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Abstract— Subscription covering detection is useful to
improving the performance of any publish/subscribe sys-
tem. However, an exact solution to querying coverings
among a large set of subscriptions in high dimension is
computationally too expensive to be practicable. Therefore,
we are interested in an approximate approach. We focus
on spherical subscriptions and propose a solution based
on random projections. Our complexities are substantially
better than that of the exact approach. The proposed
solution can potentially find exact coverings with a success
probability 100% asymptotically approachable.

I. I NTRODUCTION

E-commerce is a popular marketplace involving more
and more producers and consumers everyday. An ef-
fective mechanism for them to find each other is de-
sirable. Of importance is a publish/subscribe system
(a.k.a. pub/sub) that enables consumers to subscribe to
their interests and producers to publish their products,
asynchronously without their knowing each other, so that
subscription-product matching can be made quickly.

The simplest design for a pub/sub is to index every
subscription and product in one central place, where
matchings can be determined locally (e.g., [1]). This
centralized approach obviously does not scale with the
system size.

For scalability, a pub/sub should be designed as a
distributed network involving broker nodes, who share
the load of storing, distributing, and matchmaking sub-
scriptions with products [2]–[6]. Underlying a distributed
pub/sub are routing mechanisms for subscription prop-
agation and product propagation. Typically, during the
propagation of a subscription, each receiving broker
records the subscription coupled with the sending broker
into a routing table. During a product’s propagation,
each visited broker searches its routing table to find
the matching subscriptions and forwards the product

information to the corresponding brokers in the routing
table, to find the way to matching consumers.

The routing table at any broker may grow quickly
as new subscriptions continue to enter the network.
Consequently, searching a routing table for subscriptions
matching a product may be a time-consuming process.
To keep the routing table small, an effective way is to
let a broker forward a subscription during its propa-
gation only if it is not already covered by an existing
subscription locally stored [2], [5], [7]. For example,
consider a brokerA that already stores a subscription
S(X) .= (company = ∗, stock = [$400, $500]) for
a consumerX who is interested in companies with
stock values between$400 and $500. Suppose that
broker A later receives a new subscriptionS(Y ) .=
(company = ∗, stock = [$420, $440]) for a consumer
Y who is interested in companies with stock values
between$420 and $440. Broker A would not need to
forward the new subscription to other brokers becauseA
is already waiting for products that matchS(X), which
will automatically contain the results forS(Y ). In this
example, there are two advantages of stop forwarding
S(Y ): (1) the traffic due to forwardingS(Y ) is avoided,
and (2) the routing tables at other brokers are not getting
larger.

Although potential for improving a pub/sub’s perfor-
mance, the detection of subscription coverings at each
broker, if not done efficiently, may turn into a burdening
process, especially when there are already many sub-
scriptions, each having many attributes. First, it may take
long time to find a covering subscription for every new
subscription. Second, when an existing subscription is re-
moved, because the products matching it may no longer
arrive, all subscriptions covered by this subscription need
to be found and subsequently be forwarded further. To
illustrate this case, we revisit the previous example. If



S(X) is removed, the products matchingS(X) may
never be available. Therefore, brokerA needs to find
S(Y ) and then advertise it further so that the products
matchingS(Y ) can findA. The process of finding all
covered subscriptions of a given one may also be time-
consuming.

Thus, for a pub/sub network of many subscriptions
with many attributes, we need an efficient data structure
for organizing the subscriptions so that fast algorithms
for detection of subscription coverings can be derived.
The challenge is that, despite a few attempts [7]–[10], no
exactsolution to the subscription covering problem can
remain efficient if the subscription dimensionality is high
[10]–[12]. By “exact”, we mean that the covering detec-
tion algorithm always finds coverings exactly. Therefore,
if a new subscription is found to be covered by an
existing subscription, this covering is always correct and
the new subscription is never forwarded further.

Our research in this paper is to seek anapproximate
solution. By “approximate”, we mean that the covering
detection algorithm may return false coverings. Thus,
the broker may redundantly forward a subscription even
when it is covered by an existing subscription. This
redundant forwarding creates some traffic but does not
affect the correctness of the system. The advantage of
an approximate solution is that it may lower both time
and place complexities compared to the exact approach.
The accuracy of an approximate solution is the capa-
bility to avoid redundant forwarding, which should be
maximized.

