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Abstract—We consider a channel with discrete input X , a
continuous noise that corrupts the input X to produce the
continuous-valued output U . A thresholding quantizer is then
used to quantize the continuous-valued output U to the final
discrete output V . The goal is to jointly design a thresholding
quantizer that maximizes the mutual information between input
and quantized output I(X;V ) while minimizing a pre-specified
function of the quantized output F (pV ). A general dynamic
programming algorithm is proposed having the time complexity
O(KNM2) where N , M and K are the sizes of input X , output
U and quantized output V , respectively. Moreover, we show
that if F (pV ) =

∑K
i=1 gi(pvi) where gi(.) is a convex function,

pvi ∈ pV = {pv1 , . . . , pvK} is the probability mass function
of output vi ∈ V and the channel conditional density p(u|x)
satisfies the dominated condition (often true in practice), then
the existing SMAWK algorithm can be applied to reduce the
time complexity of the dynamic programming algorithm from
O(KNM2) to O(KNM). Both theoretical and numerical results
are provided to verify our contributions.

Keyword: channel quantization, mutual information, con-
straints, threshold, partition, optimization.

I. INTRODUCTION

A communication system can be modeled by an abstract
channel with a set of inputs at the transmitter and a set
of corresponding outputs at the receiver. Often times the
transmitted symbols (inputs) are different from the receiving
symbols (outputs), i.e., errors occur due to many factors such
as the physics of signal propagation through a medium or
thermal noise. Thus, the goal of a communication system is to
transmit the information reliably at the fastest rate. The fastest
achievable rate with the error approaching zero for a given
channel is the channel capacity which is the maximum mutual
information between the input and output random variables. In
the case of discrete memoryless channels (DMC), a channel
matrix is used to specify the property of the transmissions.
Furthermore, for a given channel matrix, the mutual infor-
mation is a concave function of the input probability mass
function (pmf), thus there are efficient convex algorithms to
find the channel capacity [1], [2], [3]. On the other hand, in
many real-world scenarios, the channel matrix is not given.
Rather, the channel matrix is a result of the engineering design
under many considerations such as complexity of circuit im-
plementations, power consumption, encoding/decoding speeds,

and so on. In this case, the entries in the channel matrix are
also the variables to be optimized. Consequently, the mutual
information is no longer a concave function of the input pmf,
but is a possibly non-concave/convex function in both input
pmf and the entries of the channel matrix. Thus, the problem
becomes more challenging.

A particular class of channel matrix design is the quantizer
design. Specifically, many real-world communication scenar-
ios can be modeled as a channel with discrete inputs, additive
continuous noise, and the discrete outputs as a result of
quantizing the sum of continuous noise and discrete inputs.
In such cases, each quantization scheme produces a different
channel matrix which ultimately determines the channel ca-
pacity. Thus, designing an optimal quantizer is critical. Many
quantizers are based on some intuitive objectives such as
minimizing the MSE distortion and error rate or maximizing
the mutual information (capacity) between the inputs and
outputs [4]–[7]. Recently, designing quantizer that maximizes
the mutual information [8]–[13] is very important because of
their applications in designing Polar code and LDPC code
decoders [14], [15].

Our paper is focused on an important class of quantizer
called the thresholding quantizer shown in Fig. 1. The trans-
mitted signal X is discrete, the noise is continuous, thus the
received signal U is continuous and the output V is discrete
due to the quantization of U via a thresholding scheme. The
thresholding scheme (Section II) is designed to maximize
the mutual information I(X;V ) while minimizing a pre-
specified function of the quantized output pmf F (pV ). Unlike
many existing works, introducing F (pV ) into the problem
formulation allows one to shape the quantized output V for dif-
ferent applications. Several application examples using F (pV )
are presented in Sec. II. To that end, this paper makes the
following contributions: (1) we propose a general and efficient
dynamic programming algorithm having the time complexity
O(KNM2) to determine the optimal thresholding values
of the quantizer that maximizes I(X;V ) while minimizing
F (pV ); (2) we show that if F (pV ) =

∑K
i=1 gi(pvi) where

gi(.) is a convex function, pvi
∈ pV = {pv1 , . . . , pvK} is

the probability of output vi ∈ V and the channel conditional
density p(u|x) satisfies the dominated condition (often true
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Figure 1: A discrete memoryless channel having N inputs and
K quantized outputs using K − 1 thresholds.

in practice), then the existing SMAWK algorithm [16] can
be applied to reduce the time complexity of the dynamic
programming algorithm from O(KNM2) to O(KNM).

