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Abstract—While capacities of discrete memoryless channels
are well studied, it is still not possible to obtain a closed-form
expression for the capacity of an arbitrary discrete memoryless
channel (DMC). In this paper, we study a class of DMCs whose
channel matrix is an invertible positive matrix. This class of
channel matrices can be used to model many real-world settings.
Next, an elementary technique based on Karush-Kuhn-Tucker
(KKT) conditions is used to obtain (1) a good upper bound of a
discrete memoryless channel having an invertible positive channel
matrix and (2) a closed-form expression for the capacity if the
channel matrix satisfies certain conditions related to its singular
value and its Gershgorin’s disk.

Index Terms—Wireless Communication, Convex Optimization,
Channel Capacity, Mutual Information.

I. INTRODUCTION

Discrete memoryless channels (DMC) play a critical role
in the early development of information theory and its ap-
plications. DMCs are especially useful for studying many
well-known modulation/demodulation schemes (e.g., PSK and
QAM ) in which the continuous inputs and outputs of a
channel are quantized into discrete symbols. Thus, there exists
a rich literature on the capacities of DMCs [1], [2], [3], [4],
[5], [6], [7]. In particular, capacities of many well-known
channels such as (weakly) symmetric channels can be written
in elementary formulas [1]. However, it is often not possible
to express the capacity of an arbitrary DMC in a closed-form
expression [1]. Recently, several papers have been able to
obtain closed-form expressions for a small class of DMCs
with small alphabets. For example, Martin et al. established
closed-form expression for a general binary channel [8]. Liang
showed that the capacity of channels with two inputs and
three outputs can be expressed as an infinite series [9]. Paul
Cotae et al. found the capacity of two input and two output
channels in term of the eigenvalues of the channel matrices
[10]. In [11], the authors used geometric programming to
construct a simple closed-form expression for the upper bound
of the capacity of an arbitrary DMC. It is worth noting that
the approach in [11] based on elementary Lagrange functions
is similar to our approach in this paper. On the other hand,

the problem of finding the capacity of a discrete memoryless
channel can be formulated as a convex optimization problem
[12], [13]. Thus, efficient algorithmic solutions exist. There
are also iterative algorithms such as Arimoto-Blahut algorithm
[2], [3] and other variants for computing channel capacities
[14], [15], [16], [17], [18]. Even though there exist efficient
algorithms for finding the capacity of an arbitrary DMC, there
are a number of reasons why channel capacity or bounds
expressed in closed-form expression can be very useful. These
include (1) formulas can often provide a good intuition about
the relationship between the capacity and different channel
parameters, (2) formulas offer a faster way to determine the
capacity than that of algorithms, and (3) formulas are useful
for analytical derivations where closed-form expression of
the capacity is needed in the intermediate steps. Moreover,
the channel capacity or bounds expressed in closed-form
expression might be particularly useful for channels having
large alphabet sizes since the well-known Arimoto-Blahut
algorithm already provides the capacity values fairly quickly
for channels with small alphabet sizes. In fact, our work is
motivated by our current work on a prototype of a Free Space
Optical communication system called WiFO [19]. WiFO’s
transceiver is capable of adjusting transmitting and receiving
parameters for power and coverage optimization. The result
is that the channel matrix can be changed dynamically. For
a given channel matrix, we want to know the closed-form
expression of the channel capacity so that a trade-off among
power consumption, coverage, and capacity can be optimized
quickly.

To that end, in this paper we investigate the closed-form
expressions for the capacities and their upper bounds of
an important class of DMCs whose channel matrices are
invertible positive matrices. An invertible positive matrix is a
square matrix whose entries are strictly greater than zero and
invertible. There are a number of reasons for using an invert-
ible positive matrix to model many communication channels
in real-world settings. First, in most digital communication
systems, the transmitter sends a set of transmitted symbols
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(inputs) and the receiver aims to decode the received signals
into one of the transmitted symbols (outputs). Consequently,
the channel matrix is a square matrix consisting of the same
number of inputs and outputs. Second, since it is physically
impossible to design a communication channel without error,
the assumption on the entries in the channel matrix to be
strictly greater than zero is reasonable. In the case when an
entry is truly zero, it is always possible to approximate the
zero with a small positive number. Third, for a n× n matrix,
if the entries are drawn uniformly from a real set (or more
precisely in (0,1) and the rows form a valid conditional pmf),
then it can be shown that the probability of the matrix being
invertible is approaching 1 with increasing n. Thus, invertible
matrices are arguably useful to model many communication
channels in real-world settings.