Recently, approximate solutions to the subscription
covering problem have been proposed for rectangu-
lar subscriptions [9], [10]. In this paper, we assume
spherical subscriptions. First, we show that it is not
trivial to approximate a spherical subscription with a
rectangular one. We then propose a novel approxima-
tion approach based on random projections, in which
redundant forwarding occurs with a probability expo-
nentially approaching zero as we increase the number of
projections. We propose a simple implementation based
on layered range tree to index the subscriptions. This
implementation, forn subscriptions ind dimensions, in
the worst case results inO(log2k−1 n) query time and
O(n log2k−1 n) storage, wherek is any integer less than
d. These bounds are much better than that for the exact
approach.

The remainder of this paper is structured as follows. In
Section II, we formalize the problem and present some
possible solutions as well as our motivation for using
random projections. The proposed data structures and

algorithms are described in Section III. Related work
is discussed in Section V. We conclude our paper with
pointers to our future work in Section VI.

II. PRELIMINARIES

When a product is first generated, we call that an
event and represent it by a point inRd whered is the
number of attributes associated with the event. There
are various ways to represent a subscription. Most work
models a subscription as ad-dimension rectangle. In our
work, we represent each subscription by ad-dimension
sphere (s, r) centered at points ∈ Rd with radius
r ∈ R+. For example, consider a video surveillance
sensor network where sensor cameras are deployed in
many places to detect criminals. In this application, a
subscription specified by a sample photo of a wanted
criminal is submitted to the network with the purpose
that similar pictures are detected and their locations
reported. For image retrieval, a spherical query is used
more often than a rectangular query to define the limit
of image results.

An eventx and a subscription (s, r) is said tomatch
each other, denoted byx ∈ (s, r) iff ‖ x−s ‖ ≤ r. Also,
a subscription (s, r) is said tocoveranother subscription
(s′, r′), denoted by (s, r) ⊇ (s′, r′), if the sphere (s, r)
contains the sphere (s′, r′). Conversely, the latter is said
to becoveredby the former, which is denoted by (s′, r′)
⊆ (s, r). It is easy to prove the following equivalence:

Proposition 2.1: (s, r) ⊇ (s′, r′) ⇔ ‖ s−s′ ‖ ≤ r−r′.

We focus on a single broker that stores a set ofn
subscriptions{(s1, r1), (s2, r2), ..., (sn, rn)}. Our prob-
lem is to devise anefficientmethod that allows forfast
detection of covering relationships in this subscription
set. Specifically, we need a dynamic data structure to
organize the subscriptions so that:

1) The cost, time and space, to construct the data
structure and update it upon subscription insertions
or deletions is low

2) Finding at least a subscription that covers a given
subscription is fast

3) Finding all the subscriptions covered by a given
subscription is fast

A. Contributions

When a new subscription enters the broker, the sim-
plest way to find a subscription covering it is to scan
the subscription set sequentially and check the covering
condition on each visited subscription. With a time com-
plexity of O(nd), which is linear inn, this brute-force
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Fig. 1. Approximating spheres with minimum bounding and
maximum bounded cubes

approach is too expensive for a large publish/suscribe
system where a broker may contain millions of subscrip-
tions. A complexity sub-linear ofn is more desirable.

Another solution is to approximate a spherical sub-
scription by a rectangular subscription because solutions
for the latter are widely available. If we denote by
mBC(s, r) the minimal boundingd-dimension axis-
parallel cube andMBC(s, r) the maximal boundedd-
dimension axis-parallel cube of the subscription(s, r),
we have the proposition below:

Proposition 2.2: The following causalities are true:

1) mBC(s, r) 6⊇ mBC(s′, r′) ⇒ (s, r) 6⊇ (s′, r′)
2) MBC(s, r) ⊇ MBC(s′, r′) ⇒ (s, r) ⊇ (s′, r′)
Therefore, we can conclude on the covering relation-

ship between two spherical subscriptions based on the
covering conditions on the minimal bounding cubes and
maximal bounded cubes as in Proposition 2.2. The only
case that no accurate conclusion about the covering re-
lationship can be made is whenmBC(s, r) ⊇ mBC(s′,
r′) andMBC(s, r) 6⊇ MBC(s′, r′) (see Figure 1).

