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Abstract—For many P2P systems, implementing right incentives and policies to promote efficient and fair resource sharing is the key

to improve the overall system performance. In this paper, we propose a points-based incentive mechanism named Global Contribution

(GC) approach that efficiently and naturally maintains fairness in a P2P network. In this approach, a proposed GC algorithm first

calculates a global score for each peer that accurately reflects its bandwidth contribution to the entire network. Then, these scores are

used in a proposed data transfer policy to determine whether one peer can download data from other peers. Thus, the GC approach

achieves: 1) efficiently preventing free-riding, 2) naturally balancing the upload and download amounts in each peer, and 3) reducing

rejections in transactions between cooperative peers. Moreover, the GC algorithm requires only private transaction history as an input

and can be fully decentralized. Also, its time complexities are approximately OðN2Þ in a centralized system and OðNÞ per peer in a

decentralized system.

Index Terms—P2P, free-riding, global contribution, fairness, distributed systems.
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1 INTRODUCTION

IN this paper, we are focused on designing high-level
policies that provide right incentives to promote resource

sharing in a fair and efficient manner in a P2P network. One
of the key factors to promote resource sharing is fairness. A
peer in a network feels fair if given the amount of data that
it has contributed to other peers, it should be able to
download an equal amount. Preventing free-riding is also
essential to maintaining fairness in this sense. Another key
factor to promote resource sharing is efficiency. Fewer
rejections in transactions between cooperative peers will
bring higher efficiency to an entire network. In order to
achieve them, we need to implement a proper policy which
also considers peers’ “self-interesting” behavior.

To keep fairness, the popular tit-for-tat policy has been
introduced. In tit-for-tat, the transactions between two peers
are made according to a policy that “If you give me, I will
give you. If you don’t give me, I won’t give you.” In
practice, a peer is allowed to download some initial amount
of data from another peer that it has never transacted with.
This is necessary to bootstrap the sharing process. Other-
wise, no peer would be able to share data with anyone since
initially a peer has no transaction history with any peer.
Though this policy helps keep fairness to some extent, free-
riding continues as long as there are peers with which free-
riders have never transacted. This is because of the initial

amount a free-rider can download. The larger a P2P
network is, the more remarkable this problem becomes
since a free-rider can find a new peer that it never transacts
with, to download its desired data.

Another example of issues regarding fairness currently
not addressed by tit-for-tat is asymmetry of transactions. In
Fig. 1, B downloaded 50 GB from A, C downloaded 50 GB
from B, and A downloaded 30 GB from C. Then, A wants to
download another 20 GB from C. With tit-for-tat, A might be
rejected by C after it downloads some initial amount. This is
because A has never uploaded to C. However, this clearly is
not fair as A has contributed much data to the system.

This problem is indeed solvable using shared history and
maxflow [10]. Using the shared history, every peer keeps all
transaction histories that occur in a network. By calculating
the maxflow from a downloading peer to an uploading peer
using the shared history, the uploading peer can estimate
the contribution of the downloading peer. Based on the
contribution level, the uploading peer can then decide
whether it should share its data with the downloading peer.
However, the difficulty with this approach is scalability.
The calculation of maxflow takes OðN3Þ. The shared history
is also not feasible both from the viewpoints of storage and
bandwidth needed to store and disseminate all transactions
to every peer.

We think the fundamental difficulty with many existing
approaches is attributed to its relying only on the relation-
ship of literally “peer-to-peer.” Instead, if we examine a P2P
network globally and determine the contribution of each
peer to the entire network, we will be able to use the
contribution as “points” to receive benefit from the net-
work. Then, each peer in the network is assigned a point/
score or global contribution (GC), and we can determine if a
transaction should be made between peers according to it.
In this paper, we propose: 1) a definition of GC of each peer,
2) distributed and sequential algorithms for computing the
GCs, and 3) a protocol for deciding whether a transaction
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should take place between two peers based on their GCs.
Then, we show its advantages in our simulation.

The rest of this paper is organized as follows: In Section 2,
we provide a brief overview of related work. Section 3
discusses designing criteria for the GC in regard to fairness.
Section 4 defines the GC and describes the algorithms for
calculating it; both centralized and distributed algorithms
are presented. The algorithm is verified in Section 5, then
transaction procedures using the algorithm are discussed in
Section 6. Section 7 describes some considerations for
practical usage. Section 8 presents simulation results for
some network models including convergence properties,
free-riding prevention, and fairness. Finally, we conclude in
Section 9.

2 RELATED WORK

Our algorithm is similar to those of PageRank [25] and
EigenTrust [15]. The PageRank rates the popularity of web
pages based on the “relative importance of web pages,” that
is, if a web page is linked from another highly ranked page
which has few outlinks, its ranking also becomes high. Thus,
the PageRank constructs a system of linear equations (xs are
web pages’ rankings) according to web links, and obtains
each page’s ranking by solving the system of linear
equations. The biggest difference from the GC is that the
PageRank focuses on “popularity” of web pages, not
“contribution.” As a result, the contribution cannot be
expressed in the PageRank’s way. In Section 4.4, we compare
the PageRank and the GC, and more details are described.

The EigenTrust similarly determines global reputation of
each peer. If a peer is relied on by another highly reliable
peer, its reputation also becomes high. It also constructs a
system of linear equations and obtains reputation of each
peer by solving it. The significant difference from the GC is
that the EigenTrust does not handle minus reliability. To
compute “contribution,” we have to consider both plus
contribution that appears as upload and minus contribution
as download. As a result, the EigenTrust cannot express the
contribution. See Section 4.4 for more details.

Many incentive mechanisms have been proposed to cope
with unfairness, free-riding, collusion, and whitewashing
(peers leave and join with new identities to avoid
reputational penalties [11]) in P2P networks [6], [10], [12],
[13]. Multilevel Tit-for-tat (ML-TFT) [17], one of the
incentive mechanisms recently introduced, ranks peer j
from i’s perspective as: Mi;j ¼ ði0s download amount
from jÞ=ði0s total download amount Þ. It then creates a Matrix
M. Since M doesn’t cover peers’ rankings with which each
peer has never transacted, the ML-TFT introduces M2 as:
ðM2Þi;j ¼Mi;j þ

P
n Mi;nMn;j, which also indirectly queries

j’s ranking from other peers. To precisely query all peers’

rankings, the ML-TFT has to calculate Mk s.t. k is great
enough, though M2 covers 60 percent peers. The time
complexity to calculate M2 is OðN3Þ and OðNkþ1Þ for Mk,
which is more expensive than the GC’s approximately
OðN2Þ complexity.

In [14], Habib and Chuang refer to how to map local
scores of peers to global rankings (percentile ranks). They
prove that with the 95 percent probability, each peer can
calculate its percentile rank by obtaining only Oð�2Þ
samples, where � is the standard deviation of the original
population of scores. In a distributed system, the GC
algorithm guarantees to calculate 100 percent correct GCs
by each peer’s receiving all other peers’ GCs which it has
transacted with (uploaded to or downloaded from) before.