Building on the work in [7], our contributions include: (1)
we describe an elementary technique based on the theory of
convex optimization, to find the closed-form expression for
a good upper bound on capacities of discrete memoryless
channels with positive invertible channel matrix, and (2)
we find the optimality conditions of the channel matrix for
which the upper bound is precisely the capacity. We refine
the optimality conditions in [7] and provide additional easy-
to-use conditions for obtaining closed-form expression for
capacities. In particular, the optimality conditions establish a
relationship between the singular value and the Gershgorin’s
disk of the channel matrix. Intuitively, this optimality condition
of a channel matrix corresponds to the channel matrix be-
longing to a subclass of strictly diagonally dominant matrices.
Since strictly diagonally dominant matrices represent reliable
channels (to be discussed), our results could be useful since
most communication systems are designed to achieve a certain
level of reliability. Furthermore, our results extend the class
of channel matrices, especially the symmetric and weakly
symmetric matrices whose channel capacities can be found
in closed-form expressions.

II. PRELIMINARIES

In this section, we provide definitions together with ele-
mentary results that will aid our discussions. In particular,
we will discuss (1) the optimality KKT conditions and (2)
linear algebra results which we use to derive the closed-
form expressions for both the capacity upper bound and exact
capacity.

A. Convex Optimization and KKT Conditions

A DMC is characterized by a random variable X ∈
{x1, x2, . . . , xm} for the inputs, a random variable Y ∈
{y1, y2, . . . , yn} for the outputs, and a channel matrix A ∈
Rm×n. In this paper, we consider DMCs with equal number
of inputs and outputs n, thus A ∈ Rn×n. The matrix entry
Aij represents the conditional probability that given xi is
transmitted, yj is received. Let p = (p1, p2, . . . , pn)

T be the
input probability mass vector (pmf) of X , where pi denotes
the probability of xi to be transmitted, then the pmf of Y is

q = (q1, q2, . . . , qn)
T = AT p and AT denotes the transpose

of A. The mutual information between X and Y is:

I(X;Y ) = H(Y )−H(Y |X), (1)

where

H(Y ) = −
n∑
j=1

qj log qj (2)

H(Y |X) = −
n∑
i=1

n∑
j=1

piAij logAij . (3)

The mutual information function can be written as:

I(X;Y ) = −
n∑
j=1

(AT p)j log (A
T p)j +

n∑
i=1

n∑
j=1

piAij logAij ,

(4)
where (AT p)j denotes the jth component of the vector q =
(AT p). The capacity C associated with a channel matrix A
is the theoretical maximum rate at which information can be
transmitted over the channel without the error [5], [20], [21].
It is obtained using the optimal pmf p∗ such that I(X;Y )
is maximized. For a given channel matrix A, I(X;Y ) is a
concave function of p [1]. Therefore, maximizing I(X;Y ) is
equivalent to minimizing −I(X;Y ), and finding the capacity
can be cast as the following convex problem:

Minimize:
n∑
j=1

(AT p)j log (A
T p)j −

n∑
i=1

n∑
j=1

piAij logAij .

Subject to: {
p � 0

1T p = 1.

The optimal p∗ can be found efficiently using various
algorithms such as gradient methods [22], but in a few cases,
p∗ can be found directly using the Karush-Kuhn-Tucker (KKT)
conditions [22]. To explain the KKT conditions, we first state
the canonical convex optimization problem below:

Problem P1: Minimize: f(x)
Subject to: {

gi(x) ≤ 0, i = 1, 2, . . . n,

hj(x) = 0, j = 1, 2, . . . ,m,

where f(x), gi(x) are convex functions and hj(x) is a linear
function.

Define the Lagrangian function as:

L(x, λ, ν) = f(x) +

n∑
i=1

λigi(x) +

m∑
j=1

νjhj(x), (5)

then the KKT conditions [22] states that, the optimal point x∗

must satisfy:
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

gi(x
∗) ≤ 0,

hj(x
∗) = 0,

dL(x,λ,ν)
dx |x=x∗,λ=λ∗,ν=ν∗ = 0,

λ∗i gi(x
∗) = 0,

λ∗i ≥ 0.

