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Abstract—We investigate the problem of data synchronization
in which a sender has a set of packets to be distributed to all
the receivers via a broadcast channel. Initially, each receiver
has some fraction of the packets. At each time slot, the sender
might broadcast a packet to all the receivers. The goal is to
find a broadcast scheme that minimizes the number of time slots
until all the receivers successfully obtain all the packets. We
propose two probabilistic models on how the initial fractions of
packets at receivers are distributed. These models arise naturally
in many large scale systems such as Peer-to-Peer (P2P) networks,
data centers, and distributed storage systems. Based on these
models, we establish probabilistic bounds and asymptotic results
on the minimum number of time slots to successfully transmit
all the packets to all the receivers. Next, we propose and analyze
a number of random network coding algorithms for finding
the approximately optimal solution. Theoretical analysis and
simulations are provided to verify the probabilistic bounds and
the proposed algorithms.

Index Terms—Network Coding, Galois Field, Data Synchro-
nization, Index Coding Problem, Probability.

I. INTRODUCTION

Data synchronization plays a critical role in the perfor-
mances of many emerging large scale distributed systems such
as Peer-to-Peer (P2P) systems, distributed storage systems,
and data centers. To provide high reliability in such systems,
data are typically duplicated across multiple nodes in a net-
work. In addition, many systems allow data to be updated
asynchronously at individual nodes. As a result, potential
data inconsistencies might arise across multiple nodes. For
example, during the peak time, a data center [1], [2], [3] might
allow data to be updated at individual servers autonomously
for better performance. These changes are then propagated to
other servers at an appropriate later time. During this interval,
the data across the servers are inconsistent. In other systems,
data inconsistencies at different nodes are resulted in a far
less controllable way. Notably, in file sharing systems such as
BitTorrent, peers might have different parts of the same file
due to the random exchange of data among peers. Wireless
broadcast is another example in which many users receive the
same file broadcast from a base station. However, due to packet
losses, for some given time, users might have different parts
of the file. Thus, the aim of the data synchronization problem
is to repair the data inconsistencies by broadcasting additional
data to the receivers.
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The data synchronization problem is an instance of the index
coding problem [4], [5], [6] that consists of a sender and a
number of receivers sharing a common broadcast channel. The
sender has a set of packets A. Each receiver has a random
subset of A. At each time slot, the sender broadcast a packet
that can be received by all the receivers. The goal is to find a
broadcast scheme that minimizes the number of time slots until
every receiver successfully receive the set A. An approach to
this problem is to use the Network Coding (NC) framework.
NC framework treats each packet as an element in a finite
field. Each coded NC packet is a linear combination of other
packets. It is shown that when the finite field size is larger than
or equal to the number of nodes, the problem can be solved in
polynomial time [7], [8]. However, for arbitrary field size, the
synchronization problem appears to be similar to the multicast
network coding problem which has been shown to be NP-hard
when the field size is smaller than the number of receivers [9],
[10].

Contributions. In this paper, we study the synchronization
problem from a probabilistic viewpoint. First, we describe two
probabilistic models on how subsets of packets at receivers are
distributed. These models arise naturally in many large scale
systems such as Peer-to-Peer (P2P) networks, data centers,
and distributed storage systems. For these two models, we
establish probabilistic bounds and asymptotic results on the
minimum number of time slots that the sender needs to
successfully transmit all the packets to all receivers. Such
bounds can shed lights on the benefits and limitations of using
NC-based broadcast schemes in certain real-world settings.
Second, while the probabilistic upper and lower bounds for
the optimal solution can be found, finding the algorithms for
achieving the optimal solution is not trivial. Therefore, we
propose and analyze a number of random network coding
(RNC) algorithms for finding the optimal solutions. Our analy-
sis provides quantitative performances in terms of expectation,
variance, and tail probability on the number of time slots
required to complete the synchronization for the proposed
algorithms.

Outline. We first discuss a few related work in Section
II, then present the problem formulation and notations in
Section III. In Section IV, we describe two common models
in which data inconsistency can occur. Based on these models,
we show the probabilistic bounds on the optimal solutions of
any broadcast scheme in Section V. We then describe three
NC-based algorithms to perform synchronization and their
theoretical performance analysis in Section VI and Section
VII. In Section VIII, we provide the simulation results for the
proposed algorithms and finally a few concluding remarks in
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Section IX.

II. RELATED WORK

There exists rich literature on NC on which our work is built
upon. Due to limited space, we will discuss the similarities
and differences between our work and a few representative
work. Our work is closely related to the index coding problem
[4], which has been shown to be NP-hard [11], [12], [13],
[14], [15] and a number of heuristic schemes have been
proposed [16], [17]. Both problems consists of a number of
receivers who want to receive an identical set of packets A
from a sender. All the receivers share the same broadcast
channel, and have different subsets of A. The goal of both
problems is to minimize the number of broadcasts by the
sender until all the receivers successfully obtain the complete
set A. On the other hand, our work differs in the following
ways. First, instead of assuming the subsets of packets at
the receivers are given as in most network coding literature
[4][18], we propose two probabilistic models to characterize
the distribution of the subsets of packets. Based on these two
models, we further study the asymptotic bounds on the optimal
solution which, to our knowledge, has not been investigated
previously. Specifically, we study how the number of packets
varies as a function of the number of receivers as both become
large, can affect the solution. Second, instead of solving the
problem in a deterministic manner, we propose randomized
NC algorithms to find the approximate optimal solution with
probabilistic guarantees.

We note that in many existing NC literature, the information
about the partial sets of packet at the receiver is assumed to be
available at server statically. For many large scale distributed
systems consisting many users and large data, this assumption
might be impractical since the central server might need
to store a substantial large amount of information. Instead,
we introduce three algorithms that allow different levels of
information exchange between the sender and the receivers
dynamically. That said, our work is on the simplicity of
randomized network coding techniques [19], [18], [20], [21]
that can be implemented in real world settings. In addition,
our theoretical results have probabilistic flavor as contrast to
the work in [22].

Our work can also be viewed as an instance of the Direct
Data Exchange (DDE) problem that was first proposed by
El Rouayheb et al. [23]. The DDE problem has attracted
much interest from the research community [24] [25] [26]
[27]. While the goal of both problems is to synchronize data
in multiple receivers, there are essential differences. In the
the DDE problem, all the receivers have to participate in
broadcasting their data while in our problem, only one sender
can broadcast. In addition, in the DDE problem, the subset of
packets at each receiver can only be original packets while in
our setup, we allow both mixed (network coded) and original
packets in the subsets of the packets. Furthermore, most
existing solutions to the DDE problem take a deterministic
approach while ours has a probabilistic flavor.