This ambiguous case occurs if at least one vertex of
MBC(s′, r′) is outsideMBC(s, r). Assuming uniform
distribution for the subscriptions (for both centers and
radii), the probability for the ambiguous case can ap-
proximately be

1−
(

volume(MBC(s, r))
volume(mBC(s, r))

)d

= 1− (
√

2r)d

(2r)d

= 1−
(

1√
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)d

which is highly likely if d is a large number.

s’, r’

s, r

A

B

A’

B’

u

O

O’

C

D

Fig. 2. Projections of two spheres onto a random unit vector

We propose a novel solution that approximates a
spherical subscription by its projection on a set of ran-
dom uni-dimension vectors rather than by its bounding
and bounded cubes. We show that not only finding sub-
scription coverings in the new projection space is more
efficient, but the approximation accuracy can approach
100% asymptotically. Our motivation for using random
projections is explained next.

B. Why Random Projections?

Suppose thatu is a random unit vector inRd. The
projection of a subscription(s, r) on this vector is the
interval u(s, r) = [〈u, s〉 − r, 〈u, s〉 + r] (where 〈., .〉
is the inner product). For example, in Figure 2, the
projection of the sphere(s, r) is the intervalAB =
[〈u, s〉 − r, 〈u, s〉+ r].

It is always true that, if subscription(s, r) covers
subscription(s′, r′), we also haveu(s, r) ⊇ u(s′, r′).
To assess the capability ofu in detecting covering rela-
tionships, we are interested in the conditional probability
that u(s, r) ⊇ u(s′, r′) given (s, r) 6⊇ (s′, r′).

This case is illustrated in Figure 2. Without loss of
generality, suppose thatr ≥ r′. Firstly, we have

AB = u(s, r) ⊇ u(s′, r′) = A′B′

⇔ OC ≤ r

⇔ OD + r′ ≤ r

⇔ ‖ 〈u, s− s′〉 ‖≤ r − r′

⇔ ‖ s− s′ ‖| cos θ |≤ r − r′

⇔ r′ − r

‖ s− s′ ‖ ≤ cos θ ≤ r − r′

‖ s− s′ ‖



Assuming thatθ is uniformly distributed between 0
and2π, the conditional probability that the last inequality
occurs is

Pr

{
r′ − r

‖ s− s′ ‖ ≤ cos θ ≤ r − r′

‖ s− s′ ‖
}

(1)

= 1− 2
π

arccos
(

r − r′

‖ s− s′ ‖
)

(2)

According to Maclaurin series,

arccos z =
π

2
−

(
z1 +

(
1
2

)
z3

3
+

(
1 · 3
2 · 4

)
z5

5
+ ...

)

Let z = r−r′

‖s−s′‖ . Because(s, r) 6⊇ (s′, r′), combining
with Proposition 2.1, we must have0 ≤ z < 1.
Therefore,

arccos z ' π

2
− z

This is a tight approximation because, even when
z is as large as0.9, the next terms after termz of
the Maclaurin series quickly become very small. For
example,

(
1
2

)
z3

3
= 0.1215

(
1 · 3
2 · 4

)
z5

5
= 0.0442

The probability (2) can be approximated as follows:

1− 2
π

arccos z ' 1− 2
π

(
π

2
− z) =

(
2
π

)
r − r′

‖ s− s′ ‖
We note that this probability is conditional on(s, r) 6⊇

(s′, r′). Hence, we obtain the following proposition.
Proposition 2.3: Consider the projection of the sub-

scription/event space onto a random unit vector. Assume
that the subscriptions follow a uniform distribution.
Given two subscriptions(s, r) and (s′, r′) that do not
have a covering relationship, the probability that this
projection results in a covering relationship is close to

(
2
π

) | r − r′ |
‖ s− s′ ‖

Proposition 2.3 suggests that we can detect subscrip-
tion coverings by finding coverings among the subscrip-
tions’ projections on a random unit vector, which is
less demanding in both time and space. In terms of
accuracy using this approach, the probability that a found
covering is false nears zero if the original subscriptions

have similar radii (r ≈ r′) or inter-distant centers (large
‖ s− s′ ‖).

This probability, however, may be as large as2
π ≈ 0.64

in the worst case, which is rather high. We, therefore,
propose to use more than one random projection. The
following proposition provides a bound on the accuracy
of covering detection based on multiple random projec-
tions.

Proposition 2.4: Consider i.i.d. projections of the
subscription/event space ontok random unit vectors
{u1, u2, ..., uk}. Assume that the subscriptions follow a
uniform distribution. Given two subscriptions(s, r) and
(s′, r′):
• If at least one projectionui finds no covering

relationship betweenui(s, r) and ui(s′, r′), it must
be true that no covering relationship exists between
(s, r) and (s′, r′)

• If every projectionui finds thatui(s, r) ⊇ ui(s′, r′),
the probability that(s, r) ⊇ (s′, r′) is closely at
least

1−
(

2
π

)k

Proof: The first conclusion is correct because if
(s, r) ⊇ (s′, r′), it is always true thatui(s, r) ⊇ ui(s′, r′)
for any i. The second conclusion is a consequence of
Proposition 2.3.