(6)

for i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

B. Elementary Linear Algebra Results

We first begin with some definitions and preliminaries that
will be used to derive our results.

Definition 1. Let A ∈ Rn×n be an invertible channel matrix
and H(Ai) = −

∑n
k=1Aik logAik be the entropy of ith row,

define

Kj = −
n∑
i=1

A−1ji

n∑
k=1

Aik logAik =
n∑
i=1

A−1ji H(Ai),

where A−1ji denotes the entry (j, i) of the inverse matrix A−1.
Kmax = maxj Kj and Kmin = minj Kj are called the max-
imum and minimum inverse row entropies of A, respectively.

Definition 2. Let A ∈ Rn×n be a square matrix. The
Gershgorin radius of ith row of A [23] is defined as:

Ri(A) =
n∑
j 6=i

|Aij |. (7)

The Gershgorin ratio of ith row of A is defined as:

ci(A) =
Aii
Ri(A)

, (8)

and the minimum Gershgorin ratio of A is defined as:

cmin(A) = min
i

Aii
Ri(A)

. (9)

We note that since the channel matrix is a stochastic matrix,
therefore

cmin(A) = min
i

Aii
Ri(A)

= min
i

Aii
1−Aii

. (10)

Definition 3. Let A ∈ Rn×n be a square matrix.
(a) A is called a positive matrix if Aij > 0 ∀ i, j.
(b) A is called a strictly diagonally dominant positive matrix

[24] if A is a positive matrix and

Aii >
∑
j 6=i

Aij ,∀i, j. (11)

Lemma 1. Let A ∈ Rn×n be a strictly diagonally dominant
positive channel matrix then (a) it is invertible; (b) the
eigenvalues of A−1 are 1

λi
∀ i where λi are eigenvalues of

A, (c) A−1ii > 0 and the largest absolute element in the ith

column of A−1 is A−1ii , i.e., A−1ii ≥ |A
−1
ji | ∀ j.

Proof. The proof is shown in Appendix A.

Lemma 2. Let A ∈ Rn×n be a strictly diagonally dominant
positive matrix, then:

ci(A
−T ) ≥ cmin(A)− 1

(n− 1)
,∀i. (12)

Moreover, for any rows k and l,

|A−1ki |+ |A
−1
li | ≤ A

−1
ii

cmin(A)

cmin(A)− 1
,∀i. (13)

Proof. The proof is shown in Appendix B.

Lemma 3. Let A ∈ Rn×n be a strictly diagonally dominant
positive matrix, then:

max
i,j

A−1ij ≤
1

σmin(A)
, (14)

where maxi,j A
−1
ij is the largest entry in A−1 and σmin(A) is

the minimum singular value of A.

Proof. The proof is shown in Appendix C.

Lemma 4. Let A ∈ Rn×n be an invertible channel matrix,
then

A−11 = 1,

i.e., the sum of any row of A−1 equals to 1. Furthermore, for
any probability mass vector x, sum of the vector y = A−Tx
equal to 1.

Proof. The proof is shown in Appendix D.

III. MAIN RESULTS

Our first main result is an upper bound on the capacity
of discrete memoryless channels having invertible positive
channel matrices.

Proposition 1 (Main Result 1). Let A ∈ Rn×n be an
invertible positive channel matrix and

q∗j =
2−Kj∑n
i=1 2

−Ki
, (15)

p′ = A−T q∗, (16)

then the capacity C associated with the channel matrix A is
upper bounded by:

C ≤ −
n∑
j=1

q∗j log q
∗
j +

n∑
i=1

n∑
j=1

p′iAij logAij . (17)

Proof. Let q be the pmf of the output Y , then q = AT p. Thus,

I(X;Y ) = H(Y )−H(Y |X) (18)

= −
n∑
j=1

qj log qj +
n∑
i

(A−T q)i

n∑
k

Aik logAik.

We construct the Lagrangian in (5) using −I(X;Y ) as the
objective function and optimization variable qj :

L(qj , λj , νj) = −I(X;Y )−
n∑
j=1

qjλj + ν(
n∑
j=1

qj − 1), (19)
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where the constraints g(x) and h(x) in problem P1 are
translated into −qj ≤ 0 and

∑n
j=1 qj = 1, respectively.