II. PROBLEM FORMULATION

Fig. 1 illustrates a thresholding quantizer for a discrete
memoryless channel. The input set consists of N discrete
transmitted symbols xi ∈ R, x1 < x2 < · · · < xN with
a given pmf pX = {p1, p2, . . . , pN}. Due to a continuous
noise, the received signal u ∈ R is modeled via the condi-
tional density pU |X(u|xi). We note that pU |X(u|xi) can have
different statistics associated with each transmitted signal xi.
The quantized outputs V is obtained by quantizing u into
K discrete outputs vi ∈ V = {v1, . . . , vK} using K − 1
thresholds h1 ≤ h2 ≤ · · · ≤ hK−1 with the following
mapping:

Q(u) = vi, if hi−1 ≤ u < hi. (1)

Let pX be the input pmf, pV = (pv1
, pv2 , . . . , pvK ) be the

pmf of the quantized output, F (pV ) be a given function of pV
of the form:

F (pV ) = g1(pv1) + g2(pv2) + · · ·+ gK(pvK
), (2)

for some functions gi : R → R. Since both I(X;V ) and
pV depend on the quantizer, i.e., they are functions of the
threshold vector h = (h1, h2, . . . , hK−1), we are interested in
solving the following optimization problem:

max
h

βI(X;V )− F (pV ), (3)

where β is pre-specified parameter to control a given trade-off
between I(X;V ) and F (pV ). Since we assume a fixed input
pmf pX , this problem is equivalent to the problem:

min
h

[βH(X|V ) + F (pV )]. (4)

The problem setup above can be used in many scenarios that
involve subsequent storage or transmission of V as shown in
Fig. 2. We list a few possible candidates below.

Compression. Suppose we want to compress data U to V
and then transmit/store V as the intermediate representation
of U over a low bandwidth channel or in a smaller storage.
Since the goal is to maintain the mutual information between
X and V as much as possible while reducing the information

Figure 2: Quantized output V becomes the input of a relay
channel having optimal input distribution q∗. One wants to
find an optimal quantizer which maximizes I(X;V ) while
minimizing the distance D(pV , q

∗) between pV and q∗.

in V (thus compression), F (pV ) can be used to represent the
entropy function

H(pV ) = H(pv1 , pv2 , . . . , pvK
) = −

K∑
i=1

pvi
log(pvi

),

which satisfies the form in (2), where gi(x) = −x log(x), ∀i.
Power consumption. Suppose we want to minimize the

power to transmit V over the relay channel using PAM while
keeping the mutual information between X and V as much
as possible. Each value v1, v2, . . . , vK are transmitted using
pulses of different magnitudes associated with the varying
power levels w1, w2, . . . , wK . Thus, the average transmit
power consumption can be represented as

F (pV ) = F (pv1
, pv2

, . . . , pvK ) =
K∑
i=1

wipvi
,

which satisfies the form in (2), where gi(x) = wix.
Matching pmf. Suppose we want to match the output pmf

pV to some given pmf q∗ = (q∗1 , q
∗
2 , . . . , q

∗
K), the input to the

relay channel (Fig. 2). The motivation for matching is that q∗

was determined a priori to be optimal/good in some context
for the relay channel. In this scenario, we want to minimize
the difference between pV and q∗. Two popular methods to
measure the differences between any two pmfs are the l2 and
Kullback Leibler (KL) distances. The KL and l2 distances are
defined respectively as:

DKL(pV ||q∗) =
K∑
i=1

pvi log
pvi
q∗i

,

Dl2(pV , q
∗) =

K∑
i=1

(pvi − q∗i )
2.

Both distances can be easily verified to satisfy the form in (2).
Deterministic Information Bottleneck (DIB). It can be

seen that the existing DIB method [17] which solves the
following problem

Q∗ = min
Q

[H(pV )− βI(X;V )], (5)

is an instance of our problem. We also note that DIB method
finds the local solution (5) for a general quantizer. In contrast,
our algorithm finds a global solution within the space of all
possible thresholding quantizers.
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III. ALGORITHMS

In this section, we first present a dynamic programming
algorithm that can determine an optimal solution with the
time complexity of O(KNM2) where N is the size of input
alphabet X , K is the size of quantized output set V , and M is
the parameter to control the solution precision. In particular,
since the conditional pmf pU |X(u|x) is a continuous function,
u is a continuous value, and to perform numerical computa-
tions, we need to quantize the range of U into one of the M
disjoint bins (ui, ui+1] of equal width of ε, i = 1, 2, . . .M .
Note that M >> K, and a larger M results in a smaller
ε. The algorithms will find each hi that is no more than
ε/2 away from the true h∗

i . We then show that under some
certain conditions, the dynamic programming algorithm (4)
can be augmented to find the optimal solution in linear time
complexity O(KNM).

