other
hand, during congestion, the actual throughput can be
substantially low as the maximum window size may
never be reached.

Based on the above discussion, we observe that
a single packet loss can drop the TCP throughput
abruptly and the low throughput lingers due to the
slow increase of the window size. If there is a way to
reduce this throughput reduction effect without modi-
fying TCP, we can effectively provide higher through-
put with proper congestion control and reliable trans-
mission. In addition, if there is a way to control the
TCP sending rate during congestion, then TCP can be
made suitable for multimedia streaming. Unlike non
real-time applications such as file transfer and email,
precise control of sending rate is essential for inter-
active and live streaming applications due to several
reasons. First, sending at too high a rate can cause
buffer overflow in certain receivers with limited buffer
such as mobile phones and PDAs. Second, sending at
a rate lower than the coded bit rate results in pauses
during a streaming session, unless a large buffer is ac-
cumulated before playback.

In the following section, we propose a system that
can dynamically distribute streaming data over multi-
ple TCP connections per application to achieve higher
throughput and precise rate control. The control is
performed entirely at the receiver side and thus, suit-
able for streaming applications where a single server
may serve up to thousands of receivers simultaneously.

3 MultiTCP overview and Analysis

As mentioned in Section 2, the throughput reduc-
tion of TCP is attributed to the combination of (a)
reduction of the sending rate by half upon detection
of a loss event and (b) the slow increase of sending

Application Layer

Multi-TCP Control Unit

TCP (Transport Layer)

Application Layer

Multi-TCP Control Unit

TCP (Transport Layer)

sender receiver

Multiple TCP connections
Sending data through multiple ports

Figure 1: MultiTCP system diagram.

rate afterward or congestion avoidance. To alleviate
this throughput reduction, one can modify TCP to (a)
reduce the sending rate by a small factor other than
half upon detection of a loss, or (b) speed up the con-
gestion avoidance process, or (c) combine both (a) and
(b). There are certain disadvantages associated with
these approaches. First, these changes affect all TCP
connections and must be performed by recompiling
the OS kernel of the sender machine. Second, chang-
ing the decreasing multiplicative factor and the ad-
ditive term in isolated machines may potentially lead
to instability of TCP in a larger scale of the network.
Third, it is not clear how these factors can be changed
to dynamically control the sending rate.

As such, we propose a different approach: instead
of using a traditional, single TCP connection, we use
multiple TCP connections for a multimedia streaming
application. Our approach does not require any mod-
ification to the existing TCP stack or kernel. Figure
1 shows a diagram of our proposed MultiTCP system.
The MultiTCP control unit is implemented immedi-
ately below the application layer and above the trans-
port layer at both the sender and the receiver. The
MultiTCP control unit at the receiver receives the in-
put specifications from streaming application which
include the streaming rate and the throughput re-
silience. The throughput resilience can be thought
of as the amount of throughput reduction an appli-
cation can tolerate in presence of sudden burst traf-
fic. A higher throughout resilience leads to a lower
short-term throughput reduction. The MultiTCP con-
trol unit at the receiver measures the actual through-
put and uses this information to control the rate and
the throughput reduction by using multiple TCP con-
nections and dynamically changing receiver’s window
size for each connection. In the next two sections,
we show how multiple TCP connections can mitigate
the throughput reduction problem in a lightly loaded
network and describe our mechanism to maintain the
desired throughput in a congested network.

3.1 Alleviating Throughput Reduction In
Lightly Loaded Network

In this section, we analyze the throughput reduc-
tion problem in a lightly loaded network and show
how it can be alleviated by using multiple TCP con-
nections.