Using the KKT conditions in (6), the optimal points q∗j , λ∗j ,
ν∗ for all j, must satisfy:

q∗j ≥ 0, (20)
n∑
j=1

q∗j = 1, (21)

ν∗ − λ∗j −
dI(X;Y )

dq∗j
= 0, (22)

λ∗j ≥ 0, (23)
λ∗jq
∗
j = 0. (24)

Since 0 ≤ pi ≤ 1 and
∑n
i=1 pi = 1, there exists at least

one pi > 0 . Since Aij > 0 ∀i, j, we have:

q∗j =
n∑
i=1

piAij > 0,∀j. (25)

Based on (24) and (25), we must have λ∗j = 0,∀j. Therefore,
all five KKT conditions (20-24) are reduced to the following
two conditions:

n∑
j=1

q∗j = 1, (26)

ν∗ − dI(X;Y )

dq∗j
= 0. (27)

Next,

dI(X;Y )

dqj
=

n∑
i=1

A−1ji

n∑
k=1

Aik logAik − (1 + log qj)

= −Kj − (1 + log qj). (28)

Using (27) and (28), we have:

q∗j = 2−Kj−ν∗−1. (29)

Plugging (29) to (26), we have:
n∑
j=1

2−Kj−ν∗−1 = 1,

ν∗ = log
n∑
j=1

2−Kj−1.

From (29),

q∗j = 2−Kj−ν∗−1 =
2−Kj

2ν∗+1
=

2−Kj∑n
j=1 2

−Kj
,∀j. (30)

We know that a valid optimal input distribution has to
satisfy 0 ≤ p∗i ≤ 1 and

∑n
i=1 p

∗
i = 1. If q∗ is such

that p′ = A−T q∗ � 0 and (A−T q∗)T1 =
∑n
i=1 p

′
i = 1,

then p′ = p∗ is a valid and optimal pmf, and Proposition
1 will hold with equality by the KKT conditions. Now,
the condition

∑n
i=1 p

′
i = 1 holds by Lemma 4. However,

the condition 0 ≤ p′i ≤ 1 may not satisfy. In this case,

maximizing I(X;Y ) in terms of q and ignoring this con-
straint is equivalent to enlarging the feasible region. Since
maxx∈A f(x) ≥ maxx∈B f(x) if B ⊂ A for any arbitrary
f(x), the upper bound of channel capacity in Proposition 1 is
achieved by plugging q∗ from (15) into (16) to obtain p′, and
plugging p′ and q∗ into (4).

We note that the closed-form expressions for channel capac-
ity are also described in [4] and [6] (Section 3.3). However
in both [4] and [6], the sufficient conditions for the closed-
form expressions are not fully characterized. We now show
another contribution that characterizes the sufficient conditions
on the channel matrix A such that its capacity can be written in
closed-form expression, specifically the upper bound in (17).

Proposition 2 (Main Result 2). Let A ∈ Rn×n be a strictly
diagonally dominant positive matrix, if ∀i,

ci(A
−T ) ≥ (n− 1)2Kmax−Kmin , (31)

then the capacity of the channel having channel matrix A
admits a closed-form expression which is exactly the upper
bound in Proposition 1.

Proof. Based on the discussion of the KKT conditions, it is
sufficient to show that if p∗ = A−T q∗ � 0 and

∑n
i=1 p

∗
i =

(A−T q∗)T1 = 1 then C has a closed-form expression. The
condition (A−T q∗)T1 = 1 is always true as shown in Lemma
4 in the Appendix D. Thus, we only need to show that if
ci(A

−T ) ≥ 2Kmax−Kmin , then p∗ = A−T q∗ � 0.

Let q∗min = minj q
∗
j and q∗max = maxj q

∗
j , we have:

p∗i =
∑
j

q∗jA
−1
ji

= q∗iA
−1
ii +

∑
j 6=i

q∗jA
−1
ji

≥ q∗minA
−1
ii − (

∑
j 6=i

q∗j )(
∑
j 6=i

|A−1ji |) (32)

≥ q∗minA
−1
ii − (n− 1)q∗max(

∑
j 6=i

|A−1ji |), (33)

with (32) due to A−1ii > 0 which follows by Lemma 1-(c),
(33) is due to q∗max ≥ q∗j ∀ j. Now if we want p∗i ≥ 0, ∀ i,
from (33), it is sufficient to require that, ∀i,

ci(A
−T ) =

A−1ii∑
j 6=i |A

−1
ji |

≥ (n− 1)q∗max

q∗min

= (n− 1)

2−Kmin∑n
j=1 2

−Kj

2−Kmax∑n
j=1 2

−Kj

(34)

= (n− 1)2Kmax−Kmin ,

with (34) due to (30) and q∗max, q∗min are corresponding to
Kmin, Kmax, respectively. Thus, Proposition 2 is proven.
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We are now ready to state and prove the third main result
that characterizes the sufficient conditions on a channel matrix
so that the upper bound in Proposition 1 is precisely the
capacity.