Give-to-Get [19] is an algorithm which prevents free-
riding and balances each node’s upload/download
amounts in P2P Video-on-Demand. It splits video data into
small chunks, and forces peers to keep the following rule:
peers have to upload the chunks received from other peers
to get additional chunks from those peers. Indeed, this
works well in video streaming, but it will not be suitable for
general file exchanges because uploading and downloading
must be executed concurrently.

To compare the GC with such a mechanism that balances
each node’s upload/download amounts, we employ a
simple “Upload/Download Balance” (UDB) technique in
our simulation (Section 8.3). In the UDB, a peer is allowed to
download from any other peer only if its upload amount �
download amount, which we think also reflects a classical
incentive model. However, the UDB turns out to produce
much greater rejection rates between cooperative users than
the GC. The details are discussed in Section 8.3.

3 DESIGN CONSIDERATIONS

3.1 Fair Situations in P2P Networks

In P2P networks, the fairest and most ideal situation will be:
in every node, the total amount of upload ¼ the total
amount of download, such as ones shown in Fig. 2.
However, in reality, some nodes only download from other
nodes (free-riders), and some nodes mainly work as
suppliers (contributors).

In order to make such an unfair network fairer,
intuitively we may adopt the following rules:

1. Give high contribution nodes priority for down-
loading from other nodes.

2. Restrain low contribution nodes from downloading.
(In other words, 1 and 2 mean to encourage upload
to high contribution nodes rather than to low
contribution nodes.)
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Fig. 1. Example of asymmetry of transactions: B downloaded 50 GB
from A, C downloaded 50 GB from B, and A downloaded 30 GB from C.
Then, A wants to download another 20 GB from C. With tit-for-tat, A will
be rejected.

Fig. 2. Examples of the fairest P2P networks: in every node, the total
amount of upload ¼ the total amount of download.



3. Encourage every node to download from low
contribution nodes rather than from high contribu-
tion nodes.

3.2 Keys to Determining GCs

In consideration of the rules described above, we define the

keys to determining the GC as follows:

1. A node which uploads much data and downloads
little data, obtains a high contribution.

2. Upload to a high contribution node increases more
contribution than upload to a low contribution node
such as a free-rider.

3. Download from a high contribution (busy) node
loses more contribution than download from a low
contribution (free) node.

In the next section, we formally define the peer GC and

the algorithm for calculating it on the basis of these keys.

4 GLOBAL CONTRIBUTION

In this section, we first define the GC of a peer, then discuss

the algorithms for computing it.

4.1 Proposed GC

On the basis of the keys described in Section 3.2, we

propose to define the GC for each peer as:

xi ¼
�
�
P

j 6¼i uijxjþð1��Þ
P

j 6¼i uij�
P

j 6¼i ujixjP
j 6¼iðuijþujiÞ

þ ð1� �Þ; ðiÞ
2� �ð1þ �Þ
2þ �ð1� �Þ ; ðiiÞ

8>><
>>:
ðiÞ
X
j6¼i
ðuij þ ujiÞ 6¼ 0; ðiiÞ

X
j6¼i
ðuij þ ujiÞ ¼ 0;

ð1Þ

where xi is the GC of node i, uij ð� 0Þ is the total amount of

data uploaded from node i to j, 0 < � < 1 and 0 � � � 1.

Equation (1) can be converted to:

xi ¼
�

P
j6¼ið�uij�ujiÞxjþð1��Þ

P
j 6¼i uijP

j 6¼iðuijþujiÞ
þ ð1� �Þ; ðiÞ

2� �ð1þ �Þ
2þ �ð1� �Þ ; ðiiÞ

8>><
>>:

ðiÞ
X
j6¼i
ðuij þ ujiÞ 6¼ 0; ðiiÞ

X
j6¼i
ðuij þ ujiÞ ¼ 0:

ð2Þ

We now provide the rationale for defining GC as in (1).

For illustration, we use an example of a network consisting

three nodes A, B, and C as shown in Fig. 3: A uploaded 100

to B, 100 to C, and downloaded 50 from B, B uploaded 50 to

A, 100 to C, and downloaded 100 from A, C uploaded 0,

and downloaded 100 from B and 100 from A.

First, without � and �, for
P

j6¼iðuij þ ujiÞ 6¼ 0, the
computation of GC becomes:

xi ¼
P

j 6¼i uijxj �
P

j6¼i ujixjP
j6¼iðuij þ ujiÞ

: ð3Þ

If we apply (3) to node A’s contribution, we have the
following equation:

xA ¼
100xB þ 100xC � 50xB

100þ 100þ 50
: ð4Þ

The denominator
P

j6¼iðuij þ ujiÞ represents the summation
of the total amounts of uploaded and downloaded data.
Here, it’s 100þ 100þ 50 ¼ 250. In the numerator,

P
j 6¼i uijxj

is the summation of {(upload amount to node j) � (GC of
j)}, which is the contribution gained by upload. Here, it is
100xB þ 100xC . This term captures the designed behavior
stated in Section 3.2, namely, the GC of an uploading node
will be higher if it uploads to a node with higher
contribution than a node with lower contribution.P

j6¼i ujixj is the summation of {(download amount from
node j) � (GC of j)}, which is the contribution subtracted by
download. Here, it’s 50xB. Since the negative of this term
appears in the numerator, it reflects the designed behavior
which encourages a node downloads from some nodes with
low contributions. Roughly speaking, A’s GC is determined
by {contribution by upload} � {contribution by download}.

Next, we use � ð0 � � � 1Þ as a free parameter to fine-
tune the behavior of resource sharing. Intuitively, �
represents a weight on how much the amount of upload
to other nodes decides the overall upload contribution. In
upload, we also have to consider the total upload amount,
not only to which node the data have been transferred.
Otherwise, a node which uploaded much data may earn a
low contribution by sending only to low contribution nodes.
(Indeed, upload to low contribution nodes should be
avoided, but the fact that some amount of data was
provided must be admitted.) Thus, to capture the general-
ity, we have:

xi ¼
�
P

j6¼i uijxj þ ð1� �Þ
P

j6¼i uij �
P

j 6¼i ujixjP
j6¼iðuij þ ujiÞ

; ð5Þ

and we have A’s GC:

xA ¼
�ð100xB þ 100xCÞ þ ð1� �Þð100þ 100Þ � 50xB

100þ 100þ 50
; ð6Þ

where the contribution by uploading to other nodes ð100xB þ
100xCÞ is multiplied by � and a new contribution ð1� �Þ �
(the total upload amount), which is ð1� �Þð100þ 100Þ, is
added to the contribution by upload.

� ð0 < � < 1Þ mainly adjusts an initial (pregiven) GC

value given to nodes which have no transaction histories.