A. Dynamic Programming Algorithm

The key to the proposed dynamic programming algorithm
is the following observation. First, our problem is a 1-
dimensional clustering problem where the values of u are
clustered into K bins using the thresholding vector h =
(h1, h2, . . . , hK−1) as the boundaries with h1 ≤ h2 ≤ · · · ≤
hK−1. Specifically, by definition of a thresholding quantizer,
if hl−1 ≤ u < hl then Q(u) = vl. Therefore, hl−1 is ui and
hl is uj for some i < j. Thus the clustering problem is to
determine the K − 1 indices of u that form the boundaries of
the K clusters.

Now, let us define D(i, j, k) as the minimum (optimal) value
of βH(X|V ) + F (pV ) by clustering u in the range (ui, uj ]
into k clusters where 0 ≤ i ≤ j ≤ M and 0 ≤ k ≤ K.
Each D(i, j, k) is the result of using an optimal quantizer
Q∗(i, j, k) which separates points in (ui, uj ] to k clusters using
k− 1 thresholds. For a given Q∗(i, j, k), define w(i, j, k) and
t(i, j, k) as the values of the conditional entropy βH(X|V )
and cost function F (pV ) associated with the optimal quantizer
Q∗(i, j, k), then

D(i, j, k) = w(i, j, k) + t(i, j, k). (6)

Now, the key of the dynamic programming algorithm is
based on the following recursion:

D(i, j, k) = min
0≤q≤j−1

{D(i, q, k − 1) +D(q + 1, j, 1)}. (7)

The recursion can be briefly explained as follows. First, we
can show that the value of the k partitions is equal to the
sum of values of each of its partitions. This is the property of
H(X|V ) and F (pV ) as each can be written as functions of
sum of their partitions, i.e.,

βH(X|V ) + F (pV ) = β[

K∑
i=1

pviH(X|vi)] +
K∑
i=1

gi(pvi)

=

K∑
i=1

[βpvi
H(X|vi) + gi(pvi)]. (8)

In the above recursion, the value of k partitions with a total
of j elements can be written as the sum of k−1 partitions with
q elements and one additional partition with j − q elements.
Thus, minimum value can be found by searching for the right
index q, and the recursion follows. Again, we note that this
dynamic programming approach works because the value of
the large partition equals the sum of the values of its smaller
sub-partitions.

Now, consider initial values D(i, j, k) = 0 if j = 0 or k =
0. From this initial values, using (7), one can compute all of
D(i, j, k). The optimal solution is D(1,M,K). After finding
the optimal solution, one can use the backtracking method
to find all the optimal thresholds. The backtracking step is
performed by storing the indices that result in the minimum
values. Specifically,

Hk(j) = argmin
q

{D(i, q, k − 1) +D(q + 1, j, 1)}. (9)

Then, Hk(j) saves the position of k − 1th threshold. Fi-
nally, let h∗

K = M , for each i = {K − 1,K − 2, . . . , 1}, all
of other optimal thresholds can be found by backtracking.

h∗
i = Hi+1(h

∗
i+1). (10)

We note that given pX , pU |X(u|x), and h, it is straightfor-
ward to compute βH(X|V )+F (pV ), and therefore D(i, j, k).
However, we omit these derivations due to limited space.
Rather, we present the Algorithm 1 that shows the proposed
dynamic programming approach.

Algorithm 1 Dynamic programming for finding D(1,M,K)

1: Input: pX , pU , pU |X , N , M , K.
2: Initialization: D(i, j, k) = 0 for ∀ j = 0 or k = 0.
3: Recursion step:
4: For k = 1, 2, . . . ,K
5: For j = 1, 2, . . . ,M

D(i, j, k) = min
0≤q≤j−1

{D(i, q, k − 1) +D(q + 1, j, 1)}.

6: End For
7: Store the local decision:

Hk(j) = argmin
q

{D(i, q, k − 1) +D(q + 1, j, 1)}.

8: End For
9: Backtracking step: Let h∗

K = M , for each i = {K −
1,K − 2, . . . , 1}

h∗
i = Hi+1(h

∗
i+1).