Proposition 3. Let A ∈ Rn×n be a strictly diagonally dom-
inant positive channel matrix and Hmax(A) be the maximum
row entropy of A. The capacity C is the upper bound in
Proposition 1 i.e., hold with equality if

V

√
cmin(A)− 1

(n− 1)2
≥ 2

nHmax(A)
σmin(A) , (35)

where σmin(A) is the minimum singular value of channel
matrix A, and

V =
cmin(A)

cmin(A)− 1
. (36)

Proof. From (12) in Lemma 2 and Proposition 2, if we can
show that

cmin(A)− 1

(n− 1)
≥ (n− 1)2Kmax−Kmin , (37)

then Proposition 3 is proven. Suppose that Kmax and Kmin are
obtained at rows j = L and j = S, respectively. We note that
from (30), qmax = maxj qj and qmin = minj qj correspond
to Kmin and Kmax, respectively. Thus, from the Definition 1,
we have:

Kmax−Kmin =

n∑
i=1

A−1
LiH(Ai)−

n∑
i=1

A−1
Si H(Ai)

≤ |
n∑
i=1

A−1
LiH(Ai)|+ |

n∑
i=1

A−1
Si H(Ai)| (38)

≤
n∑
i=1

|A−1
Li ||H(Ai)|+

n∑
i=1

|A−1
Si ||H(Ai)|(39)

≤ Hmax(A)

n∑
i=1

(|A−1
Li |+ |A

−1
Si |) (40)

≤ Hmax(A)

n∑
i=1

A−1
ii

cmin(A)

cmin(A)− 1
(41)

≤ nHmax(A)(max
i,j

A−1
ij )

cmin(A)

cmin(A)− 1
(42)

≤ nHmax(A)V

σmin(A)
, (43)

where (38) due to the property of absolute value function,
(39) due to Schwarz inequality, (40) due to Hmax(A) is the
maximum row entropy of A, (41) due to (13), (42) due to
maxi,j A

−1
ij is the largest entry in A−1 and (43) is due to

Lemma 3. Thus,

(n− 1)2
nHmax(A)V
σmin(A) ≥ (n− 1)2Kmax−Kmin . (44)

From (37) and (44), if

cmin(A)− 1

(n− 1)
≥ (n− 1)2

nHmax(A)V
σmin(A) , (45)

then the capacity C is the upper bound in Proposition 1. (45)
is equivalent to (35). Thus Proposition 3 is proven.

We note that the condition in Proposition 3 is easier to verify
than the condition in Proposition 2 since it can be performed
without requiring matrix inverse. Other easy-to-use versions of
checking condition are stated in Proposition 4 and Corollary
1.

Proposition 4. The capacity C is the upper bound in Propo-
sition 1 if

cmin(A)− 1

(n− 1)2
≥ 2

2n logn
σmin(A) . (46)

Proof. Similar to Proposition 3,

Kmax−Kmin ≤ Hmax(A)

n∑
i=1

(|A−1
Li |+ |A

−1
Si |) (47)

≤ Hmax(A)n(2max
i,j

A−1
ij ) (48)

≤ 2n logn

σmin(A)
, (49)

with (47) is identical to (40), (48) is due to maxi,j A
−1
ij is

the largest entry in A−1, (49) due to Hmax(A) ≤ log n and
Lemma 3. Thus, by changing nHmax(A)V

σmin(A) in (45) by 2n logn
σmin(A) ,

the Proposition 4 is proven.

A direct result of Proposition 3 without using singular value
is shown in Corollary 1.

Corollary 1. The capacity C is the upper bound in Proposi-
tion 1 if

V

√
cmin(A)− 1

(n− 1)2
≥ 2

nH∗
max(A)

σ∗ , (50)

where,

V =
cmin(A)

cmin(A)− 1
, (51)

σ∗ =
cmin(A)− n/2
cmin(A) + 1

, (52)

H∗max(A) = log(cmin(A)+1)+
log(n− 1)− cmin(A) log cmin(A)

cmin(A) + 1
.