In practice, 2��ð1þ�Þ
2þ�ð1��Þ is the initial GC value and � partly

determines it. The details of the initial GC value will be

described later. Consequently, we have:

xi ¼ �
�
P

j 6¼i uijxj þ ð1� �Þ
P

j 6¼i uij �
P

j6¼i ujixjP
j 6¼iðuij þ ujiÞ

þ ð1� �Þ

ð7Þ
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Fig. 3. Example of transactions: A uploaded 100 to B, 100 to C, and
downloaded 50 from B, B uploaded 50 to A, 100 to C, and downloaded
100 from A, C uploaded 0, and downloaded 100 from B and 100 from A.



and

xA ¼ �
�ð100xB þ 100xCÞ þ ð1� �Þð100þ 100Þ � 50xB

100þ 100þ 50

þ ð1� �Þ:
ð8Þ

Each node can be assigned to individually unique �
and � values. Also, it is possible to give pretrusted nodes
extra credit by replacing ð1� �Þ with ð1� �Þci, where ci
is a weight for adjusting a GC value. This will help
differentiate pretrusted nodes and others (see a similar
research in [15, Section 4.5] of EigenTrust). However, to
simplify the algorithm, we use the same � and �, and no
ci for all nodes in this paper.

Next, 2��ð1þ�Þ
2þ�ð1��Þ in (1) is the initial GC value given to

beginner nodes which have no transaction histories. It is

equal to the GC values obtained when the network is in the

fairest situation, i.e., x1 ¼ x2 ¼ � � � ¼ xN . (See Section 5.1 for

details.) Notice that this value is used for keeping consis-

tency with the fairest situations (Section 5.1) and with a

dummy node (Section 7.1). Fig. 4 shows the relationship

among �, �, and the initial GC value 2��ð1þ�Þ
2þ�ð1��Þ .

Up until now, the GC of a node is defined in terms of the
GCs of other nodes. Thus, to find a GC of a node, one can
recursively find the GCs of all other nodes. In principle, this
can be done by constructing a system of linear equations of
the form in (1), each equation corresponds to computing GC
of each node. Thus, all the GCs can be obtained by solving
this system of linear equations. In particular, (9) is the matrix
expression of (1) (assuming there is no beginner node).

Ax ¼ b;

A ¼

1
��ð�u1;2�u2;1ÞP

j 6¼1
ðu1;jþuj;1Þ

� � � � � � ��ð�u1;N�uN;1ÞP
j 6¼1
ðu1;jþuj;1Þ

��ð�u2;1�u1;2ÞP
j 6¼2
ðu2;jþuj;2Þ

1 � � � � � � ��ð�u2;N�uN;2ÞP
j 6¼2
ðu2;jþuj;2Þ

..

. ..
. ..

. ..
.

��ð�uN;1�u1;N ÞP
j 6¼N ðuN;jþuj;N Þ

��ð�uN;2�u2;N ÞP
j 6¼N ðuN;jþuj;N Þ

� � � � � � 1

0
BBBBBBB@

1
CCCCCCCA
;

x ¼
x1

..

.

xN

0
B@

1
CA; b ¼

ð1� �Þ þ �ð1� �Þ
P

j 6¼1
u1;jP

j6¼1
ðu1;jþuj;1Þ

..

.

ð1� �Þ þ �ð1� �Þ
P

j 6¼N uN;jP
j6¼N ðuN;jþuj;N Þ

0
BBBBB@

1
CCCCCA:

ð9Þ

Notice that A is a strictly diagonally dominant matrix
(i.e., jaiij >

P
j 6¼i jaijj; 8i. In (9), A’s jaiij ¼ 1; 8i.), because

0 < � < 1. Therefore, (9) is guaranteed to converge with
iterative methods such as the Jacobi, Gauss-Seidel,
asynchronous iterative methods [2], [3], [4], [7] (see [24]
Section 2 for the proof).

As a result, for � ¼ 0:8; � ¼ 0:5, the GCs of the model in
Fig. 3 can be expressed as (10) and we have the results
shown in Fig. 5.

xA ¼ 0:8� 0:5� ð100xB þ 100xCÞ þ 0:5� 200� 50xB
200þ 50

þ 0:2;

xB ¼ 0:8� 0:5� ð50xA þ 100xCÞ þ 0:5� 150� 100xA
150þ 100

þ 0:2;

xC ¼ 0:8��ð100Aþ 100xBÞ
0þ 200

þ 0:2;

8>>>>>>>>><
>>>>>>>>>:
)

xA ¼ 0:501;
xB ¼ 0:301;
xC ¼ �0:120:

8<
:

ð10Þ

4.2 Algorithms for Computing GC

If a network is centralized, one can calculate all the GCs
using the central machine. In particular, one can use
some representative sequential iterative methods, such as
the Jacobi, Gauss-Seidel methods. Algorithm 1 shows an
example pseudocode for calculating all nodes’ GCs with
the Gauss-Seidel method. The calculation (iteration)
should be stopped when all xs are no longer updated.
Note that the time complexity of this algorithm is
OðN2 � ð# of iterations to convergeÞÞ. Since the typical #
of iterations to converge is turned out to be 10 from our
simulation regardless of N (see Section 8.2), we could say
the time complexity is approximately OðN2Þ.

Algorithm 1. Pseudocode for calculating all GCs with

Gauss-Seidel method

// Initialize all xs before calculating

for j ¼ 1 to N do

xj ¼ 0

end for

// Calculate all GCs

loop

for i ¼ 1 to N do

tmp ¼ uup ¼ udown ¼ 0:0

for j ¼ 1 to N do

if j 6¼ i and (uij 6¼ 0 or uji 6¼ 0) then

tmp þ¼ ð�uij � ujiÞxj
uup þ¼ uij
udown þ¼ uji

end if

end for

if uup þ udown ¼ 0 then
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Fig. 4. Relationship among �, �, and initial GC value 2��ð1þ�Þ
2þ�ð1��Þ : X is � and

Y is 2��ð1þ�Þ
2þ�ð1��Þ . � mainly determines 2��ð1þ�Þ

2þ�ð1��Þ .

Fig. 5. Calculated GCs of model in Fig. 3.



xi ¼ ð2� �ð1þ �ÞÞ=ð2þ �ð1� �ÞÞ
else

xi ¼ �ðtmpþ ð1� �ÞuupÞ=ðuup þ udownÞ þ ð1� �Þ
end if

end for

end loop

In a decentralized network, distributed methods are
more preferable. For example, the asynchronous iterative
method [3] will be most suitable. In the asynchronous
iterative method, each node calculates (1), then passes a
new GC value to other nodes with which it has ever
transacted. Algorithm 2 shows an example pseudocode
with the asynchronous iterative method.

Algorithm 2. Pseudocode for calculating my GC xi with

asynchronous iterative method

// Initialize all xs before calculating

for j ¼ 1 to N do

xj ¼ 0

end for

// Calculate my GC xi
loop

tmp ¼ uup ¼ udown ¼ 0:0

for j ¼ 1 to N do

if j 6¼ i and (uij 6¼ 0 or uji 6¼ 0) then

tmp þ¼ ð�uij � ujiÞxj
uup þ¼ uij
udown þ¼ uji

end if

end for

if uup þ udown ¼ 0 then

xi ¼ ð2� �ð1þ �ÞÞ=ð2þ �ð1� �ÞÞ
else

xi ¼ �ðtmpþ ð1� �ÞuupÞ=ðuup þ udownÞ þ ð1� �Þ
end if

// Pass new xi to other nodes

for j ¼ 1 to N do

if j 6¼ i and (uij 6¼ 0 or uji 6¼ 0) then

Pass xi to node j.

end if

end for

Sleep a little to receive enough xs from other nodes

end loop

The pseudocode does not include receiving GCs from
other nodes and how to stop the calculation (convergence
check). Usually, it is better to receive GCs in a different
thread. The calculation (iteration) should be stopped when
GC xi is no longer updated. However, in a real network, it
will not happen very often because xs are updated as long
as transactions occur. The time complexity in each node is
approximately OðNÞ, because the # of iterations to converge
is typically 10 as well (see Section 8.2).