When there is no congestion, the receiver can con-
trol the streaming rate in a single TCP connection
quite accurately by setting the maximum the receiver’s
window size Wmax. The effective throughput during
this period is approximately equal to

T =
WmaxMTU

RTT
(1)

where RTT denotes the round trip time, including
both propagation and queuing delay, between the
sender and the receiver. MTU denotes the TCP max-
imum transfer unit, typically set at 1000 bytes. If a
loss event occurs, the TCP sender instantly reduces its
rate by half as shown in Figure 2(a). As a result, the
area of the inverted triangular region in Figure 2(a)
indicates the amount of data that would have been
transmitted if there were no loss event. Thus, the
amount of data reduction D equals to

D = (
1

2
)(

WmaxMTURTT

2
)(

Wmax

2RTT
) =

W 2
maxMTU

8
(2)

Note that the time it takes for the TCP window to in-
crease from Wmax/2 to Wmax equals to WmaxRTT/2
since the TCP window increases by one every round
trip time. Clearly, if there are a burst of loss events
during a streaming session, the total throughput re-
duction can potentially be large enough to deplete the
start up buffer, causing pauses in the playback.

Now let us consider the case where two TCP con-
nections are used for the same application. Since
we want to keep the same total streaming rate
Wmax/RTT as in the case of one TCP connection,
we set W

′

max = Wmax/2 for each of the two connec-
tions as illustrated in Figure 2(b). Assuming that only
a single loss event happens in one of the connection,
the total throughput reduction would be equal to

D
′

=
(W

′

maxMTU)

8
=

(W 2
maxMTU)

32
=

D

4
(3)

Equation (3) shows that, for a single loss event, the
throughput reduction of using two TCP connections
is four times less than that of using a single TCP con-
nection. Even in the case when there are simultane-
ously losses on both connections as indicated in Fig-
ure 2(c), the throughput reduction is half of that of
the single TCP. In general, let N denote the number

Time

Total amount of

throughput loss

W/RTT

W/(2RTT)

(W/2)RTT

Rate

(a)

Time

Total amount of

throughput loss

Amount of

throughput loss for

connection 1

No throughput loss

for connection 2

Time

Total amount of

throughput loss

Amount of

throughput loss for

connection 1

No throughput loss

for connection 2

Rate

(b)

Time

Total amount of

throughput loss

Amount of

throughput loss for

connection 1 and 2

Rate

(c)

Figure 2: Illustrations of throughput reduction for (a)
one TCP connections with single loss; (b) two TCP
connections with single loss; (c) two TCP connections
with double losses.

of TCP connections for the same application and n be
the number of TCP connections that suffer simultane-
ous losses during short congestion period, the amount
of throughput reduction equals to

DN =
nW 2

maxMTU

N2
(4)

As seen in Equation (4), the amount of throughput
reduction is inversely proportional to the square of the
number of TCP connections used. Hence, using a only
small number of TCP connections can greatly improve
the resilience against TCP throughput reduction.

3.2 Control Streaming Rate in a Con-
gested Network

In the previous section, we discuss the throughput
reduction problem in a lightly loaded network and
show that using multiple TCP connections can alle-
viate the problem. In a lightly loaded network condi-
tion, one can set the desired throughput Td by simply

setting the receiver window Wmax = TdRTT/MTU .
However, in a moderately or heavily congested net-
work, the throughput of a TCP does not depend on
Wmax, instead, it is determined by the degree of con-
gestion. This is due to the fact that in a non-congested
network, i.e. without packet loss, TCP rate would in-
crease additively until WmaxMTU/RTT is reached,
after that the rate would remain approximately con-
stant at WmaxMTU/RTT . However, in a congested
network, a loss event would most likely occur be-
fore the sending rate reaches its limit and cut the
rate by half, resulting in a throughput lower than
WmaxMTU/RTT .

A straightforward method for achieving a higher
throughput than the available TCP throughput would
be to use multiple TCP connections for the same ap-
plication. Using multiple TCP connections results in
a larger share of the fair bandwidth. Hence, one may
argue that this is unfair to other TCP connections.
On the other hand, one can view this approach as
a way of providing higher priority for streaming ap-
plications over other non time-sensitive applications
under resource constraints. We also note that one can
use UDP to achieve the desired throughput. However
unlike UDP, using multiple TCP connections can pro-
vide (a) congestion control mechanism to avoid con-
gestion collapse, and (b) automatic retransmission of
lost packets. Assuming multiple TCP connections are
used, there are still issues associated with providing
the desired throughput in a congested network.