That said, our work is very similar to the problem of
wireless broadcast using network coding via lossy channel.

For example, in a single-hop wireless network, where com-
munication channels are lossy, NC techniques are used to
help the receivers to recover the lost packets quickly [28],
[29]. In wireless ad hoc network, NC techniques have been
also applied to increase bandwidth efficiency [30], [31]. In
wireless mesh network, the advantages of NC compared to
traditional approach are presented [32], [33]. Majority of these
schemes use the XOR operation since it can be implemented
efficiently in practice. Our work extends the analysis and
performance characterization of NC using a general finite field.
It is motivated by the well-developed theory of linear network
code [34], [35] and the robustness of applying random linear
network coding into multicast application [36], [37].

III. PROBLEM FORMULATION

A. Problem Description and Notation

Consider the following broadcast scenario with one sender
who wants to broadcast two packets p1 and p2 to two
receivers R1 and R2. We assume R1 has packet p1 while
R2 has packet p2. The goal is to minimize the number of
broadcasts by the sender so that each receiver will have
both packets p1 and p2, hence their data is synchronized.
A straightforward way is for the sender to broadcast p1 first
then p2. Assuming no packet loss, R1 and R2 will have both
packets in two time slots. However, a better way is for the
sender to broadcast only one packet c = p1 ⊕ p2 where ⊕
denotes bit-wise exclusive OR of bits in the two packets. Upon
receiving c, R1 and R2 will be able to recover their missing
packets, respectively as: c ⊕ p1 = p1 ⊕ p2 ⊕ p1 = p2, and
c ⊕ p2 = p1 ⊕ p2 ⊕ p2 = p1. This example illustrates the
benefit of network coding, i.e., mixing packets appropriately
to reduce the number of broadcasts. In general, the problem
of finding a broadcast scheme, i.e., the right “coded” packets
that minimizes the number of transmissions for an arbitrary
number of users with an arbitrary pattern of packets is an
NP-hard problem [22]. As such, we consider a probabilistic
approach to this problem as described shortly. We now use the
following notations to describe the problem.
• There is one sender with a set of D original packets

denoted as P = {p1,p2, . . . ,pD}, and N receivers
denoted as R1, R2, . . . RN that want to obtain these D
packets.

• Each receiver Ri has a “Has” set Hi consisting of exactly
Ki ≤ D packets. Denote Wi = P \Hi as the “Want” set
of packets that the receiver Ri wants but does not have.

• A network coded (mixed) packet c is constructed as:

c = v1p1 + v2p2 + · · ·+ vDpD (1)

with vi ∈ GF (F). Each pi can be viewed as an element
in GF (FD). Consequently, we can view a packet as a
row vector v = (v1, v2, . . . , vD), and the “Has” set Hi
as a matrix Hi whose rows are v’s. Also, for brevity, we
denote F = |F|.

• At each time slot, the sender is allowed to broadcast
exactly one mixed or original packet to all the receivers.
Furthermore, we assume no packet loss during broadcast.
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• Let Ti denote the number of time slots until the receiver
Ri receives a sufficient number of packets to be able to
reconstruct all D original packets.

• Let T = max{T1, T2, . . . TN} denote the number of time
slots until all the receivers are able to decode all the D
original packets.

Note that a receiver will be able to reconstruct all the D
original packets if it collects any D packets (mixed or original)
that span a D dimensional space. Specifically, recall that a
packet can be represented as a row vector vi, then if the matrix

V =


v1

v2

...
vD


has rank D (full rank), then the original packets pi’s can
be reconstructed via solving a set of linearly independent
equations.

For simplicity, the packet length as defined above is arti-
ficially constrained to length

⌈
D logF

⌉
bits. In practice, a

packet should be a vector of length n � D whose each
element is

⌈
D logF

⌉
bits long. Thus the number of bits to

specify vi in the packet header (necessary for the receivers to
decode) is negligible. Finally, we note that the optimal scheme
is the one that minimizes T .

B. Example

We now give an example to illustrate the notations and
concepts. Let D = 4,K1 = K2 = 2,F = {0, 1}, and thus
GF (2) is used for all the finite field computations. A receiver
R1 has H1 = {p1 ⊕p3,p2}, and its initial “Has” set H1 can
be represented as a matrix:

H1 =

(
1 0 1 0
0 1 0 0

)
Note that since GF (2) is used, each entry in the matrix can
only be 0 or 1. If the sender broadcasts two packets (p2⊕p4)
and p3 which collectively can be represented as a matrix S
below.

S =

(
0 1 0 1
0 0 1 0

)
Assuming no packet loss, then the new “Has” set Ĥ1 of
receiver R1 would have two more elements. Thus the cor-
responding new matrix Ĥ1 is:

Ĥ1 =

(
H1

S

)
=


1 0 1 0
0 1 0 0
0 1 0 1
0 0 1 0


Since the rank(H1) = 4 (full rank) in GF (24), R1 can
reconstruct all original packets {p1,p2,p3,p4}.

As described, an optimal broadcast scheme is one with
the minimum number of transmissions that enables all the
receivers to obtain their corresponding full rank matrices.
Clearly, the minimum number of transmissions depends on
the initial “Has” sets of each receivers. We note that a typical

setting of network coding problem assumes that the sender has
complete information about the “Has” sets of each receivers
initially. On the other hand, in this paper, we will describe
algorithms that allow different levels of information exchange
between the sender and the receivers. In the next section,
we will describe two models of the “Has” sets that arise
naturally from real-world settings. We then use these models
to characterize the optimality of the solutions for any broadcast
scheme via probabilistic bounds in Section V.

IV. MODELS OF THE “HAS” SET

We consider two models for the “Has” sets at individual
receivers. We call these the “uncoded” and “coded” models of
the “Has” set. These models aim to approximate the real-world
scenarios.

Uncoded Model. The first model can be used to approx-
imate a wireless broadcast scenarios in WiFi or cellular net-
works. Specifically, in the “Uncoded” model, each individual
receivers has Ki original packets out of the D original packets
p1,p2, . . . ,pD, where Ki is random variable drawn from the
Binomial distribution with parameters (D,αi). This model
arises from considering a scenario in which a sender broadcast
D original packets to N receivers. Due to different channel
conditions, each receiver has a different probability αi of
receiving the packets. Assuming that the outcomes of the D
transmissions are independent across packets and receivers,
then the number of packets received at the receivers follow
D independent Binomial distributions. Starting at this point,
the sender can employ an optimal transmission scheme that
ensure all N receivers can receive all the D original packets
in minimum number of transmissions. The optimal solution
depends on the pattern of packets at the receivers, i.e., their
“Has” sets. While finding the optimal scheme is NP-hard,
given the probability model of the “Has” sets, it is possible to
characterize the optimal solution, i.e., the minimum number
of transmissions via probabilistic bounds as will be shown
in Section V. These bounds are useful in the sense that one
can bound the optimal solution without knowing the optimal
transmission scheme. Furthermore, in some cases, it is possible
to determine whether network coding scheme is even useful.