As described in Section 4.1, the calculation is guaranteed
to converge in both sequential and distributed methods,
and it usually converges after a small number of iterations
(see Section 8.2).

4.3 Estimate of New GCs

Before a transaction, peers will need to know how much GC
they will gain/lose after the transaction, because they may
prefer transacting with a node with which the loss of GC is
minimum, or the gain of GC is maximum. We can
approximate the new GC values after a transaction as
follows: suppose q wants to download u0 from p, then the
approximate new GCs x0p and x0q are:

x0p ¼

�
�
�P

j6¼p;q upjxjþðupqþu
0Þx0q
�
þð1��Þ

�P
j 6¼p upjþu

0
�
�
�P

j 6¼p;q ujpxjþuqpx
0
q

�P
j 6¼pðupjþujpÞþu

0

þ ð1� �Þ;
x0q ¼

�
�
�P

j 6¼q;p uqjxjþuqpx
0
p

�
þð1��Þ

P
j 6¼q uqj�

��P
j 6¼q;p ujqxjþðupqþu

0Þx0p
��P

j 6¼qðuqjþujqÞþu
0

þ ð1� �Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð11Þ

Equation (11) can be converted to:

x0p ¼
�f�ðupqþu0Þ�uqpgP

j 6¼pðupjþujpÞþu
0 x
0
q þ

�
�P

j 6¼p;qð�upj�ujpÞxjþð1��Þ
�P

j 6¼p upjþu
0
��P

j 6¼pðupjþujpÞþu
0 þ ð1� �Þ;

x0q ¼
�f�uqp�ðupqþu0ÞgP

j 6¼qðuqjþujqÞþu
0 x
0
p þ

�
�P

j 6¼q;pð�uqj�ujqÞxjþð1��Þ
P

j 6¼q uqj

�P
j 6¼qðuqjþujqÞþu

0 þ ð1� �Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

Note that the calculation is executed only for two variables
x0p and x0q. We use fixed values for other xj, which are
currently available on each node. Suppose:

ap ¼ �f�ðupqþu0Þ�uqpgP
j 6¼pðupjþujpÞþu

0 ;

bp ¼
�
�P

j6¼p;qð�upj�ujpÞxjþð1��Þ
�P

j 6¼p upjþu
0
��P

j 6¼pðupjþujpÞþu
0 þ ð1� �Þ;

aq ¼ �f�uqp�ðupqþu0ÞgP
j 6¼qðuqjþujqÞþu

0 ;

bq ¼
�
�P

j 6¼q;pð�uqj�ujqÞxjþð1��Þ
P

j 6¼q uqj

�P
j 6¼qðuqjþujqÞþu

0 þ ð1� �Þ;

8>>>>>>>>>><
>>>>>>>>>>:

ð13Þ

then (12) can be expressed as:

x0p ¼ apx0q þ bp;
x0q ¼ aqx0p þ bq:

�
ð14Þ

Consequently, we have:

x0p ¼
apbqþbp
1�apaq ;

x0q ¼
aqbpþbq
1�apaq :

(
ð15Þ

Each of p, q calculates both x0p and x0q. To do that, in a
decentralized system, p must receive aq and bq from q, q
must receive ap and bp from p. Thus, the approximate GC
values are estimated.

In reality, update of x0p and x0q affects the entire network
and will change other xj. Therefore, we have to beware that
x0p and x0q are not real values and will be slightly different
from them. In our simulation, the estimated values are
mostly close enough to the real ones.
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4.4 Comparison with PageRank and EigenTrust

In this section, we explain why the original PageRank and
EigenTrust are not suitable for calculating global contribu-
tions in P2P networks.

The PageRank [25] ranks “popularity” of each web page
using web links. The calculation of the PageRank is based on
the following idea: if a web page is linked from another
popular web page that has few links, then the linked web
page becomes also popular. As well as the GC, the PageRank
constructs a systems of linear equations and obtains each
web page’s ranking by solving it. (Due to the page limit, we
do not describe the details of its algorithm.) However, as
described in Section 3, the global contribution is based on a
different idea of peer relationship, and therefore it is
basically impossible to apply the principle of the PageRank
to computing the global contribution. If we still adapt the
PageRank [25] to calculating each peer’s contribution using
the transaction history, the equation will be:

xi ¼ �
X
j 6¼i

uijP
k6¼j ukj

xj þ ð1� �Þ: ð16Þ

Applying it to a network model in Fig. 6, we have:

xA ¼ �
100

100
xB þ ð1� �Þ;

xB ¼ �
100

100
xC þ ð1� �Þ;

xC ¼ �
20

20
xA þ ð1� �Þ;

8>>>>><
>>>>>:

)
xA ¼ 1;
xB ¼ 1;
xC ¼ 1:

8<
: ð17Þ

However, intuitively the contributions must be

xA > xB > xC;

because A has uploaded most and downloaded least, C has
uploaded least and downloaded most. Thus, the PageRank is
not suitable for computing the global contribution. On the
other hand, the GC outputs reasonable values as seen in Fig. 6.

The EigenTrust is probably the closest algorithm to the
GC. The EigenTrust also constructs a system of linear
equations according to the relationship of peers based on “If
a peer is relied on by another highly reliable peer, its
reputation also becomes high.” However, it does not count
minus reliability. Suppose that a peer i rates transactions
with a peer j as “10 satisfactory and 10 unsatisfactory
transactions.” Then, the i’s local trust value toward j

becomes sij ¼ 10� 10 ¼ 0. Suppose that i rates transactions
with another peer k as “20 unsatisfactory transactions.”
Then, the i’s local trust value toward k becomes sik ¼ �20.
However, when a local trust value s is normalized as

maxðs; 0Þ, we have maxðsij; 0Þ ¼ maxðsik; 0Þ ¼ 0. As a
result, even if we apply the EigenTrust to calculating the
global contributions, it is hard to express the minus
contribution lost by download. Should we adapt it to
calculating each peer’s contribution, then for example, we
have the following equation:

xi ¼ �
P

j 6¼i maxðuij � uji; 0ÞxjP
j 6¼i maxðuij � uji; 0Þ

þ ð1� �Þ: ð18Þ

Applying it to a network model in Fig. 6, we have:

xA ¼ �
maxð100� 0; 0ÞxB þmaxð0� 20; 0ÞxC
maxð100� 0; 0Þ þmaxð0� 20; 0Þ þ ð1� �Þ;

xB ¼ �
maxð0� 100; 0ÞxA þmaxð100� 0; 0ÞxC
maxð0� 100; 0Þ þmaxð100� 0; 0Þ þ ð1� �Þ;

xC ¼ �
maxð20� 0; 0ÞxA þmaxð0� 100; 0ÞxB
maxð20� 0; 0Þ þmaxð0� 100; 0Þ þ ð1� �Þ;

8>>>>>><
>>>>>>:
)

xA ¼ 1;
xB ¼ 1;
xC ¼ 1:

8<
:

ð19Þ

Thus, we cannot use the EigenTrust as it is for calculating
global contributions.