In order to maintain a constant throughput during
a congested period, one possible approach is to in-
crease the number of TCP connections until the mea-
sured throughput exceeds the desired one. This ap-
proach suffers from a few drawbacks. First, the to-
tal resulting throughput may still exceed the desired
throughput by a large amount since the sending rate
of each additional TCP connection may be too high.
Second, if only a small number of TCP connections are
required to exceed the desired throughput, this tech-
nique may not be resilient to the sudden increase in
traffic as analyzed in Section 3.1. A better approach
is to use a larger number of TCP connections but ad-
just the receiver window size of each connection to
precisely control the sending rate. It is undesirable to
use too many TCP connections as they use up system
resources and may further aggravate an already con-
gested network. In practice, our algorithm maintains
a relatively stable number of TCP connections while
varies the size of the receiver windows to achieve the
desired throughput. In the next section, we describe
the algorithm to adjust the receiver windows.

3.2.1 The Algorithm

Based on previous discussion, our current algorithm
uses a fixed, default number of TCP connections and
only varies receiver window size to obtain the desired
throughput Td. We envision that the application or
the user can change the default number of TCP con-
nections as deemed necessary. Hence, the inputs to the
algorithm are the desired user’s throughput Td and the
number of TCP connections. Below are the steps of
our proposed algorithm.
Initializing steps:

1. Set N , the number of TCP connection to the user
input.

2. Set the receiver window size wi = TdRTT
(MTU)N for

connection i.

Running steps:
The actual throughput Tm is measured at at every
δ second and the algorithm dynamically changes the
window size based on the measured Tm as follows.

3. If both of the following conditions

(a) Tm < Td, and

(b) Ws =
∑

i wi ≤
fTdRTT

MTU
where f > 2

are true, run AdjustWindow(Td, Tm).

4. If Tm > Td + λ, run AdjustWindow(Td,Tm).

5. Else, keep the receiver window size the same.

We now discuss each step of the algorithm in de-
tail and show how to choose appropriate values for the
parameters. In step 1, we found empirically, N = 5
works well in many scenarios. If user does not specify
the number of TCP connections, the default value is
set to N = 5. In step 2, we assume that the net-
work is not congested initially, hence the total ex-
pected throughput and the total receiver window size
Ws would equal to Td and TdRTT/MTU respectively.
Note that the average RTT can be obtained easily at
the receiver.

In the running steps, δ should be chosen to be sev-
eral times the round trip time since the sender cannot
respond to the receiver changing window size for at
least one propagation delay, or approximately half of
RTT. As a result, the receiver may not observe the
change in throughput until several RTTs later. In
most scenarios, we found that setting the measuring
interval δ = 8RTT works quite well in practice. In

step 3, the algorithm tries to increase the throughput
by increasing the window size of each connection via
the routine AdjustWindow. The implementation de-
tails of AdjustWindow are discussed in Section 3.2.2.
The first condition of step 3 indicates the measure
throughput is still under the desired one. The second
condition limits the maximum total receiver window
size. Recall that in the congestion state, the aver-
age size of the receiver window is Wmax = 2TmRTT

MTU
.

Hence, increasing wi beyond this value would not in-
crease the TCP throughput. However, if we let wi in-
crease without bound, there will be a spike in through-
put once the network becomes less congested. To
prevent unnecessary throughput fluctuation, our al-
gorithm limits the sum of receiver window size Ws to
f TdRTT

MTU
where f > 2 is used to control the height of

the throughput spike. Larger and small values of f
result in higher and lower throughput spikes respec-
tively, as discussed later in Section 4. We note that
if the desired bandwidth is smaller than the physi-
cal bandwidth limit, an improved algorithm can open
a new connection to potentially achieve the desired
bandwidth. At present, we have not investigated this
approach in details, as we have not found a good cri-
terion for removing connections when the network be-
comes less congested.

Step 4 of the algorithm is similar to step 3 except
the receiver window size now would be reduced, using
the same AdjustWindow routine. λ in the inequality
Tm > Td + λ is a small throughput threshold used to
ensure Tm to be approximately equal to Td, and at
the same time, to prevent Tm from going below Td.
Finally, since the measured throughput can be noisy,
we use the exponential average measured throughput
computed recursively as Tm = αTm +(1−α)Tn where
Tn is the new throughput sample and α < 1 is a
smoothing parameter.