Coded Model. In the “coded” model, each receiver is to
assume to have S packets. However, these packets are network
coded packets, defined previously as:

c = v1p1 + v2p2 + · · ·+ vDpD.

Each coded packet is drawn randomly at uniform from FD−1
possible coded packets independently without replacement.
The “Coded” model can be used to represent data stored
Peer-to-Peer (P2P) network. In this setting, a file is first
broken into D packets, then a number of coded packets are
produced using coefficients vi drawn uniformly at random.
These coded packets are then distributed to the peers via
some P2P transmission protocols. Each peer can also mix the
packets it receives and forwards the mixed (coded) packets to
another peers. As a result, the S packets stored at a peer can
be thought as S coded packets drawn randomly at uniform
from the FD − 1 possible coded packets.
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V. PROBABILISTIC CHARACTERIZATION OF OPTIMAL
SOLUTION

In this section, we characterize the minimum number of
packets to be sent by the sender in order for all the receivers
to recover all the packets, regardless of the algorithms used
to find the right packets to send. We first discuss the trivial
bound on the minimum number of transmissions T ∗ needed
for the N receivers to recover all D original packets with
each receiver Ri having its “Has” set Hi. We then derive
the probability distribution of T ∗ when packets in the set Hi
are drawn according to the “Uncoded” and “Coded” models
described in the previous section. In some cases, it is sufficient
and simple to use the probability bounds, rather than a full
distribution to characterize the optimality. We will provide
these probabilistic bounds as well.

Supposed there are N receivers R1, R2, . . . RN , each has a
number of packets, i.e., “Has” setHi which can be represented
as a matrix Hi. Let Ki be the rank of Hi, and let K =
min{Ki}. Then it is easy to see that the minimum number of
transmissions T ∗ needed for the N receivers to recover all D
original packets must be upper and lower bounded by

D −K ≤ T ∗ ≤ D (2)

The trivial bound, however does not take the advantage
of probabilistic models, thus can be quite loose. Next, we
characterize the full probability distributions of T ∗l = D −K
and give probabilistic bounds on T ∗l . Notably, we use these
bounds to determine the effectiveness of any network coding
scheme in the “Uncoded” model.

A. Analysis of the “Uncoded” Model

We will first determine the distribution of K, then the
distribution of T ∗l can be completely characterized. However
the closed-form distribution is a bit complicated that prevents
us from drawing a good intuition. Therefore, we also provide
probabilistic bounds for K that allows us to draw a better
intuition.

1) Computing Distribution of K: To derive the distribution,
we note that Ki is a Binomial random variable with D being
the number of trials and αi the probability of success. Thus,
we have:
Rank(Hi) = Ki

P(Ki = k) = f(k,D, αi) = CkDα
k
i (1− αi)D−k

P(Ki ≤ k) = F (k,D, αi) =
∑k
j=0 C

j
Dα

j
i (1− αi)D−j

(3)
Now since K = min{Ki}, one can find the cumulative
probability distribution of K as follows.

FK(k) = P(K ≤ k) = 1−
N∏
i

(1− P(Ki ≤ k)) (4)

Then the probability distribution of K can be computed from
the cumulative function:

P(K = k) = FK(k)− FK(k − 1) (5)

=

N∏
i=1

(1− P (Ki ≤ k − 1))

−
N∏
i=1

(1− P (Ki ≤ k)) (6)

=

N∏
i=1

(1−
k−1∑
j=0

CjDα
j
i (1− αi)

D−j)

−
N∏
i=1

(1−
k∑
j=0

CjDα
j
i (1− αi)

D−j) (7)

We can see that the closed-form distribution does not provide
a good intuition. Hence, we now provide some probabilistic
bounds regarding K.

2) Probabilistic Bounds for K: Let αmin = min{αi} and
αmax = max{αi}. We have following Proposition regarding
the tail bound for K.

Proposition 1. (Tail bound) For 0 < k < Dαmin, we have

P(K > k) ≥ (1− exp (− 1

2αmin

(Dαmin − k)2

D
))N (8)

Proof. We have:

P(K > k) =

N∏
i=1

P(Ki > k) (9)

=

N∏
i=1

(1−P(Ki ≤ k)) (10)

=

N∏
i=1

(1− F (k,D, αi)) (11)

Also, F (k,D, αmin) ≥ F (k,D, αi). Hence,

P(K > k) = (1− F (k,D, αi))
N ≥ (1− F (k,D, αmin))N

(12)
Also by Chernoff’s inequality, we have:

F (k,D, αmin) ≤ exp (− 1

2αmin

(Dαmin − k)2

D
)

Plug in (12), we complete the proof.

Since T ∗l = D −K, Proposition 1 indicates that minimum
number of retransmission for the “Uncoded” model depends
on the receiver with the smallest probability of successful
packet reception.

Next, we have the following proposition regarding the
asymptotic behavior of D and N .

Proposition 2. (Asymptotic) For N → ∞ and any k, αmin
such that 0 < k < Dαmin, we have:

P(K > k)→ 0 for D = o(log(N))

P(K > k)→ c where c ∈ (0, 1) for D = Θ(log(N))

P(K > k)→ 1 for D = ω(log(N))
(13)
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(Using Bachmann-Landau notations for o(),Θ(), ω()).

Proof. We first show the case when D = Θ(log(N)).

exp (− 1

2αmin

(Dαmin − k)2

D
) = exp(−Θ(log(N))

= Θ(
1

N
) ≤ c1

1

N

for some 0 < c1 <∞. Hence,

(1− exp (− 1

2αmin

(Dαmin − k)2

D
))N ≥ (1− c1

N
)N . (14)

Now,
lim
N→∞

(1− c1
N

)N = e−c1 , (15)

and from (8), (14), and (15), when N →∞, we obtain

P(K > k) ≥ e−c1 > 0. (16)

We note that in (16), P(K > k) is strictly greater than 0.
On the other hand, using

(
D
l

)
≥ 1, we have

F (k,D, αmax) =

k∑
l=0

(
D

l

)
αlmax(1− αmax)D−l (17)

≥
k∑
l=0

αlmax(1− αmax)D−l (18)

= (1− αmax)D
k∑
l=0

(
αmax

1− αmax
)l (19)

≥ (1− αmax)D. (20)

Since D = Θ(log(N)), and 0 < 1− αmax < 1, we have

(1− αmax)D = (1− αmax)Θ(log(N)) = Θ(
1

N
).

