
PERFORMANCE ANALYSIS OF AN H.263 VIDEO ENCODER FOR
VIRAM

Thinh PQ Nguyen, Avideh Zakhor, and Kathy Yelick*
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley, CA 94720
e-mail: { thinhq, avz}@eecs.berkeley.edu, yelick@cs.berkeley.edu

* This work was supported by DARPA (DABT 63-96-C-0056), California State Micro Program. NSF (MIP-90-57466),
NSF (CCR-9979442)

ABSTRACT
VIRAM (Vector Intelligent Random Access Memory) is a vector
architecture processor with embedded memory, designed for
portable multimedia processing devices. Its vector processing
capability results in high performance multimedia processing,
while embedded DRAM technology provides high memory
bandwidth at low energy consumption. In this paper, we
evaluate and compare performance of VIRAM to other digital
signal processors (DSPs) and conventional SIMD (Single
Instruction Multiple Data) media extensions in the context of
video coding. In particular, we will examine motion estimation
(ME) and discrete cosine transform (DCT) which have been
shown to dominate typical video encoders such as H.263. We
will show that VIRAM outperforms other architectures by 4.6x
to 8.7x in computing ME and by 1.2x to 5.9x in computing
DCT.

1. Introduction
Traditionally, video processing is performed by high-end
workstations or specialized hardware such as ASICS. Recent
popularity of portable and hand-held devices such as digital
cameras and wireless videophones has created a need for
hardware architectures designed for mobile, portable video
processing applications [7]. Conventional microprocessors are
not well suited to video processing because they are optimized
for traditional applications with complex control flow. On other
hand, the kernels of multimedia applications are often
characterized by large amounts of data parallelism and high
memory bandwidth [2]. For instance, standardized video
codecs such as MPEG-4 and H.263 consist of motion estimation
(ME) and discrete cosine transform (DCT), both requiring high
memory bandwidth and involving large amounts of data
parallelism. In this paper, we analyze the speed performance of
an H.263 encoder on VIRAM (Vector Intelligent Random
Access Memory), the vector microprocessor being designed at
U.C. Berkeley. By integrating vector processing with embedded
DRAM technology, VIRAM eliminates off-chip memory
accesses, and therefore achieves high memory bandwidth at low
power consumption. In addition, vector architecture uses less
instruction decode overhead, and as such, VIRAM requires less
area and power.
The H.263 is the ITU (International Telecommunication Union)
recommended standard for very low bit rate video compression
We choose to analyze the performance of H.263 video codec on

VIRAM because it has lower computational and power
requirements compared to other algorithms, and therefore is
well suited for portable devices. Section 2 gives an overview of

VIRAM architecture. Next, in Section 3 we characterize the
time distribution of individual components of the H.263
encoder. In Section 4, we discuss the optimization of ME and
DCT algorithms on VIRAM and the corresponding speed
performance results. Finally, we conclude in Section 5.

2. Overview of VIRAM Architecture
VIRAM is a vector microprocessor designed for media
processing with on-chip main memory [8]. Figure 2 shows the
block diagram of VIRAM architecture. It contains a MIPS core
scalar unit and a loosely coupled vector unit (VU). It is being
designed using 0.18 µm embedded DRAM technology with
target clock rate of 200MHz and 1.2V power supply. Since the
processor and main memory are placed on the same chip,
VIRAM can potentially increase memory bandwidth by 100
times as compared to conventional microprocessor systems [10].
The target power consumption for the vector unit and memory is
2 watts [8,3] which is suitable for some portable devices. We
expect that an industry implementation of this chip would have

Figure 2. Block diagram of VIRAM architecture

VU

MIPS
Scalar
 Core Vector Registers

VAFU VAFU

VMFU

Memory Interface

Memory System
DRAM Banks (16MB)