3.2.2 Adjusting the receiver window sizes

We now discuss AdjustWindow in detail. In this step,
the algorithm increases (decreases) the window size wi

for a subset of connections if the measured through-
put is smaller (larger) than the desired throughput.
There exists an optimal way for choosing a subset of
connections for changing the window size and the cor-
responding increments in order to achieve the desired
throughput. If the number of chosen connections for
changing the window size and the corresponding win-
dow increments are small, then the time for achiev-
ing the desired throughput maybe longer than neces-
sary. On the other hand, choosing too large a number
of connections and increments may result in higher

throughput than necessary. For example, assuming
we have five TCP connections, each with RTT of 100
milliseconds, MTU equals to 1000 bytes, and the net-
work is in non-congestion state, then changing the re-
ceiver window size of all the connections by one can
result in a total change in throughput of 5(1000)/.1
= 50 Kbytes per second. In a congested scenario, the
change will not be that large, however, one may still
want to control the throughput change to a certain
granularity. To avoid these drawbacks, our algorithm
chooses the number of connections for changing their
window size and the corresponding increments based
on the current difference between the desired and mea-
sured throughput. The pseudo codes of the algorithm
is shown below.
AdjustWindow(Td, Tm)

1. Ds = d|Td − Tm|RTT/MTUe

2. If Td > Tm

(a) Sort the connections in the increasing order
of wi

(b) While Ds > 0
wi := wi + 1
Ds := Ds − 1
i := (i + 1) mod N

3. If Td < Tm

(a) Sort the connections in the decreasing order
of wi

(b) While Ds > 0
wi := wi − 1
Ds := Ds − 1
i := (i + 1) mod N

The reasoning behind the algorithm is as follows.
Consider the case when Tm < Td. If there is no con-
gestion, setting the sum of window size increments Ds

from all the connections to d(Td − Tm)RTT/MTUe
would result in a throughput increment of Td − Tm,
hence the desired throughput would be achieved. If
there is a congestion, this total throughput increment
would be smaller. However, subsequent rounds of win-
dow increment would allow the algorithm to reach the
desired throughput. This method effectively produces
a large or small total window increment at every sam-
pled point based on a large or small difference be-
tween the measured and desired throughput, respec-
tively. Steps 2a and 2b in the above algorithm ensure
the total throughput increment is equally contributed
by all the connections. On the other hand, if only
one connection j is responsible for all the throughput,

Cross traffic

generator

TCP sender
TCP receiverRouter

6 Mbps

6 Mbps

6 Mbps

Figure 3: Simulation topology.

i.e. wi = 0 for j 6= i, then we simply have a single
connection whose throughput can be substantially re-
duced in a congested scenario. We note that using our
algorithm, wi’s for different connections at any point
in time differ from each other at most by one. The
scenario where Tm > Td is similar.

3.2.3 Remarks on Sender

At the sender, data is divided into packets of equal
size. These packets are always sent in order. The Mul-
tiTCP system chooses the TCP connection to send the
next packet in a round robin fashion. If a particular
TCP connection is chosen to send the next packet,
but it is blocked due to TCP congestion mechanism,
the MultiTCP system chooses the first available TCP
connection in a round robin manner. For example,
suppose there are 5 connections, denoted by TCP1 to
TCP5. If none of TCP connection is blocked, packet
1 would be sent by TCP1, packet 2 by TCP2, and so
on. If TCP1 is blocked, then TCP2 would send packet
1 and TCP3 would send packet 2, and so on. When
it is TCP1’s turn again and if TCP1 is not blocked, it
would send packet 5. This is similar to socket striping
technique in [14].