10: Output: D(1,M,K), h∗ = {h∗
1, h

∗
2, . . . , h

∗
K−1}.

Complexity. Algorithm 1 requires O(KM2) memory space
to store D(i, j, k) and O(KM) memory space to store Hi(j),
the total auxiliary space is O(KM2 + KM). We also note
that except step 5 in Algorithm 1 takes the time complexity
of O(KNM2), other steps can be done in a linear time. Thus,
the total time complexity of Algorithm 1 is O(KNM2).
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B. Speedup Dynamic Programming Using SMAWK algorithm

SMAWK algorithm [16] use the special property of totally
monotone matrix (to be defined shortly) to find the maximum
(or minimum) value in each row of M ×M matrix in linear
time O(M). As will be seen shortly, SMAWK can be used to
speed up the proposed dynamic programming algorithm under
a certain condition. We first begin with some definitions.

Definition 1. Dominated conditional distribution channel.
A channel is a dominated conditional distribution channel if
all the densities φi(u) = pU |X(u|xi) satisfies:

φi(u)

φj(u)
≥ φi(u

′)
φj(u′)

, (11)

for ∀ i ≤ j and u ≤ u′.

In practice, the inequality (11) is not too restricted. For
example, in typical communication scenarios [7], [18] where
the noise is additive, i.e., u = xi + n, the inequality (11)
holds for a variety of common noise distributions such as
normal distribution, exponential distribution, gamma distribu-
tion, uniform distribution, and more generally, all log-concave
distributions (Corollary 2 [7]).

Definition 2. Quadrangle inequality (Monge matrix). For
i ≤ j ≤ k ≤ l. The function w(.) satisfies quadrangle
inequality if

w(i, k) + w(j, l) ≤ w(i, l) + w(j, k). (12)

For more detailed about quadrangle inequality or Monge
matrix, please see [19].

Definition 3. Totally monotone matrix. A 2× 2 matrix

A =

[
A11 A12

A21 A22

]

is monotone if A11 > A12 implies that A21 > A22. A matrix
B is totally monotone matrix if any 2× 2 submatrix of B is
monotone matrix.

Reader can view [16] for the original definition and appli-
cations of the totally monotone matrices.

Theorem 1. If any 2 × 2 submatrix of B satisfies the
Quadrangle inequality or Monge matrix, i.e.,

B[i1, j1] +B[i2, j2] ≤ B[i1, j2] +B[i2, j1], (13)

for i1 ≤ i2 and j1 ≤ j2, then B is a totally monotone matrix.

Proof. The proof can be viewed in [20], Lemma 2.4.

Now, we reformulate the recursion step in Algorithm 1. For
convenience, we define the matrix Dk, k = 1, 2, . . . ,K−1 as
follows:

Dk[i, j] =

{
D(0, j − 1, k) +D(j, i, 1), i ≥ j,

+∞ i < j.

Noting that D(j, i, 1) corresponds to the cost of clustering
the interval (uj , ui) to k + 1th cluster (vk+1). Thus, from (6)
and (8)

D(j, i, 1) = w(j, i, 1) + t(j, i, 1)

= βpvk+1
H(X|vk+1) + gk+1(pvk+1

). (14)

Thus, solving (7) (step 5, Algorithm 1) is equivalent to find
all the minimum in each row of Dk. To show that matrix Dk

is totally monotone, for ∀ i1 ≤ i2 and j1 ≤ j2 one has to
show that

Dk[i1, j1] +Dk[i2, j2] ≤ Dk[i1, j2] +Dk[i2, j1]. (15)

From the definition of Dk[i, j], (15) is equivalent to

D(i1, j1, 1)+D(i2, j2, 1) ≤ D(i1, j2, 1)+D(i2, j1, 1). (16)

Theorem 2. For a dominated conditional distribution channel
and if the output constraint function gi(.) is convex ∀ i, then:

D(r, s, 1) +D(r′, s′, 1) ≤ D(r, s′, 1) +D(r′, s, 1) (17)

for all 1 ≤ r ≤ r′ ≤ s ≤ s′ ≤ M .

Proof. Please see our extension version.

Theorem 2 implies (16). Thus, Dk is a totally monotone
matrix for any dominated conditional distribution channel if
the output constraints function gi(.) is convex.

Corollary 1. For any dominated conditional distribution chan-
nel, if the output constraint function gi(.) is convex ∀ i, the
global solution of problem (4) can be found in O(KNM).