Encoded output
Sequence

Input
Sequence

Q DCT ME EC

DQ IDCT

Figure 1. Block diagram of H.263 encoder

even lower power.
VIRAM has two vector arithmetic functional units (VAFU) and
one vector memory functional unit (VMFU). Both VAFU and
VMFU have four 64-bit vector data paths that can be used to
perform eight 32-bit or sixteen 16-bit operations per cycle. Both
VAFUs support integer, fixed point, logical operations but only
one supports floating-point operations. VIRAM’s peak
performance is 6.4 GOPS for 16-bit data type, 3.2 GOPS for 32-
bit data type, and 1.6 GOPS for 64-bit data type. Besides vector
arithmetic and logical instructions, VIRAM also supports a
wide range of scalar–vector instructions which have a scalar and
a vector as operands. Most instructions are fully pipelined. The
VMFU can load and store up to 256 bits per cycle. There are
three types of vector memory accesses: unit stride which
accesses contiguous memory locations, strided which accesses
memory locations by a fixed offset, and indexed which accesses
memory locations referenced by elements in a vector register.
VIRAM’s register file contains 32 vector registers and 32 scalar
registers. Each vector register is 2048 bits long. VIRAM’s
memory system has 16 Mbytes of DRAM organized into eight
banks. Finally, there is an I/O interface with 100MB/s parallel
lines. Since VIRAM is not yet available, the performance
results in this paper are based on a near cycle-accurate simulator
that was developed at U.C. Berkeley [4].

3. H.263 Performance Characterization
To characterize the performance of the encoder, we use the
H.263 version 2 written by Telenor, a popular public-domain
implementation of H.263. Our test environment is a SGI
machine running at 180MHz. We first optimize the H.263
encoder by changing many common functions into macros. We
also replace the slow IDCT with the fast IDCT provided with
the Telenor source code. During the measurements, we
minimize the computational load of the machine by not running
any other program. Our tests include four QCIF (176x144)
standard H.263 test sequences: Akyio, Mom, Hall, and
Foreman. Each contains 300 frames. We use quantization level
Q = 10, and target frame rate of 10fps for all the test sequences.
To measure the time spent on memory and arithmetic operations
only, each test sequence is run from 3 to 5 times until the total
time converges to a stable value. This method avoids the
influence of disk accesses since all the data are already cached
in the memory from the previous runs.

As shown in Table 1, ME and DCT dominate around
81% and 9.5% of the total encoding time, respectively. Since
they are also highly vectorizable, we will optimize the H.263
encoder for VIRAM, based entirely on ME and DCT.

4. Performance of H.263 on VIRAM

4.1 Motion Estimation
Motion estimation is used to exploit the inherent temporal
redundancy of a video. In a typical motion estimation process,
each frame of the video is divided into 16x16 macro-blocks.
Given a macro-block in the current frame, the goal is to find the
16x16 region from the previously reconstructed frame that is
most similar to it. In general, the similarity is defined based
on the minimum value of Sum of Absolute Value (SAD)
between the luminance pixel values of the two macroblocks:

SAD(x,y,k,l) =∑∑
= =

++−++
15

0

15

0

|),(0),(1|
j i

jlikFjyixF

where (x,y) and (k,l) are the lower left-corner positions of the
current macro-block and the 16x16 region from the previously
reconstructed frame, respectively, and F1, F0 are the pixel
luminance values from current frame and previously
reconstructed frame.

Since the calculation of SAD is a
dominant operation during motion
estimation, most DSPs and
multimedia extensions vectorize the
SAD routine. Vectorizing SAD
requires the reduction operation
which takes a vector and reduces to a
scalar value by summing all the
elements of the vector, as shown in
Figure 3. Generally, reduction

operation is expensive as it breaks the flow of the vector
pipeline. Figure 4 shows a simple example of vectorized ME,
using a 2x2 macro-block and 3x3 search area. If one places the
macroblock on top of the search area as shown in Figure 4(a),
and starts sliding from left to right and top to bottom, there are
4 possible positions for the macroblock. In each position,
subtracting the corresponding elements of the macroblock and
the search area

block, and taking the absolute value of the subtraction, results in
four 4-dimensional vectors as shown in Figure 4(b). In order to
find out the minimum, we need to use four reduction operations
to obtain four scalar values and choose the minimum value of
the four, which in this case happens to be 4. Alternatively, we
propose a different approach to implement exhaustive search
algorithm on VIRAM that uses only one min reduction operation
when applied to the same example. Min reduction operation