5 THEORETICAL JUSTIFICATION OF GC

If a network is in the fairest situation (see Section 3.1 and
Fig. 2), every node’s GC value calculated based on the GC
algorithm must be the same. Also, the GC algorithm is
supposed to fulfill the keys to determining global contribu-
tions described in Section 3.2. In this section, we provide
theoretical justification of the GC algorithm for the designed
behaviors.

5.1 Fairest Situations

In Section 3.1, we described the fairest situation in P2P
networks as: in every node, the total amount of upload ¼
the total amount of download (see Fig. 2). In this case,
every node’s GC value must be the same. We prove that
every node’s GC value is the same if and only if the total
amount of upload is equal to the total amount of download
in every node.

. “The total amount of upload ¼ the total amount of
download in every node” meansX

j 6¼i
uij ¼

X
j6¼i

uji; 8i:

. “Every node’s contribution value is the same” means
x1 ¼ x2 ¼ � � � ¼ xN .

Before proving
P

j6¼i uij ¼
P

j6¼i uji; 8i, x1 ¼ � � � ¼ xN , we
prove

x1 ¼ � � � ¼ xN ¼ x) x ¼ 2� �ð1þ �Þ
2þ �ð1� �Þ :

Proof of x1 ¼ x2 ¼ � � � ¼ xN ¼ x) x ¼ 2��ð1þ�Þ
2þ�ð1��Þ .

Suppose x1 ¼ x2 ¼ . . . ¼ xN ¼ x, then (2) becomes:
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Fig. 6. Examples of contribution values calculated by (a) PageRank and
EigenTrust, (b) GC for � ¼ 0:8, � ¼ 0:5. Contributions of A, B, and C are
supposed to be xA > xB > xC . However, xA ¼ xB ¼ xC ¼ 1 with the
PageRank and EigenTrust.



x ¼
�

P
j 6¼ið�uij�ujiÞxþð1��Þ

P
j 6¼i uijP

j 6¼iðuijþujiÞ
þ ð1� �Þ; ðiÞ

2� �ð1þ �Þ
2þ �ð1� �Þ ; ðiiÞ

8>><
>>:

ðiÞ
X
j6¼i
ðuij þ ujiÞ 6¼ 0; ðiiÞ

X
j 6¼i
ðuij þ ujiÞ ¼ 0:

ð20Þ

Suppose
P

j6¼i uij ¼ Ui;
P

j6¼i uji ¼ Di, then (20) can be
converted to:

ðUi þDiÞðx� 1þ �Þ ¼ �ðð�Ui �DiÞxþ ð1� �ÞUiÞ; ð21Þ

and as a result,

ðð1� ��ÞUi þ ð1þ �ÞDiÞx ¼ ð1� ��ÞUi þ ð1� �ÞDi: ð22Þ

Since
P

i Ui ¼
P

i Di ð¼ T Þ, we have:

X
i

ðð1� ��ÞUi þ ð1þ �ÞDiÞx ¼
X
i

ðð1� ��ÞUi þ ð1� �ÞDiÞ

ðð1� ��ÞT þ ð1þ �ÞT Þx ¼ ð1� ��ÞT þ ð1� �ÞT

T x� 2� �ð1þ �Þ
2þ �ð1� �Þ

� �
¼ 0:

ð23Þ

If T ¼ 0, then Ui ¼ Di ¼ 0 8i, because Ui;Di � 0. In this

case, x ¼ 2��ð1þ�Þ
2þ�ð1��Þ from (20). If T 6¼ 0, we have also x ¼

2��ð1þ�Þ
2þ�ð1��Þ because x� 2��ð1þ�Þ

2þ�ð1��Þ ¼ 0. Hence,

x1 ¼ x2 ¼ � � � ¼ xN ¼ x) x ¼ 2� �ð1þ �Þ
2þ �ð1� �Þ :

ut

Proof of
P

j6¼i uij ¼
P

j6¼i uji; 8i) x1 ¼ x2 ¼ � � � ¼ xN .

Suppose
P

j 6¼i uij ¼
P

j 6¼i uji ¼ Ui, then (2) becomes:

xi ¼
�

P
j6¼ið�uij�ujiÞxjþð1��ÞUi

2Ui
þ ð1� �Þ; Ui 6¼ 0;

2� �ð1þ �Þ
2þ �ð1� �Þ ; Ui ¼ 0:

8><
>: ð24Þ

If we substitute x1 ¼ � � � ¼ xN ¼ 2��ð1þ�Þ
2þ�ð1��Þ in (24), then

xi ¼ 2� �ð1þ �Þ
2þ �ð1� �Þ ;

�

P
j 6¼ið�uij�ujiÞxjþð1��ÞUi

2Ui
þ ð1� �Þ ¼ 2� �ð1þ �Þ

2þ �ð1� �Þ :

8>><
>>: ð25Þ

As a result, x1 ¼ � � � ¼ xN ¼ 2��ð1þ�Þ
2þ�ð1��Þ becomes a solution of

(24). Since (24) has only one unique solution, x1 ¼ � � � ¼
xN ¼ 2��ð1þ�Þ

2þ�ð1��Þ becomes the unique solution. Hence,X
j6¼i

uij ¼
X
j6¼i

uji; 8i) x1 ¼ x2 ¼ � � � ¼ xN:

ut

Proof of x1 ¼ x2 ¼ � � � ¼ xN )
P

j6¼i uij ¼
P

j6¼i uji; 8i.
If we substitute x1 ¼ x2 ¼ � � � ¼ xN ¼ x ¼ 2��ð1þ�Þ

2þ�ð1��Þ in (22),

we have:

�ð1� ��ÞðUi �DiÞ ¼ 0: ð26Þ

Since � 6¼ 0 and �� 6¼ 1, Ui ¼ Di ð
P

j 6¼i uij ¼
P

j 6¼i ujiÞ.
Hence, x1 ¼ x2 ¼ � � � ¼ xN )

P
j6¼i uij ¼

P
j6¼i uji; 8i. tu

5.2 Keys to Determining GCs

Before verifying if (1) fulfills the keys described in Section 3.2,
we have to beware that a change of a node’s GC influences a
whole network and consequently changes all other nodes’
GCs. As a result, it recursively affects the original node’s GC.
Therefore, it is not easy to strictly verify if (1) always follows
the given conditions. Hence, we here discuss the approx-
imate verification of (1).