Hence, F (k,D, αmax) ≥ c2( 1
N ) for some ∞ > c2 > 0.

Therefore,

(1− F (k,D, αmax))N ≤ (1− c2
N

)N = e−c2 < 1

for N →∞. Similar to (12), we have:

P(K > k) = (1− F (k,D, αi))
N ≤ (1− F (k,D, αmax))N

(21)
Combine these two above equations, we have:

P(K > k) < 1. (22)

Now, from (16) and (22), we have 0 < P(K > k) < 1. This
completes the proof for D = Θ(log(N)).

For the case D = ω(log(N)), similarly we have:

exp (− 1

2αmin

(Dαmin − k)2

D
) = exp(−ω(log(N))

= ω(
1

N
) ≤ c3

1

N
.

for any ∞ > c3 > 0. Now,

P(K > k) ≥ (1− exp (− 1

2αmin

(Dαmin − k)2

D
))N

≥ (1− c3
N

)N → e−c3 → 1 (23)

for N →∞ and c3 → 0.
Also P(K > k) ≤ 1, then P(K > k) → 1 for D =

ω(log(N)).
Finally, for D = o(log(N)), similarly we have

F (k,D, αmax) ≥ (1− αmax)D = (1− αmax)o(log(N))

= o(
1

N
) ≥ c4

1

N

for any ∞ > c4 > 0. Hence,

P(K > k) ≤ (1−F (k,D, αmax))N ≤ (1− c4
N

)N → e−c4 → 0

(24)
for N →∞ and c4 →∞.

Also P(K > k) ≥ 0 then P(K > k) → 0 for D =
o(log(N)).

Using the parameters αmin = 0.3;αmax = 0.7; k =
Dαmin

2 , Fig. 1 shows the empirical probability P(K > k)
that is accurately predicted by Proposition 2.

0 50 100 150 200
N

0

0.2

0.4

0.6

0.8

1

Pr
(K

>k
)

D=8log(N)
D=N
D=13

Figure 1: Empirical P[K > k] vs. N

There is an interesting point implied by Proposition 2. If
the number of packets sent (D) is on the order of log of
the number of receivers (N ), then the probability P(K > k)
does not approach 0 or 1 when N and D approach infinity.
Rather, this probability approaches a number between 0 and
1. On other the hand, probability P(K > k) approaches 0 or 1
when the D = o(log(N)) and D = ω(log(N)), respectively.
Essentially, this implies that there is a phase transition that
depends on on how large D is, compared with N in the
asymptotic sense.

Consider the special case where k = 0, we have:

P(K = 0) = 1− P(K > 0)

= 1−
N∏
i=1

(1− F (0, D, αi)

≥ 1− (1− (1− αmax)D)N .

From the above equation, we have the following corollary:

Corollary 1. For fixed the number of packets D, and the
number of receivers N ≥ log[1−(1−αmax)D] ε,

P(K = 0) ≥ 1− ε

where ε > 0.
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The corollary above can be interpreted as follows. When
the number of receivers is sufficiently large, there exists
a receiver which hasn’t received any packet with almost
certainty. Therefore, the senders needs to re-send all packets.
Also in this scenario, the lower bound equals the upper bound
T ∗l = D −K = D = T ∗u which implies that network coding
does not bring any benefit.

B. Analysis of the “Coded” Model

In the “coded” model, each receiver stores S vectors and
each vectors would be drawn randomly in GF (FD) (including
both original and combined packets). First, we need to find the
distribution of Ki = rank(Hi) and then one can compute the
distribution of K by using order statistics. Still, the formula
is too complex. Hence, we also provide upper bound for
expectation of Ki. By these bounds, one can establish bound
for K by Markov’s inequality.

1) Computing Distribution of K: Consider any receiver Ri,
we choose randomly S vectors in GF (FD) and there are
rank(Hi) = Ki linearly independent vectors. We can compute
P(Ki = k) by a recursive approach as follows.

Consider any node i, let f(k, s) be the probability that S =
s and rank(Hi) = Ki = k.

Obviously, we can have (for simple cases):
f(0, 0) = 1

f(k, s) =
∏j=k
j=1 pj for 1 ≤ k = s ≤ S

f(k, s) = 0 for k > s.

(25)

The probability that we have k linearly independent vectors
after picking up s random vectors is equal to sum of two
probability: first is the probability that we have k− 1 linearly
independent vectors in s−1 random vectors and the s-th vector
is linearly independent with existing vectors; second is the
probability that we have k linearly independent vectors in s−1
random vectors and the s-th vector is dependent with existing
vectors.

We have the inductive step for 0 < k < s ≤ S as follows.

f(k, s) = f(k − 1, s− 1)pk + f(k, s− 1)(1− pk+1) (26)

where

pj = 1− F j−1 − 1

FD − 1
=
FD − F j−1

FD − 1
(27)

We can rewrite the function f(k, s) as follows. In case s <
k, f(k, s) = 0. In case s ≥ k, we have

f(k, s) =
∑

∑k+1
j αj=s−k

(

k∏
i=1

pi

k+1∏
j=2

(1− pj)αj ) (28)

=

k∏
i=1

pi
∑

∑k+1
j αj=s−k

(

k+1∏
j=2

(1− pj)αj ) (29)

where αj = 0, 1, . . . , s − k for 2 ≤ j ≤ k + 1. From the
above formula, one can apply order statistics for i.i.d discrete
variables [38] to compute the distribution of K.

2) Probabilistic Bounds on K:

Proposition 3. (Tail bound) For S ≤ D and any k > 0, we
have:

P(Ki ≥ k) ≤ (βS − 1)

(β − 1)

1

k
(30)

where β = FD−F
FD−1

Proof. Let denote Ej = E[Ki|S = j] be the expected rank
of matrix Hi given that Hi has j rows (or the number of
independent packets). Let qj be the probability that the j-th
row is linearly independent with the previous j − 1 rows.

Ej = qj(Ej−1 + 1) + (1− qj)Ej−1

= qj + Ej−1

= qj + qj−1 + Ej−2

. . .