(53)

Proof. We will construct the lower bound for σmin(A) and the
upper bound for Hmax(A). From Lemma 5 in Appendix E

σmin(A) ≥
cmin(A)− n/2
cmin(A) + 1

= σ∗, (54)

and

Hmax(A) ≤ log(cmin(A)+1)+
log(n−1)−cmin(A) log cmin(A)

cmin(A) + 1

= H∗max(A). (55)

Therefore
nHmax(A)V

σmin(A)
≤ nH∗max(A)

σ∗
. (56)

Thus, by changing nHmax(A)
σmin(A) in (35) by nH∗

max(A)
σ∗ , the

Corollary 1 is proven.
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Figure 1. Relay-MISO channel

We note that, when cmin(A) is relatively larger than the
size of matrix n, the lower bound of σmin(A) goes to 1. We
also note that (50) can be checked efficiently without requiring
both Hmax(A) and σmin(A) at the expense of a looser upper
bound as compare to (35).

IV. EXAMPLES AND NUMERICAL RESULTS

A. Example 1: Cooperative Relay-MISO Channels

In this example, we investigate the channel capacity for a
class of channels named Relay-MISO (Relay - Multiple Input
Single Output). Relay-MISO channel [25] can be constructed
by the combination of a relay channel [26] [27] and a Multiple
Input Single Output channel, as illustrated in Fig. 1.

In a Relay-MISO channel, n senders want to transmit
data to a same receiver via n relay base station nodes. The
uplink of these senders using wireless links that are prone
to transmission errors. Each sender can transmit bit “0” or
“1” with the probability of bit flipping is α, 0 ≤ α ≤ 1.
For a simplicity, suppose that n relay channels have the same
error probability α. Next, all of the relay base station nodes
will relay the signal by a reliable channel such as optical fiber
cable to a same receiver. The receiver adds all the relay signals
(symbols) to produce a single output symbol.

It can be shown that the channel matrix of this Relay-MISO
channel [25] is an invertible matrix of size (n+ 1)× (n+ 1)
whose Aij can be computed as:

Aij=

s=min(n+1−j,i−1)∑
s=max(i−j,0)

(
j−i+s
n+1−i

)(
s

i−1

)
αj−i+2s(1−α)n−(j−i+2s).

We note that this Relay-MISO channel matrix is invertible
and the inverse matrix has the closed-form expression which
is characterized in [25]. For example, the channel matrix of a
Relay-MISO channel with n = 3 is given as follows:


(1−α)3 3(1−α)2α 3(1−α)α2 α3

α(1−α)2 2α2(1−α) + (1−α)3 2(1−α)2α+α3 (1−α)α2

(1−α)α2 2(1−α)2α+α3 2α2(1−α)+(1−α)3 α(1−α)2
α3 3(1−α)α2 3(1−α)2α (1−α)3

 ,
where 0 ≤ α ≤ 1. We note that this channel matrix is strictly
diagonally dominant matrix when α is close to 0 or α is close
to 1. In addition, for α values that are close to 0 or 1, it
can be shown that channel matrix A satisfies the conditions
in Proposition 3. Thus, the channel capacity admits a closed-
form expression in Proposition 1. For other values of α, e.g.
closer to 0.5, the optimality conditions in Proposition 3 no
longer holds. In this case, Proposition 1 can still be used as a
good upper bound on the capacity.

We show that our upper bound is tighter than existing upper
bounds. In particular, Fig. 2 shows the actual capacity and the
known upper bounds as functions of parameter α for Relay-
MISO channels having n = 3. The green curve depicts the ac-
tual capacity computed using convex optimization algorithm.
The red curve is constructed using our closed-form expression
in Proposition 1, and the blue dotted curve is the constructed
using the well-known upper bound result of channel capacity
in [11], [28]. Specifically, this upper bound is:

C ≤ log(
n∑
j=1

max
i
Aij). (57)

Finally, the red dotted curve shows another well-known
upper bound by Arimoto [3] which is:

C ≤ log(n) + max
j

[
n∑
i=1

Aji log(
Aji∑n
k=1Aki

)]. (58)

We note that the second term is negative.
Fig. 2 shows that our closed-form upper bound is precisely

the capacity (the red and green graphs are overlapped) when
α values are close to 0 or 1 as predicted by the optimality
conditions in Proposition 3. On the other hand, when α values
are closer to 0.5, our optimality conditions no longer hold. In
this case, we can only determine the upper bound. However,
it is interesting to note that our upper bound in this case is
tighter than both the Boy-Chiang [11] and Arimoto [3] upper
bounds.