1. Basically, a node, which uploads much data and
downloads little data, obtains a high contribution:

In (1), �
P

j6¼i uijxj þ ð1� �Þ
P

j6¼i uij �
P

j 6¼i ujixj
consists of

f� � ðupload amount to node jÞ � ðGC of jÞ þ ð1� �Þ
� ðtotal upload amountÞg
� fðdownload amount from node jÞ � ðGC of jÞg:

Therefore, the greater the upload amounts are and
the less the download amounts are, basically the
greater �

P
j6¼i uijxj þ ð1� �Þ

P
j6¼i uij �

P
j 6¼i ujixj

becomes. Hence, we are able to say that, roughly,
the more a node uploads and the less it downloads,
the higher contribution is obtained.

2. Upload to a high contribution node increases more
contribution than upload to a low contribution node
such as a free-rider:

In �
P

j 6¼i uijxjþð1��Þ
P

j 6¼i uij�
P

j6¼i ujixj;
P

j6¼i
uijxj represents the contribution obtained by upload
to other nodes. For a certain k such that uik 6¼ 0, the
greater xk is, the greater uikxk becomes, in conse-
quence, the greater

P
j 6¼i uijxj becomes and more

contribution is gained.
3. Download from a high contribution (busy) node

loses more contribution than download from a low
contribution (free) node:

I n �
P

j6¼i uijxj þ ð1� �Þ
P

j6¼i uij �
P

j 6¼i ujixj;P
j6¼i ujixj represents the contribution subtracted

by download. For a certain k such that uki 6¼ 0, the
greater xk is, the greater ukixk becomes, in
consequence, the greater

P
j6¼i ujixj becomes and

more contribution is lost.

Thus, (1) approximately follows the keys in Section 3.2.

6 TRANSACTION AND KEEPING FAIRNESS

In this section, we discuss transaction procedures using the
GC and explain how they keep a network fair.

Among several possible transaction procedures, we
introduce the following two procedures:

Transaction Procedure 1

1. Search for uploaders which have files a downloader
wants and whose GC values � the downloader’s.
(In other words, the downloader cannot download
from those whose GC values > the downloader’s.)

2. For each of the chosen uploaders, estimate the GC
values which will be gained after the transaction
using (11).

3. For every uploader, if its estimated GC value after the
transaction is lower than the current one, then reject
the transaction. (All the uploaders will lose their
contributions by uploading to the downloaders.)

818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 6, JUNE 2010



4. Choose an uploader with which the estimated loss of
the downloader’s GC value is minimum.

Transaction Procedure 2

1. If the downloader’s GC value is lower than a certain
value (rejection threshold), for example 0, then the
transaction is rejected unconditionally. Otherwise,
go to step 2.

2. Search for uploaders which have files the down-
loader wants.

3. Do the same as 2 in transaction procedure 1.
4. Do the same as 3 in transaction procedure 1.
5. Do the same as 4 in transaction procedure 1.

For example, in Fig. 7a, suppose that C wants to
download 100, A wants 150 and B wants 50 in this order,
and that every node always has a file other nodes want.
With transaction procedure 1, first C is rejected because its
GC value is less than all other nodes’. Next, A estimates its
GC value with B and C. With B, A’s estimated GC value
becomes 0.24. With C, it becomes 0.34. Since A loses less GC
with C, A chooses C to transact. After A has downloaded
150 from C, then we have the GCs as in Fig. 7b. Next, B
estimates its GC value with A and C. With A, B has 0.30,
and with C, B has 0.33. Consequently, B chooses C. After the
transactions, we have the GCs as in Fig. 7c. No uploaders
have lower estimated values.

With transaction procedure 2, suppose the rejection
threshold is 0, C is rejected because its GC value
�0:12 < 0. Next, A estimates its GC value with B and C,
and chooses C as well as transaction procedure 1. Then, B
also chooses C as well.

In these procedures, free-riding can be avoided by step 1
(provided that an appropriate threshold value is selected in
transaction procedure 2). Since, with just one first down-
load, a free-rider loses much contribution, further free-
riding can be prevented. Mostly, this condition continues to
hold until the free-rider uploads to somebody. Thus, we can
efficiently prevent free-riding. Also, using steps 2 and 4 in
transaction procedure 1 or 3 and 5 in transaction procedure
2, a network naturally tends to a fairer situation without
forcing peers to cooperate with each other. Thus, we can
easily maintain fairness in the network.

Besides, it is possible to let downloaders choose uploaders
without estimating their GC values as long as the restriction
that a downloader can download only from equal or lower
contribution nodes or the rejection threshold is adopted. For
example, downloaders may prefer uploaders with wide
bandwidths. However, in this case, if a downloader down-
loads from a high contribution node, it will lose much GC,
and therefore it will have to upload much to restore its GC.

Thus, there are various possible transaction procedures.
Finding the best procedure is our important future work.

7 CONSIDERATIONS FOR PRACTICAL USAGE

7.1 Adjusting Initial Condition

Since the GC is mainly decided by the ratio of amounts of

upload and download, beginner nodes may lose much

contribution by downloading only a small amount of data.

This can be compared to batting averages in the beginning

of a baseball season; they drastically change by a single

strikeout or a hit. In practical use, some adjustment may be

necessary. This can be achieved by introducing a dummy

node which has a constant GC value and the same constant

amounts of upload and download toward every node in a

network. Fig. 8 shows an example network model with a

dummy node based on the model in Fig. 3 (Notice � ¼ 0:8,

� ¼ 0:5). The dummy node always has a constant GC value
2��ð1þ�Þ
2þ�ð1��Þ which is equal to the initial GC value (see

Section 4.1), and has constant dummy amounts of upload

and download with every node. In Fig. 8, the dummy

amounts of upload and download are 50 and the GC value

of the dummy node is 0.33 (¼ 2��ð1þ�Þ
2þ�ð1��Þ for � ¼ 0:8, � ¼ 0:5).

Compared with Fig. 5, C’s GC value is improved from

�0:12 to 0.03.
Suppose the dummy amount is û, then the algorithm for

adjusting the initial condition becomes:

xi ¼ �
(
�
X
j6¼i

uijxj þ ð1� �Þ
X
j6¼i

uij �
X
j 6¼i

ujixj

þ �û 2� �ð1þ �Þ
2þ �ð1� �Þ þ ð1� �Þû� û

2� �ð1þ �Þ
2þ �ð1� �Þ

)
	(X

j6¼i
ðuij þ ujiÞ þ 2û

)
þ ð1� �Þ;

ð27Þ

or

xi ¼ �
P

j 6¼ið�uij � ujiÞxj þ ð1� �Þ
P

j 6¼i uij þ
2�ð1��Þ

2þ�ð1��Þ ûP
j 6¼iðuij þ ujiÞ þ 2û

þ ð1� �Þ:
ð28Þ

Note xi ¼ 2��ð1þ�Þ
2þ�ð1��Þ still holds for all i in the fairest situations

(see Section 5.1).

7.2 Other Considerations

In this section, we propose solutions for two other

considerations, which require further investigations.
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Fig. 7. Example of transactions using GC: C wants to download 100, A
wants to download 150, then B wants to download 50 from somebody.
(a) Before transaction. (b) After A has downloaded 150 from C. (c) After
B has downloaded 50 from C.