=
i∑

j=1

qj

since E0 = 0.
Now, in each receiver Ri, we have S packets. Hence,

ES =

S∑
j=1

qj (31)

Now, consider qj . The necessary condition for j-th row to
be linearly independent with previous j − 1 rows is that j-th
row needs to be linearly independent with each row in j − 1
rows.

qj ≤ (
FD − F
FD − 1

)j−1 (32)

for j ≥ 1.
Combine (31) and (32), we have:

S∑
j=1

(
FD − F
FD − 1

)j−1 ≥ ES = E[Ki] (33)

Hence, we can have an uppper bound U for E[Ki]:

U =

S∑
j=1

(
FD − F
FD − 1

)j−1 =
βS − 1

β − 1

where β = FD−F
FD−1

.
One now can use Markov’s inequality to complete the proof.

Using the parameters S = 3;F = 2; k = 2, Fig. 2 shows
the empirical probability P(Ki > k) and the upper bound
for different values of D that match the prediction of the
Proposition 3.

Since K = min{Ki}, we have: P (K ≥ k) ≤ P (Ki ≥ k).
However, one can establish a tighter bound for K by apply-
ing the inequality for N independent random variables with
identical mean and variance in [39].



7

5 6 7 8 9 10 11
D

-0.25

-0.2

-0.15

-0.1

-0.05

0
Lo

g 
Pr

ob
ab

ili
tie

s P(K
i
 ≥ k)

UB

Figure 2: Empirical P[K > k] vs. D

Proposition 4. (Asymptotic) Consider where D → ∞ and
T = D−S is a constant, using the result given in [40, Theorem
1], we have:

lim
D→∞

P(Ki = k) =


∏∞
j=T+1 (1− ( 1

F )j) for k = 0∏∞
j=T+k+1 (1−( 1

F )j)∏k
j=1 (1−( 1

F )j)
( 1
F )k(T+k) for k ≥ 1

Hence, one can compute the probability distribution of K
by using order statistics.

VI. ALGORITHMS

In the previous section, we characterize the optimal solution
via asymptotic and probabilistic results. In this section, we
describe three random network coding algorithms to approx-
imate the optimal solution: the Simple Random Network
Coding Algorithm (SRNC), the Informed Random Network
Coding Algorithm (IRNC), and the Refined Random Network
Coding Algorithm (RRNC). We note that the SRNC and IRNC
algorithms are not novel. However, the probabilistic analysis
for SRNC and IRNC with respect to the “Has” set models
have not been done previously. We start with the simplest one:
SRNC algorithm.

A. Simple Random Network Coding Algorithm (SRNC)

The SRNC algorithm is described as follows.

Algorithm 1: SRNC Algorithm
Data: The sender has no knowledge about packets at

receivers
1 while there exists one receiver that can’t recover the

original packets do
2 Sender generates and broadcasts a mixed packet;
3 Each receiver Ri updates its “Has” set and

corresponding matrix Hi;
4 if Hi is full rank then
5 Ri can recover the original packets and sends

acknowledgment to the sender;
6 end
7 end

SRNC algorithm assumes that the sender has no knowledge
about the subsets of packets at the receivers at any given time.

At every time slot, the sender broadcasts a mixed packet (line
2)

c = v1p1 + v2p2 + · · ·+ vDpD,

where vi’s are drawn uniformly at random from the finite field
GF (F). The sender will continue to broadcast these packets
until it receives all the acknowledgments from each receiver,
indicating that all the receivers have successfully obtained all
the packets.

At the receiver, upon receiving a mixed packet c, the “Has”
set of a receiver Ri is updated as:

Hi = Hi
⋃
{c},

and the corresponding matrix Hi is constructed (line 3). Next,
the Gaussian elimination algorithm is applied to Hi to find
linearly independent columns and the missing original packets.
If Hi is full rank, then receiver Ri can recover the original
packets. In this case, the receiver sends an acknowledgment
to the sender indicating that it has successfully recovered all
the original packets (line 5). Otherwise, it waits for the next
packet from the sender. The process repeats until the receiver
is able to recover all the original packets. The SRNC algorithm
is simple since the sender does not require information from
the receivers. Rather, only one acknowledgement from each
receiver is sufficient to complete the synchronization process.

B. Informed Random Network Coding (IRNC)

The IRNC algorithm is described as follows.

Algorithm 2: IRNC Algorithm
Data: The sender has knowledge about “Want” sets at

receivers only in the beginning
1 while there exists one receiver that cannot recover the

original packets do
2 Sender generates and broadcasts a mixed packet

based on the initial “Want” sets at receivers;
3 Each receiver Ri updates its “Has” set and

corresponding matrix Hi;
4 if Hi is full rank then
5 Ri can recover the original packets and sends an

acknowledgment to the sender;
6 end
7 end

The IRNC algorithm requires a bit more information.
Specifically, all receivers send the information on their “Want”
sets to the sender only once in the beginning. The sender
uses this information to construct and broadcast the mixed
packets without further collaboration from the receivers except
the final acknowledgements from each receiver indicating that
they have successfully obtained all the packets.

The “Want” set at each receiver Ri is constructed as follows.
First, the Gaussian elimination algorithm is applied to Hi

to find the missing original packets. Next, Ri sends this
information to the sender. The sender then constructs a union
set W =

⋃
i

Wi where Wi consisting of the missing original
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packets for Ri. Let M = |W|, the sender broadcasts a mixed
packet constructed as:

c = v1p1 + v2p2 + · · ·+ vMpM ,

where p1,p2, . . . ,pM ∈ W , and vi’s are drawn uniformly
at random from the finite field GF (F). The only difference
between IRNC and SRNC algorithms is that the IRNC al-
gorithm generates mixed packets from W (line 2) while the
SRNC algorithm generates mixed packets from all the original
packets in P .

As an example, consider a scenario with five original
packets and two receivers R1 and R2. R1 has three packets,
each is a linear combination of the five original packets. Thus,
H1 is a 3× 5 matrix of the form:

H1 =

∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ,

where * denotes values from GF (F). Assume that F =
{0, 1}, then each row in H1 represents a packet of R1 which
is a linear combination of the five original packets. Since
GF (25) is used, a 1 or a 0 in the i-th column and j-th row
indicates that the original packet pi is present or not in the
j-th mixed packet, respectively. Now R1 applies the Gaussian
elimination algorithm, and suppose it produces the following
upper diagonal matrix:

H′1 =

1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 0 1

 ,

Based on H′1, the “Want” set of R1 includes p2 and p4.
R1 then sends this information to the sender. Similarly, if
R2’s “Want” set contains only p3, it will send this informa-
tion to the sender. The sender will now generate the mixed
packets that are random linear combinations from the set
W = {p2,p3,p4}.

Receivers in the IRNC algorithm also behaves similarly to
those in the SRNC algorithm. Since the IRNC algorithm gen-
erate packets based on the missing packets at the receivers, the
sender avoids sending redundant information to the receivers.
Therefore, the IRNC algorithm should perform better than the
SRNC algorithm.