Sequence ME DCT +
IDCT

Other Total

Akiyo
(12.95 kbit/s)

18765
(80.9%)

2306
(9.9%)

2130
(9.1%)

23201

Mom
(16.25 kbit/s)

22446
(82.3%)

2508
(9.2%)

2310
(8.4%)

27264

Hall
(20.47 kbit/s)

17745
(79.5%)

2282
(10.2%)

2300
(10.3%)

22327

Foreman
(65.52 kbit/s)

27367
(82.8%)

2967
(9.0%)

2706
(8.2%)

33040

Table 1 Time in ms for components of H.263

5 4 6 2

7 10

17

Figure 3. Reduction
instruction

Figure 4. (a) Search area and macroblock, (b) Vector
registers containing the absolute differences

3 1 1 4

2 3 0 3

3 0 0 4

2 1 1 0

9

8

7

4

Macroblock

1 2 3
1 2 6
2 3 4

4 6
3 2

Search area

(b) (a)

takes a vector and returns the smallest element in the vector. We
first describe the algorithm then present the VIRAM
architecture features that enable the algorithm.
The method is as follows. Step one: Subtract each entry in the
macroblock from all possible overlapped entries of the search
area, and take the absolute value of the subtraction. For
example, the first entry (0,0) of the macroblock will overlap

with entries (0,0), (0,1), (1,0),
(1,1) of the search area, and the
resulting vector is (3,2,3,2). Since
the macroblock has 4 elements in
this example, we will have 4
resulting vectors as shown in
Figure 5. Step two: Add all
resulting vectors to obtain vector
(9,8,7,4). Each element in this
vector is the SAD at a particular
position in the search area. Step
three: Use only one min reduction
on the final vector to obtain the
minimum SAD.
 To implement the above algorithm
efficiently, the scalar and vector
subtraction instruction is needed to

perform the step one in the example. Unlike other architectures
such as MMX, VIRAM has a wide range of arithmetic scalar
and vector instructions which take a scalar operand and a vector
operand to produce a vector result. Next, to store many possible
overlapped entries of the search area in a few vector registers to
perform the subtraction in step one, the vector registers have to
be long. While most existing architectures have 64 to 128 bits
vector registers, and hence can only store 4 to 8 16-bit values,
VIRAM’s registers are 2048-bit long that can store up to 128
16-bit values. As such, two VIRAM vector registers are enough
to hold 16x16 overlapped search area. In addition, VIRAM
provides the indexed load instruction with autoincrement of the
base register to read the overlapped search area which is usually
a block in the image, into a vector register. Other DSPs such as
the TriMedia [11] do not have the ability to load a block of the
image into a vector register in one instruction. In step 3,
VIRAM provides an efficient way to do min reduction on a N-
dimensional vector with log(N) complexity.

 Table 2. Cycles/frame for the exhaustive search

Tables 2 shows the performance of two versions of VIRAM vs.
Pentium II MMX. The number in the parentheses represents
the speed-up factor of VIRAM over MMX. On the Pentium
MMX, the measured time is multiplied by the clock rate to
obtain the number of cycles, and the measurement is done using
SAD routine provided by Intel Corp [5]. On VIRAM, we use the
cycle-accurate performance simulator. VIRAM-1 is the current
design that can generate four addresses/cycle while VIRAM-2
design can generate eight addresses/cycle for indexed loads.

Note that VIRAM-1 performance is much worse than VIRAM-2
because of the stalls in address generation units by indexed
loads. Address generation stalls happen when address
computations are not fast enough for the vector unit. Still,
VIRAM-1 outperforms MMX by a factor of 4.6.