Fig. 8. Example of network model using dummy node.



7.2.1 Security

While the paper does not investigate the security issues,
they are very important. In this section, we focus mainly on
false reports of GCs and study how to cope with it. In a
decentralized system, each peer must report its own GC.
Therefore, the false report of the GC arises as a security
issue. To cope with it, we apply the following technique
introduced by EigenTrust [15]:

. Some nodes may lie. Therefore, instead of each
node’s calculating its own GC, multiple other nodes
(calculator nodes) calculate it. (See Fig. 9. H1ðiÞ,
H2ðiÞ; . . . are i’s calculator nodes.)

. The calculator nodes can be chosen by a distributed
hash table (DHT) algorithm, such as CAN [21] or
Chord [23]. Multiple calculator nodes can be decided
by different hash tables (H1; H2; . . . ).

. The calculator nodes must not know for which node
they are calculating the GC, because they may cheat
and report false GC values on purpose.

. The transaction history must be stored by the
calculator nodes, instead of the host node itself.

. Suppose that node j wants to download from i
and that j wants to check i’s GC. Then, j inquires
of i’s calculator nodes (H1ðiÞ; H2ðiÞ; . . . ), and picks
up the major value. (i’s calculator nodes may
return different GC values; therefore, a “majority
vote” is adopted.)

. To calculate i’s GC xi, i’s all calculator nodes
H1ðiÞ; H2ðiÞ; . . . execute (1), then send xi to
H1ðkÞ; H2ðkÞ; . . . , for all k such that either uik or
uki 6¼ 0. Repeat it until xi is not updated any more
(see also Section 4.2).

Notice that this is not necessary in a centralized system
because the central machine calculates and reports every
node’s GC.

Another important issue is “collusion,” that is false
reports of transactions. The GC algorithm is still robust
against it, because in most transactions, an uploader gains
GC and a downloader loses GC. It is hard for both the
uploader and downloader to profit at the same time.

In addition, there remain more issues in our case, such as
how to safely store each node’s transaction history in a
decentralized system. Those are under investigation and
will be our future focus.

7.2.2 Other Factors to Decide Contribution

Equation (1) focuses only on the amount of upload/
download. However, some files are very important or rare
even if their sizes are small. Therefore, we may also need to
take account of the number of files uploaded/downloaded.

In this case, we will be able to obtain the correspondent GC
by replacing uij in (1) with ðuij þ �fijÞ, where fij is the
number of files uploaded from i to j, � is a coefficient (or
weight) for fij. The same technique will also be applicable
to other factors which will affect the GC.

In this manner, our algorithm can pliantly cope with
various different factors. Finding what factors affect the GC
will be indispensable for improving our algorithm.

8 SIMULATION RESULTS

In this section, we show simulation results for GC values in
some network models, calculation convergence, and trans-
actions. The simulation has been made with our original
programs, which are specifically written for the GC and do
not cover all the considerations needed to simulate real P2P
networks, such as network topology, search algorithms.

8.1 Network Model

Fig. 10 shows simulation results of GC values in small
networks, and Table 1 partially shows ones in a large
network randomly generated for 10,000 nodes, ordered by
contribution value. All models are calculated for
� ¼ 0:7; � ¼ 0:5. As a whole, the GC algorithm is shown
to produce intuitively understandable contribution values.

8.2 Convergence

We simulated the calculation of (9) for randomly generated
networks for 10,000 nodes, with a single computer and with
eight computers. The single computer simulates a centralized
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Fig. 10. Simulation results of P2P network models for � ¼ 0:7; � ¼ 0:5.

Fig. 9. Example of calculator nodes: j wants to download from i, then j
inquires of i’s calculator nodes (H1ðiÞ; H2ðiÞ; . . . .) i’s GC.



system, and we used the Gauss-Seidel method to calculate
the GCs (see Algorithm 1). The eight computers simulate a
decentralized system, and we used the asynchronous
iterative method (see Algorithm 2). Figs. 11a and 11b show
example results of residuals in total GC values, respectively,
with a single computer and with eight computers for
� ¼ 0:7; � ¼ 0:5. In our simulation, the calculation usually
converges within 10 iterations in both systems, for any size of
P2P network. (Notice that in the beginning stage of a
network, i.e., if there have been few transactions made, the
calculation may take more iterations, such as 30 or 40.)

8.3 Transaction

In Section 6, we described how efficiently the GC algorithm
prevents free-riding and keeps fairness in a network. We
now verify it via simulation results. The simulated transac-
tions are as follows:

. The number of nodes is 1,000.

. Free-riders never share their files.

- Out of 1,000 nodes, free-riders are randomly
chosen according to the free-rider rate. The free-
rider rates used in the simulation are 0, 30, 50,
and 70 percent.

- A downloader is randomly chosen out of the
1,000 nodes, and the download data amount is
randomly chosen between 1 and 255.

- To start a transaction, first, the downloader
searches for non free-riders which have files
the downloader wants. Here, we suppose each
non free-rider owns the file with a probability
of 10 percent. In other words, on average,
10 percent of non free-riders have the files the
downloader wants.

- Out of the non free-riders which have the files,
we choose one uploader as follows:

No restrictions. Choose the closest node in
the node number.

Tit-for-tat. Choose a node such that # of times
the downloader has uploaded to the node � #
of times the node has uploaded to the down-
loader (simple tit-for-tat), and which is closest to
the downloader in the node number.

Upload/download balance (UDB). If the
downloader’s total uploaded amount � its
total downloaded amount, choose the closest

node in the node number. Otherwise, reject
the transaction.

GC. Follow the two transaction procedures
described in Section 6 (GC1, GC2, respectively).
The rejection threshold in GC2 is 0.

- Download data from the uploader. Afterwards,
recalculate all nodes’ GC values.

- Repeat 2-5 1,000,000 times, that is, make
1,000,000 transactions.

- Do the above procedure for four different free-
rider rates: 0, 30, 50, and 70 percent, and five
different techniques: no restrictions, tit-for-tat,
UDB, the GC1 with � ¼ 0:8, 0.5, 0.2 and � ¼ 0:8,
0.5, 0.2, and the GC2 with � ¼ 0:9, 0.8, 0.7 and
� ¼ 0:2, 0.5, 0.8.

In our simulation, in order to compare the GC with
classical incentive mechanisms (or the Give-to-Get [19], see
Section 2) that balance the upload/download amounts in
each node, we include the UDB. Since in the UDB, a peer
cannot download from anybody until its upload amount
exceeds or equals its download amount, it balances the
upload/download amounts in each node.

Fig. 12 shows the times (out of 1,000,000 transactions) the
data have been downloaded: by non free-riders, by free-
riders and rejected by all uploaders. As seen, the GCs,
except for the GC2 with � ¼ 0:7; � ¼ 0:5 and 0.8, efficiently
block the data transfer to free-riders, with no noticeable
effect on the transactions between non free-riders. In those
GCs, the numbers of downloads by free-riders are a little
larger than the populations of free-riders, although they
hardly appear on the graphs. Once a free-rider downloads
from a non free-rider, its GC value usually becomes very
low. Since those free-riders’ GC values hardly recover, they
are mostly rejected in all subsequent transactions. Thus, the
GC efficiently restrains free-riding.
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TABLE 1
Simulation Result of Contribution Values for 10,000 Nodes

Fig. 11. Examples of calculation convergence: the calculation usually
converges within 10 iterations both in a centralized and in a
decentralized system. (a) Centralized system (with a single computer).
(b) Decentralized system (with eight computers).