C. Refined Random Network Coding Algorithm (RRNC)

We now introduce the RRNC algorithm which can be shown
theoretically better than the SRNC and IRNC algorithms. The
RRNC algorithm is described as follows.

Compare to the previous two algorithms, the RRNC algo-
rithm requires a bit more information exchange between the
sender and receivers, but they all are very similar. Specifically,
the sender receives the information on the “Want” sets from
each receiver after transmitting each packet. It then constructs
the union setW =

⋃
i

Wi, and generates mixed packets based

on W in the exact manner as the IRNC algorithm. The only
difference is that after receiving a new packet, each receiver
recomputes its “Want” set and sends its updated “Want” set to

Algorithm 3: RRNC Algorithm
Data: The sender has knowledge about “Want” sets at

receivers at each time slot
1 while there exists one receiver that cannot recover all

the original packets do
2 Sender generates and broadcasts a mixed packet

based on the “Want” sets;
3 Each receiver Ri updates its “Has” set and

corresponding matrix Hi;
4 if Hi is full rank then
5 Ri can recover the original packets and sends

acknowledgment to the sender;
6 else
7 Ri computes and sends its “Want” set to the

sender;
8 end
9 end

the sender (line 7). The sender then constructs a new W and
uses it to generate and broadcast the next packet (line 2). The
process repeats until all the receivers can successfully recover
all the original packets.

Intuitively, the RRNC algorithm is better than the IRNC
and SRNC algorithms because at each time slot, the RRNC
algorithm uses more information about the missing packets
at each receiver. As a result, a mixed packet generated by
the RRNC algorithm has a higher chance of adding more new
information to the receivers than the others two. We will show
the theoretical analysis in the next section.

VII. THEORETICAL PERFORMANCE OF THE PROPOSED
ALGORITHMS

In this section, we provide a number of theoretical results on
the performances for the proposed SRNC, IRNC, and RRNC
algorithms in terms of the number of time slots for completing
the data synchronization. First the performances of algorithms
are considered from the viewpoint of a single receiver Ri.
Recall in Section III that a packet can be represented as
a vector v. Thus, a group of packets are considered as
mutually linearly independent if theirs vector representations
are mutually linearly independent. We now consider a receiver
Ri who wants to recover all D = |P| original packets. Given
that Ri currently obtains K ≤ D linearly independent packets,
we want to know on average how many time slots it takes for
Ri to recover all D original packets using the SRNC, IRNC,
and RRNC algorithms.

A. Single User’s Perspective

Let T (S)
i , T (I)

i , and T (R)
i be the random variables denoting

the number of packets sent out by the sender, i.e., the number
of time slots required so that Ri is able to recover all the origi-
nal D packets using the SRNC, IRNC, and RRNC algorithms,
respectively. Let denote |F| = F and also L = D−K be the
cardinality of the individual “Want” set for each receiver Ri.
Then, we have the following Propositions to characterize the
performances of the proposed algorithms.
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Proposition 5. (Performance of the SRNC algorithm)

E[T
(S)
i ] =

L∑
j=1

FD − 1

FD − FK+j−1
(34)

Var[T
(S)
i ] =

L∑
j=1

(FK+j−1 − 1)(FD − 1)

(FD − FK+j−1)2
(35)

Let M = |W| be the cardinality of the combined “Want”
set, then the performance of the IRNC algorithm is character-
ized by the following Proposition.

Proposition 6. (Performance of the IRNC algorithm)

E[T
(I)
i ] =

L∑
j=1

FM − 1

FM − FM−L+j−1
(36)

Var[T (I)
i ] =

L∑
j=1

(FM−L+j−1 − 1)(FM − 1)

(FM − FM−L+j−1)2
(37)

Next, the following Proposition characterizes the perfor-
mance of the RRNC algorithm.

Proposition 7. (Performance of the RRNC algorithm)

E[T
(R)
i ] ≤

L∑
j=1

FM−j+1 − 1

FM−j+1 − FM−L
(38)

Var[T (C)
i ] ≤

L∑
j=1

(FM−j+1 − 1)(FM−L − 1)

(FM−j+1 − FM−L)2
. (39)

The proofs of all these Propositions can be found in the
Appendix.

The following Proposition supports our intuition that the
RRNC algorithm is better than the IRNC algorithm which in
turn is better than the SRNC algorithm.

Proposition 8. (Performance Comparison)

E[T
(R)
i ] ≤ E[T

(I)
i ] ≤ E[T

(S)
i ] (40)

Var[T (R)
i ] ≤ Var[T (I)

i ] ≤ Var[T (S)
i ]. (41)

Proof. For the expected value, let us consider the following
function:

f(x) =
F x − 1

F x − F x−a
,

where 1 ≤ a ≤ L is a constant. We have:

f ′(x) =
lnF

F x − F x−a
> 0.

where x > a. Therefore, f(x) is a monotonically increasing
function in x.

Now, from (34), (36), (38) the upper bound of E[T
(R)
i ],

E[T
(I)
i ] and E[T

(S)
i ] is the sum of functions of the form f(M−

j+1), f(M) and f(D), respectively. Also, M−j+1 ≤M ≤
D. Thus, we have E[T

(R)
i ] ≤ E[T

(I)
i ] ≤ E[T

(S)
i ].

For the variance, consider the following function:

g(x) =
(F x − 1)(F x−a − 1)

F x − F x−a
(42)

where 1 ≤ a ≤ L is a constant. We have

g′(x) =
ln(F )(F 2x − F a)

F x(F a − 1)
> 0 (43)

where x > a. Hence, g(x) is a monotonically increasing
function in x.

Now, from (35), (37), (39) the upper bound of Var[T
(R)
i ],

Var[T
(I)
i ], and Var[T

(S)
i ] is the sum of functions of the form

g(M−j+1), g(M) and g(D), respectively. Also, M−j+1 ≤
M ≤M . Thus, we have Var[T

(R)
i ] ≤ Var[T

(I)
i ] ≤ Var[T

(S)
i ].

B. Sender’s Perspective

We now consider the performance of the entire system, i.e.,
the sender’s perspective. Let T (S)

max, T (I)
max, and T

(R)
max be the

random variables denoting the numbers of time slots until the
sender receives all the acknowledgments from all N receivers
using the SRNC, IRNC, and RRNC algorithms, respectively.
Then clearly,

T (S)
max = max

i
T

(S)
i (44)

T (I)
max = max

i
T

(I)
i (45)

T (R)
max = max

i
T

(R)
i , (46)

for i = 1, 2, . . . , N .
The performances of all three algorithms are characterized

by the following Proposition.