4 Results
In this section, we show simulation results using

NS to demonstrate the effectiveness of our MultiTCP
system in achieving the required throughput as com-
pared to the traditional single TCP approach. Our
simulation setup consists of a sender, a receiver, and a
traffic generator connected together through a router
to form a dumb bell topology as shown in Figure 3.
The bandwidth and propagation delay of each link in
the topology are identical, and are set to 6 Mbps and
20 milliseconds, respectively. The sender streams 800
kbps video to the receiver continuously for a duration
of 1000s, while the traffic generator generates cross
traffic at different times by sending packets to the re-
ceiver using either long term TCPs or short bursts of

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

Time in second

Th
ro

ug
hp

ut
 in

 kb
ps

Multi−tcp with 5 TCP connections
Multi−TCP with 2 TCP connections
Traditional streaming with 1 TCP connection

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Time in second

Av
er

ag
e

wi
nd

ow
 si

ze

Multi−tcp with 5 TCP connections
Multi−TCP with 2 TCP connections
Traditional streaming with 1 TCP connection

(b)

Figure 4: (a) Resulted throughput and (b) average
receiver window size when using 1, 2 and 5 TCP con-
nections.

UDPs. In particular, from time t = 0 to t = 200s,
there is no cross traffic. From t = 200s to t = 220s
and t = 300s to t = 340s, bursts of UDPs with rate
of 5.5 Mbps are generated from the traffic generator
node to the receiver. At t = 500s the traffic gener-
ator opens 15 TCPs connections to the receiver, and
5 additional TCP connections at t = 750s. We now
consider this setup under three different scenarios: (a)
the sender uses only one TCP connection to stream the
video, while the receiver sets the receiver window size
to 8, targeting at 800 kbps throughput, (b) the sender
and the receiver use our MultiTCP system to stream
the video with the number TCP connections limited
to two, and (c) the sender and the receiver also use
our proposed MultiTCP system, except the number
of TCP connections are now set to five. Table 1 shows
the parameters used in our MultiTCP system.

Sampling interval δ 300 ms
Throughput smoothing factor α 0.9
Guarding threshold λ 7000 bytes
Throughput spike factor f 6

Table 1: Parameters used in MultiTCP system

Figure 4(a) shows the throughput of three described
scenarios. As seen, initially without congestion, using
the traditional single TCP connection can control the

throughput very well since setting the size of the re-
ceiver window to 8 achieves the desired throughput.
However, when traffic bursts occur during the inter-
vals t = 200s to t = 220s and t = 300s to t = 340s,
the throughput of using a single TCP connection re-
duces substantially to only about 600 kbps. For the
same congested period, using two TCP connections
results in higher throughput, approximately 730 kbps.
On the other hand, using five TCP connections pro-
duces approximately the desired throughput, demon-
strating that a larger number of TCP connections re-
sults in higher throughput resilience in the presence of
misbehaved traffic such as UDP flows. These results
agree with the analysis in Section 3.1. It is interest-
ing to note that when using two TCP connections,
there are spikes in the throughput immediately after
the network is no longer congested at t = 221s and
t = 341s. This phenomenon relates to the maximum
receiver window size set during the congestion period.
Recall that the algorithm keeps increasing the wi until
either (a) the measured throughput exceeds the de-
sired throughput or (b) the sum of receiver window
size Ws =

∑
i wi reaches f TdRTT

MTU
. In the simulation,

using two TCP connections never achieves the desired
throughput during the congested periods, hence the
algorithm keeps increasing the wi. When network is
no longer congested, the Ws already accumulates to
a large value. This causes the sender to send a large
amount of data until the receiver reduces the window
size to the correct value a few RTTs later. On the
other hand, when using 5 TCP connections, the al-
gorithm achieves the desired throughput during the
congestion periods, as such Ws does not increase to
a large value, resulting in a smaller throughput spike
after the congestion vanishes.

Next, when 15 cross traffic TCP connections start
at t = 500s, the resulting throughputs when using one
and two TCP connections reduce to 700 kbps and 350
kbps, respectively. However, throughput when using
5 TCP connections stays approximately constant at
800 kbps. At t = 750s, 5 additional TCP connections
start, throughput are further reduced for the one and
two connection cases, but it remains constant for the
five-connection case. These results demonstrate that
our algorithm is able to achieve the desired through-
put and maintain precise rate control under a variety
congested scenarios with competing UDP and TCP
traffic. We should emphasize again that, the appli-
cations based on our system indeed obtain a larger
share of the fair bandwidth. However, we believe that
under limited network resources, time-sensitive appli-
cations like multimedia streaming should be treated

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

Time in second

T
hr

ou
gh

pu
t i

n
kb

ps

Multi−tcp with 5 TCP connections
Multi−TCP with 2 TCP connections
Traditional streaming with 1 TCP connection

Figure 5: Resulted throughput when using 1, 2 and 5
TCP connections with cross traffic having larger RTT
than that of video traffic.

preferentially as long as the performance of all other
applications do not degrade significantly. Since our
system uses TCP, congestion collapse is not likely to
happen as in the case of using UDP when network
is highly congested. In fact, DiffServ architecture uses
the same principle by providing preferential treatment
to high priority packets.