4.2 Discrete Cosine Transform
The discrete cosine transform maps the pixel values from spatial
domain into the frequency domain for energy compression. A
two-dimensional forward DCT of NxN pixels f(x,y) is given by:

F(u,v) =)
2

)12(
cos()

2

)12(
cos(),(

2
1

0

1

0
N

vy

N

ux
yxfkk

N

N

x

N

y

vu
ππ ++∑∑

−

=

−

=

where ki = 2/1 for i = 0 and ki= 1 otherwise.

There are several fast methods for computing the DCT. In this
paper, we consider a fast DCT algorithm called LLM [9]. While
the original LLM algorithm uses 11 multiplies and 29 additions,
we implement the alternate LLM [9] which uses 12 multiplies
and 32 additions. The advantage of this method is that no data
path contains more than one multiplication. This allows a
simple and accurate implementation in scaled fixed-point
arithmetic, with a minimal number of shifts. We also use 32-bit
data to comply with the MPEG standard. To compute 2-
dimensional DCT, we first take a 1-dimensional DCT along the
column, then take another 1-dimensional DCT along the row.
To do the DCT along the column, we use unit strided load to
read the first 8 rows of the image into 8 vector registers. We
then apply the normal DCT operations across the vector
registers as though they are scalar values, and use unit strided
store to write back the results of column DCT. This process is
repeated for all the rows of the image. Next, to take the DCT
along the row, we apply the same method as above except using
strided load and store to work with the columns of the image.
Unlike other architectures, VIRAM has high memory bandwidth
due to its embedded DRAM technology that allows efficient
strided load and stores [8].

166

85 80

0

50

100

150

200

LLM

1 sub-bank

4 sub-banks

8 sub-banks

Our simulations show that the DCT performance of

VIRAM degrades due to the stalls from address conflicts.
Address conflicts happen when there is an access to the same
memory bank while the previous access has not been completed.
To avoid address conflicts, VIRAM memory banks is divided
into many sub-banks. Figure 6 shows the average number of
cycles for computing 2-dimensional DCT of an 8x8 block using
QCIF image for LLM with different number of sub-banks. As

Size VIRAM-1 VIRAM-2 MMX

QCIF 7.1x10
6

 (4.6x) 3.9x10
6

(8.4x) 3.3x10
7

CIF 2.8x10
7

(5.0x) 1.6x10
7

(8.7x) 1.4x10
8

Figure 6. Cycles/block with different numbers of sub-banks

+

+

+

Figure 5. Improved
method of ME

3 2 3 2

4 0 4 3

1 1 0 0

1 1 0 3

9 4 7 8

4

seen, the number of cycles is reduced by nearly a factor of 2,
from 1 sub-bank design to 4 sub-banks design. However, we
gain only 5 cycles going from 4 sub-banks design to 8 sub-banks
design due to the fact that address conflict is no longer the
bottleneck but the computation.
Table 3 shows number of cycles to compute the DCT of a 8x8
block on different architectures. The number in parentheses
represents the speed-up factor of VIRAM versus other
architectures. As seen, VIRAM outperforms both DSPs and
SIMD multimedia extensions architectures by 1.2x to 5.88x in
computing the DCT. VIRAM and V830 numbers comply with
MPEG accuracy standard. For other numbers, compliance is not
claimed, and hence computationally cheaper algorithms could
have been used. We also obtain 59 cycles per 8x8 block for a
less accurate DCT algorithm called AAN [1] using 16-bit data.