Proof. We begin with the recursion step in Algorithm 1. Due
to Dk is totally monotone matrix, the SMAWK algorithm [16]
can be applied to find the minimum value in each row of
Dk for ∀ k = 1, 2, . . . ,K in O(M) time complexity while
each comparison is in N -dimension space. Therefore, step 5
in Algorithm 1 which is the most time consuming step, can be
solved in a linear time complexity O(KNM) which finally
reduces the time complexity of Algorithm 1 to O(KNM).

IV. NUMERICAL RESULTS

To illustrate the performance of the Algorithm 1, we provide
the following example. Consider a communication system
which transmits input X = {x1 = −1, x2 = 1} having
p1 = 0.2, p2 = 0.8 over an additive noise channel with
i.i.d Gaussian noise N(μ = 0, σ = 1). The output signal is
U = X + N . Due to the additive property, the conditional
density of output u given input x1 is pU |X(u|x1 = −1) =
N(−1, 1) while the conditional density of output u given input
x2 is pU |X(u|x2 = 1) = N(1, 1). Note that u is continuous,
u ∈ U = R.

The continuous output u then is quantized to 4 output
levels V = {v1, v2, v3, v4} using a quantizer Q having 3
thresholds Q = {h1, h2, h3}. Quantized output V is trans-
mitted over a relay channel C with the optimal input pmf
q∗ = [q∗1 , q

∗
2 , q

∗
3 , q

∗
4 ]. We have to find an optimal quantizer

Q∗ such that the mutual information I(X;V ) is maximized
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Figure 3: Distance Dl2(pV , q
∗) and mutual information

I(X;V ) with multiple values of β.

while the distance D(pV , q
∗) is minimized. In this example,

we suppose that q∗ is uniform distribution i.e., q∗1 = q∗2 =
q∗3 = q∗4 = 1/4 and the distance is the l2 distance Dl2(pV , q

∗).
Now, we first discrete U to M = 200 bins from [−10, 10]
with the same width ε = 0.1. Thus, U = {u1, u2, . . . , u200}
with the conditional density pU |X(xi|uj) and puj

, i = 1, 2,
j = 1, 2, . . . , 200 can be determined by using two given
conditional densities pU |X(u|x1 = −1) = N(−1, 1) and
pU |X(u|x2 = 1) = N(1, 1).

Next, to find the optimal quantizer Q∗, we scan all the
possible value of β ≥ 0. For each value of β, we run Algorithm
1 to find the optimal quantizer. The simulation results are
provided in Fig. 3. As seen, a larger value of β results in a
larger mutual information I(X;V ) at the expense of increasing
the distance Dl2(pV , q

∗). On the other hand, a smaller value
of β produces the opposite effect. We also note that for a
relatively large β i.e., β ≥ 6, the optimal quantizer Q∗ yields
the same value of I(X;V ) and Dl2(pV , q

∗). That is because
with a large enough β, the optimal quantizer actually only
finds the optimal of I(X;V ) without paying attention to the
constraint on Dl2(pV , q

∗).
To compare the actual running times of Algorithm 1 (with

and without SMAWK algorithm) and the exhaustive search, we
also run exhaustive search algorithm for all possible thresholds
triplets {h1, h2, h3} ∈ [−10; 10]. We note that the time
complexity of an exhaustive search algorithm is O(MK−1).
The average running time of exhaustive search algorithm is
te = 611.89337 seconds while the average running times
of Algorithm 1 with and without SMAWK algorithm are
tw = 29.37562 and two = 93.25663 seconds, respectively.
All algorithms produce the same optimal values.

V. CONCLUSION

In this paper, we consider a problem of jointly designing a
thresholding quantizer that maximizes the mutual information
between input and quantized output I(X;V ) while minimizing
a pre-specified function of the quantized output F (pV ). This
problem has a number of interesting applications. A general
dynamic programming algorithm is proposed to significantly

reduce the time complexity over the naive exhaustive search.
Moreover, we show that if F (pV ) =

∑K
i=1 gi(pvi

) where
gi(.) is a convex function, pvi ∈ pV = {pv1 , . . . , pvK

} is the
probability mass function of output vi ∈ V and the channel
conditional density p(u|x) satisfies the dominated condition
(often true in practice), then the existing SMAWK algorithm
can be applied to reduce the time complexity of the dynamic
programming algorithm from O(KNM2) to O(KNM). Both
theoretical and numerical results are provided to verify our
contributions.
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