Figure 4(b) shows the average of the sum of win-
dow size Ws as a function of time. As seen, Ws in-
creases and decreases appropriately to respond to net-
work conditions. Note that using two connections, Ws

increases to a larger value than when using 5 TCP
connections during the intervals of active UDP traf-
fic. This results in throughput spikes discussed earlier.
Also, the average window size in the interval t = 500s
to t = 750s is smaller than that of the interval t = 750s
to t = 1000s, indicating that the algorithm responds
appropriately by increasing the window size under a
heavier load.

We now show the results when the cross traffic has
different round trip time from that of the video traf-
fic. In particular, the propagation delay between the
router and traffic generator node is now set to 40 mil-
liseconds. All cross traffic patterns stay the same as
before. The new simulation shows the same basic re-
sults. As seen in Figure 4, the throughput of 5 con-
nections is still higher than that of two connections
which, in turn is higher than that of one connection
during the congestion periods. The throughput of two
connections in this new scenario is slightly higher that
that of the previous scenario during the congested pe-
riod from t = 500s onward. This is due to a well known
phenomena that TCP connection with shorter round
trip times gets a larger share of bandwidth for the
same loss rate. Since the round trip time of the video

traffic is now shorter than that of the TCP cross traf-
fic, using only two connections, the desired through-
put of 800 kbps can be approximately achieved during
the period from t = 500s to t = 750s, which is not
achievable in previous scenario. So clearly, the num-
ber of connections to achieve the desired throughput
depends on the competing traffic. In practice, to avoid
the potential complexity associated opening and clos-
ing connections, we recommend using a fix number of
connections such as five.

5 Related Work

There have been previous work on using multi-
ple network connections to transfer data. For exam-
ple, path diversity multimedia streaming framework
[10][11][9] provide multiple connections on different
path for the same application. These work focus on
either efficient source or channel coding techniques in
conjunction with sending packets over multiple ap-
proximately independent paths. On the other hand,
our work aims to increase and maintain the available
throughput using multiple TCP connections on a sin-
gle path. There is also a related work using multiple
connections on a single path to improve throughput of
a wired-to-wireless streaming video session [15]. This
work focuses on obtaining maximum possible through-
put and is based TFRC rather than TCP. On the
other hand, our work focuses on eliminating short term
throughput reduction of TCP due to burst traffic and
providing precise rate control for the application. As
such, the analysis and rate control mechanism in our
paper are different from those of [15]. Another re-
lated work is Streaming Control Transmission Proto-
col (SCTP)[16], designed to transport PSTN signaling
messages over IP networks. SCTP allows user’s mes-
sages to be delivered within multiple streams, but it
is not clear how it can achieve the desired through-
put in a congestion scenario. In addition, SCTP is
a completely new protocol, as such the kernel of the
end systems need to be modified. There are also other
work related to controlling TCP bandwidth. For ex-
ample, the work in [17] focuses on allocating band-
width among flows with different priorities. This work
assumes that the bottleneck is at the last-mile and that
the required throughput for the desired application is
achievable using a single TCP connection. On the
other hand, our work does not assume the last-mile
bottleneck, and the proposed MultiTCP system can
achieve the desired throughput in variety of scenarios.
Also, the authors in [18], use weighted proportional
fair sharing web flows to provide end-to-end differen-
tiated services. The work in [19] uses the receiver ad-
vertised window to limit the TCP video bandwidth in

VPN link between video and proxy servers. Finally,
the authors in [20] propose a technique for automatic
tuning of receiver window size in order to increase the
throughput of TCP.