This proposition implies that it is highly effective to
detect subscription coverings by projecting the subscrip-
tion space onto multiple random uni-dimensions. The
error probability approaches zero exponentially as the
number of projections increases. We present our data
structures and algorithms in the next section.

III. D ATA STRUCTURES ANDALGORITHMS

In this section, we propose how to organize the
subscriptions so that covering detection based on random
projections can be implemented.

Firstly, in the preprocessing phase when the broker
first starts, it generates the following matrix




u1

u2

...
uk


 :=




u1
1 u2

1 ... ud
1

u1
2 u2

2 ... ud
2

... ... ... ...
u1

k u2
k ... ud

k


 (3)

where each row vectorui is ad-dimension unit vector
i.i.d. randomly generated. To maximize their mutual
independence, if these vectors are not orthogonal, we
can use a Gram-Schmidt process [13] to orthogonalize
them. For each subscription(s, r), we compute a set of



k uni-dimension intervals, each being a projection of the
subscription on a vectorui:

u1(s, r) = [〈u1, s〉 − r, 〈u1, s〉+ r]

u2(s, r) = [〈u2, s〉 − r, 〈u2, s〉+ r]

...

uk(s, r) = [〈uk, s〉 − r, 〈uk, s〉+ r]

These intervals form ak-dimension rectangle in the
(u1, u2, ..., uk)-coordinate space:

RECT (s, r) = u1(s, r)× u2(s, r)× ...× uk(s, r)

We refer to this rectangle by a “k-projection rectan-
gle”, or simply “projection rectangle” when the dimen-
sion is obvious.

Proposition 2.4 implies the following:

1) If RECT (s, r) 6⊇ RECT (s′, r′), then (s, r) 6⊇
(s′, r′)

2) If RECT (s, r) ⊇ RECT (s′, r′), then (s, r) ⊇
(s′, r′) with a probability, roughly, at least1 −
(2/π)k

Therefore, approximating the covering relationship be-
tween two subscriptions by that between their projection
rectangles is highly accurate. In addition, according to
[14], a rectangle ink dimensions can be considered a
point in 2k dimensions:R = [a1, b1] × [a2, b2] × ... ×
[ak, bk] ≡ pR = (a1,−b1, a2, b2, ..., ak,−bk) ∈ R2k so
that

• To find all rectangles that coverR is equivalent
to the orthogonal range query that finds all the
points in the range[a1,∞]× [−b1,∞]× [a2,∞]×
[−b2,∞] × ... × [ak,∞] × [−bk,∞] of the 2k-
dimension space. These points are called thedom-
inating points of the pointpR

• To find all rectangles that are covered byR is
equivalent to the orthogonal range query that finds
all the points in the range[−∞, a1]× [−∞,−b1]×
[−∞, a2]× [−∞,−b2]× ...× [−∞, ak]× [−∞,−bk]
of the 2k-dimension space. These points are called
the dominatedpoints of the pointpR

Therefore, we propose to index each subscription
(s, r) by a 2k-dimension point:

idx(s, r) =




〈u1, s〉 − r
−〈u1, s〉 − r
〈u2, s〉 − r
−〈u2, s〉 − r

...
〈uk, s〉 − r
−〈uk, s〉 − r




We then store these indices using a data structure that
supports orthogonal range searching in high dimension.
We use a2k-dimension layered range tree for simple
indexing implementation (see [15], chapter 5). Therefore,
we obtain the following properties:

• Building time for n subscriptions:O(n log2k−1 n)
• Update time to insert a new subscription or delete

an existing subscription:O(log2k−1 n)
• Time to query coverings:O(log2k−1 n + m) where

m is the number of coverings reported
• Space complexity:O(n log2k−1 n)
Using this data structure, to decide whether to stop

forwarding a new subscription(s, r) when it arrives at a
broker, we follow the algorithm below:

1) Computeidx(s, r) and insert it to the index tree
2) Search the index tree to findone subscription

(s′, r′) such thatidx(s′, r′) dominatesidx(s, r)
a) IF no such(s′, r′) is found, forward(s, r)
b) ELSE check the original covering condition

i) IF ‖ s − s′ ‖ ≤ r − r′, stop forwarding
(s, r)

ii) ELSE forward (s, r)
3) END

This algorithm uses the index tree to quickly find a
subscription covering the new subscription in the index
space. This subscription(s′, r′), if any, could be a true
covering subscription (case 2b(i)) or a false covering
subscription (case 2b(ii)). In either case, we use the
original covering condition‖ s− s′ ‖ ≤ r− r′ (meaning
(s′, r′) ⊇ (s, r)) to verify. Therefore, we never withhold
a subscription if it is not covered by any subscription.