Table 3. DCT performance comparison of VIRAM vs.
others

4.3 Overall Performance
Currently, our cycle-accurate simulator only emulates vector
unit of VIRAM. We do not yet have a scalar performance
simulator. To measure the overall speed performance of the
H.263 encoder which has both scalar and vector codes, we
measure the time spent on the scalar code separately on a SGI
machine, and the time spent on the vector code on the simulator.
We then combine the results to get the overall performance of
H.263. This method is reasonably accurate since VIRAM has
the same scalar core as the SGI machine. Applying this
technique to VIRAM with 4 sub-banks, we obtain the average
achievable encoding frame rate for the test sequences in Table 4
using exhaustive search for motion estimation, and LLM for
DCT. As we optimize the motion estimation and the DCT, the
time spent on variable length coding (VLC) becomes significant.
For example, the DCT and the motion estimation of the
Foreman sequence take about 42 percent of the total time while
VLC and other miscellaneous operations take the other 58
percent. At present time, we have not optimized the VLC for
VIRAM. As vector processing speed increases, we anticipate
VLC to become the bottleneck in a typical video encoder.

Akiyo
(12.95 kbit/s)

Mom
(16.25 kbit/s)

Hall
(20.47 kbit/s)

Foreman
(65.52 kbit/s)

23.5 fps 22.7fps 22.7fps 20.9fps

Table 4. Average encoding speed for H.263 on VIRAM.

As seen, the achievable encoding rates are high enough to result
in acceptable quality for most multimedia and communication
applications.

5. Summary
In this paper we presented an overview of VIRAM architecture,
a vector microprocessor with embedded memory, optimized for
multimedia applications. Although VIRAM is a general-
purpose processor, its performance exceeds other DSP and
multimedia extension architectures consistently by a factor of
4.6 to 8.7 in computing motion estimation and by 1.2 to 5.88 in
computing discrete cosine transform. The improvement in the
H.263 encoder performance is due to VIRAM’s high memory
bandwidth based on the embedded DRAM technology. With
high memory bandwidth, VIRAM architecture is able to provide
efficient indexed and strided memory operations that are well
suited for memory access patterns of the discrete cosine
transform and motion estimation. The long vector registers of
VIRAM allow an efficient vectorized algorithm for the
exhaustive search motion estimation. In addition, unlike
existing multi-chip solutions, VIRAM is a one-chip solution,
and as such, it results in lower power consumption, and smaller
area.

6. References
[1] Arai, Agui, and Nakajima. Trans. IEICE E-71(11):1095
[2] K. Asanovic. Vector Microprocessors. PhD thesis,

Computer Science Division, UCB, 1998.
[3] R. Fromm, et al. “The energy efficiency of IRAM

architectures.” ISCA, pages 327-337, June 1997.
[4] R. Fromm, et al. “Vector IRAM Memory Performance For

Image Access Patterns”. Technical Report UCB//CSD-99-
1067. University of California – Berkeley-Oct 1999

[5] Intel Corp. “Using MMX TM Instructions to Compute the
Absolute Difference in Motion Estimation”,
http://developer.intel.com/drg/mmx/AppNotes/ap530.htm

[6] Intel Corp. “JPEG Inverse DCT and Dequantization
Optimized for Pentium II Processor.” Online Document:
http://developer.intel.com/drg/pentiumII/appnotes/886.htm

[7] C.E Kozyrakis and D.A. Patterson. “A New Direction in
Computer Architecture Research. “ IEEE Computer,
31(11):24-32, November 1998

[8] C.E Kozyrakis. “A media-enhanced vector architecture for
embedded memory systems.” Technical Report UCB//CSD-
99-1059, UCB, July 1999

[9] C. Loeffler, et al. "Practical Fast 1-D DCT Algorithms with
11 Multiplications", ICASSP '89, pp. 988-991.

[10] D. Patterson, et al. “A Case for Intelligent DRAM”. IEEE
Micro, April 1997

[11] TM1000 data book, Philips Inc.

VIRAM (4 sub-banks, LLM) 85
TriMedia TM-1000 from Philips 160 (1.88x)

TI TMS320C62 230 (2.71x)

PowerPC with Alitvec 102 (1.20x)

HP PA-8000 with MAX2 147 (1.73x)

Intel Pentium II + MMX 500 (5.88x) [6]

NEC V 830/A 201 (2.36x)