6 Conclusions
We conclude our paper with a summary of contri-

butions. First, we propose and implement a receiver-
driven, TCP-based system MultiTCP for multime-
dia streaming over the Internet using multiple TCP
connections for the same applications. Second, our
proposed system is able to provide resilience against
short-term insufficient bandwidth due to traffic bursts.
Third, our proposed system enables the application to
control the sending rate in a congested scenario, which
cannot be achieved using traditional TCP. Finally, our
proposed system is implemented at the application
layer, and hence, no kernel modification to TCP is nec-
essary. The simulation results demonstrate that using
our proposed system, the application can achieve the
desired throughput in many scenarios, which cannot
be achieved by traditional single TCP approach.

References
[1] MovieFlix, http://www.movieflix.com/.

[2] W. Tan and A. Zakhor, “Real-time internet video
using error resilient scalable compression and tcp-
friendly transport protocol,” IEEE Transactions
on Multimedia, vol. 1, pp. 172–186, june 1999.

[3] G. De Los Reyes, A. Reibman, S. Chang, and
J. Chuang, “Error-resilient transcoding for video
over wireless channels,” IEEE Transactions on
Multimedia, vol. 18, pp. 1063–1074, june 2000.

[4] A. Reibman, “Optimizing multiple description
video coders in a packet loss environment,” in
Packet Video Workshop, April 2002.

[5] H. Ma and M. El Zarki, “Broadcast/multicast
mpeg-2 video over wireless channels using header
redundancy fec strategies,” in Proceedings of
The International Society for Optical Engineering
(SPIE), November 1998, vol. 3528, pp. 69–80.

[6] S. Blake, D. Black, M. Carson, E. Davis, Z. Wang,
and W. Weiss, “An architecture for differentiated
services,” in RFC2475, December 1998.

[7] Z. Wang, Internet QoS, Architecture and Mech-
anism for Quality of Service, Morgan Kaufmann
Publishers, 2001.

[8] P. White, “Rsvp and integrated services in the in-
ternet: A tutorial,” IEEE Communication Mag-
azine, pp. 100–106, May 1997.

[9] T. Nguyen and A. Zakhor, “Multiple sender dis-
tributed video streaming,” IEEETransactions on
Multimedia and Networking, vol. 6, no. 2, pp.
315–326, April 2004.

[10] J. Apostolopoulos, “Reliable video communica-
tion over lossy packet networks using multiple
state encoding and path diversity,” in Proceed-
ing of The International Society for Optical En-
gineering (SPIE), January 2001, vol. 4310, pp.
392–409.

[11] J. Apostolopoulos, “On multiple description
streaming with content delivery networks,” in
InfoComm, June 2002, vol. 4310.

[12] S. Floyd, M. Handley, J. Padhye, and J. Wid-
mer, “Equation-based congestion control for uni-
cast application,” in Architectures and Protocols
for Computer Communication, October 2000, pp.
43–56.

[13] Information Sciences Institute,
http://www.isi.edu/nsnam/ns, Network simula-
tor.

[14] J. Leigh, O. Yu andD. Schonfeld, and R. Ansari,
“Adaptive networking for tele-immersion,” in
Immersive Projection Techonology/Eurographics
Virtual Environments Workshop(IPT/EGVE),
May 2001.

[15] M. Chen and A. Zakhor, “Rate control for
streaming over wireless,” in INFOCOM, July
2004.

[16] Internet Engineering Task Force, RFC 1771,
Stream Control Transmission Protocol, october
2000.

[17] P. Mehra and A. Zakhor, “Receiver-driven band-
width sharing for tcp,” in INFOCOM, San Fran-
cisco, April 2003.

[18] J. Crowcroft and P.Oeschlin, “Differentiated end-
to-end internet services using weighted propor-
tional fair sharing tcp,” 1998.

[19] Y. Dong, R. Rohit, and Z. Zhang, “A practical
technique for supporting controlled quality assur-
ance in video streaming across the internet,” in
Packet Video, 2002.

[20] J. Semke, J. Mahdavi, and M. Mathis, “Auto-
matic tcp buffer tuning,” in SIGCOMM, 1998.