We may sometimes forward a new subscription even
when it is covered by some existing subscription. This
case occurs if the subscription(s′, r′) returned in Step
(2) does not actually cover(s, r) (case 2b(ii)) but another
subscription not returned by Step (2) does. However,
this case is rare with the probability less than(2/π)k.
If it occurs, it just creates some redundant traffic but
does not affect the correctness of the pub/sub system.
The time complexity to process a new subscription is
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O(log2k−1 n) to find (s′, r′) plus O(d) to check the
original covering condition; hence,O(log2k−1 n + d).

Cancellation of an existing subscription(s, r) is sim-
ple. First, we computeidx(s, r) and remove it from
the index tree. Second, we search the index tree for all
subscriptions(s′, r′) such thatidx(s′, r′) is dominated by
idx(s, r) and advertise(s′, r′) forward based on an un-
derlying subscription routing protocol (which we assume
to exist). The time complexity to cancel a subscription
is thereforeO(log2k−1 n + m), wherem is the number
of dominated points found.

IV. SIMULATION STUDY

We conducted a simulation-based study to evaluate
performance of the random projection approach. Because
the time and space complexity of this approach can
be obtained theoretically, our performance study was
focused on its effectiveness; i.e., the probability of error
in covering detection. In Section III, we have obtained
theoretically an approximate upper bound of this error
for the case that subscriptions follow a uniform dis-
tribution. In this section, we present the actual results
obtained from our simulation.

We generated 10,000 spherical subscriptions. The cen-
ters of these subscriptions were generated uniformly in
random as points in thed-dimension unit cube. The
radii were chosen in the range (0, 1) according to two
distribution models: the uniform distribution and the
Pareto distribution. The latter one, also known as the 80-
20 rule, represents the case that most subscriptions are
specific (i.e., small radii), only a few being expansive
(i.e., large radii). The subscriptions radii for all 10,000
subscriptions in both models are drawn in Figure 3.
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For each given subscription, assumed to be one of
the generated subscriptions, our technique was used to
find its coverings among the other 9999 subscriptions.
Because our theoretical work guarantees that no false
non-covering is possible, the metric evaluated was the
frequency of false coverings; i.e., that of the case that
the a covering detected is not true covering.

We studied the proposed technique for various dimen-
sionalitiesd ∈ {4, 8, 12, 16, 20}, for each case under var-
ious numbers of random projectionsk ∈ {1, 2, ..., d/2}.
The results are plotted in Figures 4,5,6,7,8, where we
also include the approximate upper-bound(2/π)k on the
probability of covering error mentioned in Proposition
2.4. These figures demonstrate the following:

• In general, the frequency of error is low (e.g., less
than 20% fork ≥ 2). Furthermore, the error is
less for the Pareto model than the uniform model
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(more than twice less). In other words, if the sizes
of the subscriptions are skewed, the technique is
more accurate. This result is encouraging because
in practice the 80-20 rule should represent the user
preferences better than the uniform model.

• The actual frequency of error is significantly less
than the theoretical bound for the case of low
dimensionality (smalld) or few random projections
(small k). The theoretical bound is used to prove
the asymptotic property of our technique. This sim-
ulation result shows that in practice the technique
can actually perform better than that theoretically
analyzed.

• When d is high (16 or 20) andk also high (k ≥
6), the technique performs worse for the uniform
case than the(2/π)k upper-bound. This is possible
because our theoretical analysis is approximate.
However, when this happens, the error frequency
is already small. For instance, whend = 20 andk
= 6, the error for the uniform case is less than 10%
and for the Pareto case less than 3%).

In summary, the simulation study substantiates the
high approximation accuracy of the random projection
approach.

V. RELATED WORK

The design of a distributed publish/subscribe network
typically involves two main tasks. The first task is
to design a communication architecture for efficiently
disseminating subscriptions and events over the network.
The second task is to design mechanisms for efficient
storage of subscriptions and fast matching of subscrip-
tions with events.