The GC2 with � ¼ 0:7 with � ¼ 0:8 does not work well.
This is due to inappropriate choice of the rejection threshold
(¼ 0). For � ¼ 0:7 and � ¼ 0:8, the GC value seldom
becomes lower than 0.

Tit-for-tat does not prevent free-riding as efficiently as the
GCs. The UDB prevents free-riding as efficiently as the GCs.

However, the rejection between non free-riders is
conspicuous. With 0 percent free-riders (i.e., every peer is
cooperative), about 67 percent of transactions are rejected,
while the GCs reject only 1 percent (Fig. 12). With 50 percent
free-riders, 45 percent of transactions between non free-riders
are rejected, while the GCs reject 2 percent (Fig. 12). This
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Fig. 12. # of downloads: by non free-riders, by free-riders and rejected (1,000 nodes and 1,000,000 total transactions). The GC with proper choice of
� and � is effective in preventing free-riding without affecting transactions between non free-riders. Tit-for-tat does not prevent all free-riding. The
UDB prevents free-riding but rejects some transactions between non free-riders. (a) Free-rider rate ¼ 0 percent. (b) Free-rider rate ¼ 30 percent.
(c) Free-rider rate ¼ 50 percent. (d) Free-rider rate ¼ 70 percent.



happens because in the UDB a downloader is not obligated to
choose a specific uploader such that its upload amount is far
less than the download amount. In the GC transaction, a
downloader chooses an uploader with whom the estimated
loss of the downloader’s GC after the transaction is minimum.
Therefore, the downloader most likely picks up an uploader

whose GC is the lowest. As a result, the uploader instantly
restores its GC and can be prepared for its next download.

So far, we have shown how efficiently the GC prevents
free-riding. Next, we show how fair a network is kept with
the GC. Figs. 13 and 14 plot the total download and upload
amounts in each node, respectively, for the free-rider rate 0
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Fig. 13. Download and upload amounts in each node (free-rider rate = 0 percent). The GCs balance the download/upload amounts in each node. Tit-
for-tat does not balance well. The UDB balances well but the transacted amounts are small. (a) No restrictions, (b) tit-for-tat, (c) UDB, (d) GC1:
� ¼ 0:8, � ¼ 0:8, (e) GC1: � ¼ 0:8, � ¼ 0:5, (f) GC1: � ¼ 0:8, � ¼ 0:2, (g) GC1: � ¼ 0:5, � ¼ 0:8, (h) GC1: � ¼ 0:5, � ¼ 0:5, (i) GC1: � ¼ 0:5, � ¼ 0:2,
(j) GC1: � ¼ 0:2, � ¼ 0:8, (k) GC1: � ¼ 0:2, � ¼ 0:5, (l) GC2: � ¼ 0:9, � ¼ 0:2, (m) GC2: � ¼ 0:9, � ¼ 0:5, (n) GC2: � ¼ 0:9, � ¼ 0:8, (o) GC2: � ¼ 0:8,
� ¼ 0:2, (p) GC2: � ¼ 0:8, � ¼ 0:5, (q) GC2: � ¼ 0:8, � ¼ 0:8, (r) GC2: � ¼ 0:7, � ¼ 0:2, (s) GC2: � ¼ 0:7, � ¼ 0:5, (t) GC2: � ¼ 0:7, � ¼ 0:8.



and 50 percent. (Due to the space limit, we do not put all the
results.) As described in Section 3.1, the fairest situation in
P2P networks is: in every node, the total amount of upload
equals to the total amount of download. As seen, in the
GCs, except for the GC2 with � ¼ 0:7; � ¼ 0:5 and 0.8, the
download and upload amounts in non free-riders are well

balanced. For the free-rider rate ¼ 0 percent, they are almost

equal in every node. Tit-for-tat does not balance as well as

the GC, though it does better than no restrictions. The UDB

also balances well although the transacted data amounts are

less than those of the GCs.
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Fig. 14. Download and upload amounts in each node (free-rider rate = 50 percent). The GCs except for (s) and (t) balance the download/upload amounts
in each node. Tit-for-tat does not balance well. The UDB balances well but the transacted amounts are small. (a) No restrictions, (b) tit-for-tat, (c) UDB,
(d) GC1: � ¼ 0:8, � ¼ 0:8, (e) GC1: � ¼ 0:8, � ¼ 0:5, (f) GC1: � ¼ 0:8, � ¼ 0:2, (g) GC1: � ¼ 0:5, � ¼ 0:8, (h) GC1: � ¼ 0:5, � ¼ 0:5, (i) GC1: � ¼ 0:5,
� ¼ 0:2, (j) GC1: � ¼ 0:2, � ¼ 0:8, (k) GC1: � ¼ 0:2, � ¼ 0:5, (l) GC2: � ¼ 0:9, � ¼ 0:2, (m) GC2: � ¼ 0:9, � ¼ 0:5, (n) GC2: � ¼ 0:9, � ¼ 0:8, (o) GC2:
� ¼ 0:8, � ¼ 0:2, (p) GC2: � ¼ 0:8, � ¼ 0:5, (q) GC2: � ¼ 0:8, � ¼ 0:8, (r) GC2: � ¼ 0:7, � ¼ 0:2, (s) GC2: � ¼ 0:7, � ¼ 0:5, (t) GC2: � ¼ 0:7, � ¼ 0:8.



In order to measure fairness, we define the following
metric:

F ¼ 1

N

XN
i

PN
j 6¼i uij �

PN
j6¼i uji




 


PN
j 6¼i uij þ

PN
j6¼i uji

: ð29Þ

Since
PN

j6¼i uij ¼ Ui (the total upload amount in node i) andPN
j6¼i uji ¼ Di (the total download amount), (29) can be

expressed as:

F ¼ AVERAGEi
jUi�Dij
UiþDi

� �
: ð30Þ

Notice that F � 0 and the smaller the metric value F is, the

fairer the network is.
Table 2 shows the metric values in all techniques and all

free-rider rates. As the results show, the metric values in the
GC with appropriate choice of � and � are always better
than those of tit-for-tat. This also backs up that the GC
keeps a network fairer than tit-for-tat.

9 CONCLUSION AND FUTURE WORK

In this paper, we introduced the GC algorithm which
calculates each peer’s global contribution in a P2P network,
and explained how to use it for transactions. The algorithm
is simple but powerful, and it efficiently keeps a network in
a fair condition.

However, it still requires much work to improve security
and to investigate other transaction procedures. Further-
more, we have not yet grasped all issues which will arise in
practical usage. Therefore, experiments in real P2P net-
works will be indispensable in the future. Also, as described
in Section 7.2.2, we will need to consider other factors to
determine global contributions.
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