Proposition 9. (Tail probability)

P(Tmax > a) ≤ 1− (1− σ2

(a− µ)2
)
N

(47)

for a > µ = E[Ti] and σ2 = Var[Ti] for each algorithm,
respectively.

Alternatively, one can find the upper bound of E[Tmax] by
applying the inequality for N independent random variables
with identical mean and variance in [39] as follows.

E[Tmax] ≤ µ+ σ
√
N − 1. (48)

VIII. PERFORMANCE RESULTS

In this section, we present the performance evaluations of
the proposed algorithms for various settings, and verify the
agreement between the theoretical and empirical results.

Fig. 3 shows the empirical E[T
(S)
i ], E[T

(I)
i ], E[T

(R)
i ], i.e.,

the average numbers of time slots needed for a receiver to
recover all N = 50 original packets using the SRNC, IRNC,
and RRNC algorithms, respectively, as a function of K, the
number of packets initially at a receiver. The value range for
K is from 20 to 30. As seen, the value of E[T

(S)
i ] and E[T

(I)
i ]

are not much different to each other, while E[T
(R)
i ] is slightly

smaller. This complies with our intuition since the RRNC
algorithm has more information than the others two. Despite of
a modest improvement in mean of time slots needed to recover
all the original packets for the RRNC algorithm, we note that
the variance of T (R)

i is also smaller than those of the others
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two. This is quite important as we consider the performance
from the sender’s perspective as shown in Fig. 4.

Fig. 4 shows empirical E[T
(S)
max], E[T

(I)
max], E[T

(R)
max] as the

numbers of time slots needed for the sender to complete the
synchronization process for the SRNC, IRNC, and RRNC
algorithms. Now, one can see that the RRNC algorithm
achieves a much better performance than those of the others
two. We argue that this is due to smaller variance produced
by the RRNC algorithm. This can be seen from Eq. (48) that
E[Tmax] for all three algorithms depends on the square root
of the number of the receivers times the variance. Thus, a
small change in variance can greatly affect E[Tmax] for a large
number of receivers.
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Figure 3: Empirical E[Ti] vs. K
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Figure 4: Empirical E[Tmax] vs. K

Next, we verify our theoretical results with simulations for
various parameters. Using D = 100, F = 2,K = 30 → 70,
Fig. 5 and Fig. 6 show the correctness of analytical per-
formance of the SRNC algorithm. As seen, the number of
time slots decreases while K increases. Intuitively, the more
information a receiver has, the less information the sender
needs to broadcast to complete the synchronization process at
this receiver.

Using N = 10, D = 10, F = 2,K = 5, Fig. 7 and
Fig. 8 verify the agreement between theoretical and simulated
performance results of the IRNC algorithm as function of M
(cardinality of the union set). As seen, the smaller cardinality
of the union set is, the better performance can be achieved.
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Figure 5: Theoretical and empirical E[T
(S)
i ] vs. K for SRNC
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Figure 6: Theoretical and empirical Var[T
(S)
i ] vs. K for SRNC

Using N = 50, D = 30, F = 2,K = 10, the upper bound
on the expectation and the variance of the RRNC algorithm
are shown in Fig. 9 and Fig. 10.

Fig. 11 and Fig. 12 show the performance of three al-
gorithms with different value of F (the field size) using
N = 30, D = 20,K = 10, F ∈ {2, 3, 5, 7, 11, 13}. As seen,
while F grows the performance of the proposed algorithms
is improved substantially. Intuitively, with a larger field size
the probability that a new generated packet is dependent with
the packets in “Has” sets at receivers will decrease, leading to
higher chance recovering the all original packets faster.

The robustness of random network coding techniques can
be verified in Fig. 12. Here, we compare proposed algorithms
with an efficient deterministic algorithm in which the sender
only broadcasts M original packets in union setW . Obviously,
the number of time slots to complete synchronization process
for the deterministic algorithm is M . It can be seen that
the deterministic algorithm outperforms SRNC and IRNC for
some small values of F , however from the range where F ≥ 7,
IRNC has better performance and the performance of SRNC:
E[T

(I)
max] is very close to M .

We now compare the performance of the RRNC algorithm
with the well-known maximum clique network coding algo-
rithm (MCNC) [41]. Since finding maximum clique is an NP-
hard problem, the Bron-Kerbosch algorithm is used as the
heuristic solution [42].

The pseudo codes for the MCNC algorithm is shown below.
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Figure 7: Theoretical and empirical E[T
(I)
i ] vs. M for IRNC
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Figure 8: Theoretical and empirical Var[T
(I)
i ] vs. M for IRNC

The numbers of rounds vs the size of “Has” set for the
MCNC and RRNC algorithms from the sender and receiver’s
perspectives, are shown in the Fig. 13 and Fig. 14, respectively.
In this simulation, we use N = 20, D = 20, F = 2.

The shorter the round is the better the performance is.
As seen, both algorithms have almost identical performance.
At the receiver, both algorithms work in the same manner.
However, it should be noted that at the sender the RRNC
algorithm is much faster since it does not need to find the
maximum clique which has the complexity of O(3KN )/3) in
the worst case for using Bron-Kerbosch algorithm [43]. Rather,
the RRNC algorithm simply uses random projection with the
complexity of O(ND) which appears to perform similarly to
the MCNC algorithm.

IX. CONCLUSION

In this paper, we describe the problem of efficient data
synchronization/ broadcast for a large number of nodes with
disparate data. The synchronization problem arises naturally
in many applications, including Peer-to-Peer networks, data
centers, and distributed storage systems with asynchronous
updates. Two probabilistic models are considered on how the
initial fractions of packets at receivers are distributed and
according to different practical scenarios. Also, we propose
and analyze a number of random network coding algorithms
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Figure 9: Theoretical upper bound and empirical E[T
(R)
i ] vs.

M for RRNC
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Figure 10: Theoretical upper bound and empirical Var[T
(R)
i ]

vs. M RRNC

and verify their performances via theoretical analysis and
simulations.

APPENDIX

Proposition 5

Proof. Let t(S)
j be the random variable representing the num-

ber of time slots to collect the j-th linearly independent packet
after (j − 1) linearly independent packets has been added to
Hi (in addition to K linearly independent packets in Hi at
initial). In Hi, there are (K + j − 1) linearly independent
packets so there are (FK+j−1−1) dependent vectors with Hi
in total of (FD − 1) nonzero vectors in GF (FD).