The simplest communication architecture is the broad-
cast approach, in which a subscription traverses a broad-
cast tree to reach all broker nodes. This approach
however has its disadvantages. First, not all the broker
nodes receive events satisfying a given subscription, thus
it is redudant to store a subscription at every broker
node. Second, broadcasting incurs an extremly high
communication cost, which is not desirable for a large
publish/subscribe network or a network with limited
resources such as a sensor network.

A much better option for the communication archi-
tecture is to replicate a subscription in a set of select
nodes where satisfying events may likely be sent to.
Most techniques of this option employ a Distributed
Hash Table (DHT) [16]–[18]. A DHT is used to send
a subscription or event to a node that is the result of
the hash function. The goal is that the node storing a



subscription and that receiving a satisfactory event are
either identical or within a proximixity of each other.
Scribe [19] uses Pastry [18] to map a subscription to
a node based on topic hashing, thus those subscriptions
and events with the same topic are mapped to the same
node. Meghdoot [20] transforms each subscription into
a multidimensional point and employs the CAN DHT
structure [16] to hash this point to get the node that will
store this subscription. Rather than CAN and Pastry, [21]
uses the Chord DHT [17] instead. A technique that can
be used atop any such DHT structure was proposed in
[22].

The aforementioned communication architectures are
built on top of an existing DHT overlay. [23] proposes a
decentralized architecture based on an unstructured over-
lay. This technique, called Sub-2-Sub, uses an epidemic-
based algorithm [24] to automatically cluster together
subscriptions for similar events. Therefore, an event is
delivered to only nodes that have relevant subscriptions.

In addition to the communication task, it is important
to have a mechanism that allows for efficient storage
of subscriptions and fast matching algorithms. Several
structures already exist, including the Matching Tree
[25], [26], Binary Decision Diagram [27], and SIFT
[1], [28]. These early designs are focused mainly on
the matching aspect (i.e., matching an event against the
subscriptions).

When the size (number and dimension) of the sub-
scriptions is large, the task of maintaining a structure
for the subscriptions is not trivial. We need not only fast
matching algorithms, but also convenient ways to add
to or remove subscriptions from the storage. The set of
subscriptions can be simplified by merging overlapping
subscriptions or finding covering relationships among
them. Instead of disseminating subscriptions separately,
similar ones can be merged to reduce the number of
subscriptions and thus the resultant traffic [7], [29],
[30]. Subscription covering [7]–[10], [31] is our paper’s
topic. By not forwarding subscriptions that are already
covered by an earlier forwarded subscriptions, we can
also reduce the size of the subscriptions as well as the
traffic involved. Most techniques [7], [8], [31] attempt
to find subscription covering exactly, thus inefficient for
a large number of subscriptions in high dimension. The
works in [9], [10] are similar to our work in the aspect
that they also aim at finding coverings approximately
without affecting the overall correctness of the system.
[9] uses a Monte Carlo Sampling approach to check
the covering condition quickly. [10] maps the covering
condition between the subscriptions in high dimension

to the dominance condition between points on a uni-
dimension Space Filling Curve, so that coverings can
be found faster. Compared to these two techniques,
the uniqueness of our solution is two-fold. First, our
approach based on Random Projections is unique. Sec-
ond, while [9], [10] assume rectangular subscriptions,
we address spherical subscriptions and have shown that
directly approximating them with rectangular ones does
not lead to good accuracy.

VI. CONCLUSIONS

Subscription covering is potentially very useful for im-
proving the performance of any pub-sub system. It helps
reduce not only the size of any broker’s routing table,
but also the network traffic due to subscription/event
propagation. Overusing it, however, creates additional
burden that may adversely slow down the entire system.

The best way to utilize subscription coverings is
to use it only when it remains efficient. The current
solutions are aimed at finding the exact coverings,
which are inefficient for large pub-sub networks. We
have proposed a novel solution that finds the coverings
approximately but with a high accuracy. We project
the subscription/event space onto a few random unit
vectors, where covering detection in the projection space
is much more efficient. As an approximation of the exact
approach, a broker may sometimes waste bandwidth to
forward a new subscription even when it is covered by
an existing subscription. However, a desirable property
of our approximate approach is that this case occurs
rarely with a probability exponentially approaching zero
as more random projections are used. Our research is
unique also because it is the first to address spherical
subscriptions.

Our future work includes extending the random-
projection framework to the case of rectangular subscrip-
tions and implementing a system based on the proposed
technique.
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