Let p(S)
j be the probability the j-th linearly independent

packet is received at each time slot. We have:

p
(S)
j = 1− FK+j−1 − 1

FD − 1
=
FD − FK+j−1

FD − 1

Then t
(S)
j has geometric distribution with expectation

E[t
(S)
j ] = 1

p
(S)
j

and variance Var[t
(S)
j ] =

1−p(S)
j

p
(S)
j

2 . Since Hi

needs exactly L new linearly independent packets to be full
rank, the number of broadcasts T

(S)
i that receiver Ri can
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2 4 6 8 10 12 14

10

11

12

13

14

15

16

17

18

19

F

Ti
m

e 
sl

ot
s 

− 
E

[T m
ax

]

 

 
SRNC
IRNC
RRNC
M

Figure 12: Empirical E[Tmax] of sender as a function of F

recover all D original packets is equal the time it receives
L-th new linearly independent packet:

E[T
(S)
i ] =

L∑
j=1

E[t
(S)
j ] =

L∑
j=1

1

p
(S)
j

→ E[T
(S)
i ] =

L∑
j=1

FD − 1

FD − FK+j−1
(49)

Also, for the variance of T (S)
i :

Var[T
(S)
i ] =

L∑
j=1

Var[t
(S)
j ] =

L∑
j=1

1− p(S)
j

p
(S)
j

2

→ Var[T
(S)
i ] =

L∑
j=1

(FK+j−1 − 1)(FD − 1)

(FD − FK+j−1)2
(50)

Proposition 6

Proof. Consider the behavior at receiver Ri, let Si be the
intersection (share) set between Hi and the union set W at
the sender. We have

|Si| = |W ∩Hi| = |W|+ |Hi|−|P| = M+K−D = M−L.

We use the similar approach as in proof of Proposition 5 except
that we randomly choose non-zero vectors in W . Also in Hi,

Algorithm 4: MCNC Algorithm
Data: The sender has knowledge about “Want” sets at

receivers at each time slot
1 while There exists one receiver that cannot recover all

the original packets do
2 Based on each “Want” set from each receiver, the

sender creates a undirected graph in which each
node is represented by a pair of one receiver and
one wanted packet;

3 If both receivers want the same packet or if two
receivers satisfy that each wants the packet that
other has then we connect these two corresponding
nodes in the graph;

4 Sender generates and broadcasts a mixed packet
based on the maximum clique found in the graph;

5 Each receiver Ri updates its “Has” set and
corresponding matrix Hi;

6 if Hi is full rank then
7 Ri can recover the original packets and sends

acknowledgment to the sender;
8 else
9 Ri computes and sends its “Want” set to the

sender;
10 end
11 end
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Figure 13: Number of rounds vs. the size of “Has” set for
RRNC and MCNC from the receiver’s perspective

there are (M−L) packets that are linearly dependent withW .
Hence, the probability p(I)

j that the j-th linearly independent
packet is received at Ri can be computed as follows.

p
(I)
j = 1− FM−L+j−1 − 1

FM − 1
=
FM − FM−L+j−1

FM − 1

Now, for the expectation and variance of T (I)
i

E[T
(I)
i ] =

L∑
j=1

1

p
(I)
j

=

L∑
j=1

FM − 1

FM − FM−L+j−1
. (51)

Var[T
(I)
i ] =

L∑
j=1

Var[t
(I)
j ] =

L∑
j=1

1− p(I)
j

p
(I)
j

2
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→ Var[T
(I)
j ] =

L∑
j=1

(FM−L+j−1 − 1)(FM − 1)

(FM − FM−L+j−1)2
. (52)

Proposition 7

Proof. After each transmission, every receiver Ri recomputes
its “Want” set Wi, and then the sender recomputes W , so the
cardinality M = |W| will decrease by at least one. Let Wj be
the updated union set at the sender after Ri receive the (j−1)-
th linearly independent packets. We have |Wj | < |Wj−1| <
· · · < |W1| = |W| and |Wj | = Mj ≤M−(j−1) = M−j+1.
Now, the intersection (share) set Si,j betweenHi and the union
set Wj is Si,j . We have

|Si,j | = |Wj ∩Hi| = |Wj |+ |Wi| − |P|
= Mj +K −D = Mj − L.

Then the probability p
(R)
j such that the j-th new linearly

independent packet is received can be computed as follows.

p
(R)
j = 1− FMj−L+j−1 − 1

FMj − 1
=
FMj − FMj−(L−j+1)

FMj − 1

Consider the following function:

f(x) =
F x − F x−a

F x − 1

where a = L− j + 1 then 1 ≤ a ≤ L. We have:

f ′(x) = − (F a − 1) ln(F )F x−a

(F x − 1)2
≤ 0.

Hence, f(x) is monotonically decreasing. Since Mj ≤ M −
j + 1, we have:

p
(R)
j = f(Mj) ≥ f(M − j + 1) =

FM−j+1 − FM−L

FM−j+1 − 1
(53)

Therefore,

E[T
(R)
i ] =

L∑
j=1

1

p
(R)
j

≤
L∑
j=1

FM−j+1 − 1

FM−j+1 − FM−L
(54)

For the variance of T (I)
i , we have

Var[T
(R)
i ] =

L∑
j=1

1− p(R)
j

p
(R)
j

2 (55)

Consider the following function

g(x) =
1− x
x2

We have

g′(x) =
x− 2

x3
< 0

where 0 ≤ x ≤ 1. Hence, g(x) is a monotonically decreasing
function in 0 ≤ x ≤ 1. Combine with (53), we have:

Var[T
(R)
i ] =

L∑
j=1

g(p
(R)
j ) ≤

L∑
j=1

(FM−j+1 − 1)(FM−L − 1)

(FM−j+1 − FM−L)2
.

Proposition 9

Proof. The proof approaches are similar for all three algo-
rithms. Here, the general notation Tmax can be applied to
each algorithm, respectively. We have

P(Tmax > a) = 1− P(T ≤ a).

Also, P(Tmax ≤ a) = P(
⋂N
i=1 Ti ≤ a).

Since a > µ, let a = bσ + µ where b > 0 then

P(T ≤ a) = P(

N⋂
i=1

Ti ≤ µ+ bσ)

= P(

N⋂
i=1

Ti − µ ≤ bσ)

≥ P(

N⋂
i=1

|Ti − µ| ≤ bσ)

Apply two-sided Chebyshev’s inequality with N independent
random variables T1, T2, . . . , TN :

P(

N⋂
i=1

|Ti − µ| ≤ bσ) ≥
N∏
i=1

(1− 1

b2
) = (1− 1

b2
)
N

Note: the bound is only meaningful where b ≥ 1.
Hence,

P(T > a) ≤ 1− (1− 1

b2
)
N

Plug b = a−µ
σ back, we have:

P(T > a) ≤ 1− (1− σ2

(a− µ)2
)
N

(56)
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