B. Example 2: Symmetric and Weakly Symmetric Channels

Our results confirm the capacity of the well known sym-
metric and weakly symmetric channel matrices. In particular,
when the channel matrix is symmetric and positive definite,
all our results are applicable. Indeed, since the channel matrix
is symmetric and positive definite, the inverse channel matrix
exists and also is symmetric. From Definition 1, all values of
Kj is the same since they are the same sum of permutation
entries. Therefore, from Proposition 1, the optimal output
probability mass vector

q∗j =
2−Kj∑n
i=1 2

−Ki
(59)
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Figure 2. Channel capacity and various upper bounds as functions of α

are equal each other for all j. As a result, the input probability
mass function p∗ = A−T q∗ is the uniform distribution, and
the channel capacity is upper bounded by:

C ≤ −
n∑
j=1

q∗j log q
∗
j +

n∑
i=1

n∑
j=1

p∗iAij logAij (60)

= log n−H(Arow). (61)

Interestingly, our result also shows the capacities of many
channels that are not weakly symmetric, but admits the closed-
form formula of weakly symmetric channels. In particular,
consider a channel matrix called semi-weakly symmetric
whose all rows are permutations of each other, but the sum of
entries in each column might not be the same. Furthermore,
if the optimal condition is satisfied (Proposition 3), then the
channel has closed-form capacity which is identical to the
capacity of a symmetric and weakly symmetric channel:

C = log n−H(Arow). (62)

Note that every row of a quasi-symmetric matrix is a
permutation of the first row [29]. Thus, a quasi-symmetric
matrix is an example of a semi-weakly symmetric matrix. For
example, the following channel matrix:

A =

0.93 0.04 0.03
0.04 0.93 0.03
0.04 0.03 0.93


is not a weakly symmetric channel even though its rows
are permutations of each other since the column sums are
different. However, this channel matrix satisfies Proposition 3
and Corollary 1 since n = 3, σmin(A) = 0.88916, σ∗ = 0.825,
Hmax(A) = 0.43489, H∗max(A) = 0.43592 and cmin(A) =
13.286. Thus, it has closed-form formula for capacity, and
can be easily shown to be C = log 3−H(0.93, 0.04, 0.03) =

γ
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Figure 3. Channel capacity of (semi) weakly symmetric channel as a function
of γ

1.1501. The optimal output and input probability mass vectors
can be shown to be:

qT =
[
0.33333 0.33333 0.33333

]
,

pT =
[
0.32959 0.33337 0.33704

]
,

respectively.
The following channel matrix is another example of semi-

weakly symmetric matrix whose entries are controlled by a
parameter γ in the range of (0, 1) and given by the following
form:

(1− γ)3 3(1− γ)2γ 3(1− γ)γ2 γ3

3(1− γ)2γ (1− γ)3 γ3 3(1− γ)γ2

γ3 3(1− γ)γ2 (1− γ)3 3(1− γ)2γ
γ3 3(1− γ)γ2 3(1− γ)2γ (1− γ)3

 .
Fig. 3 shows the capacity upper bound of the semi-weakly

symmetric channel and the actual channel capacity as func-
tion of γ. Theoretically, the conditions in Proposition 3 and
Proposition 4 can be shown to hold for γ ≤ 0.02. However,
for much values of γ, the upper bound is identical to the
actual channel capacity which can be numerically determined
using CVX [12]. This happens because these conditions are
sufficient but not necessary.

C. Example 3: Unreliable Channels
We now consider an unreliable channel whose channel

matrix is:

A =

0.6 0.3 0.1
0.7 0.1 0.2
0.5 0.05 0.45

 .
In this case, our optimality conditions do not satisfy, and

the Arimoto upper bound is tightest (0.17083) as compared
to our upper bound (0.19282) and Boyd-Chiang upper bound
(0.848).
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D. Example 4: Bounds as Function of Channel Reliability

Since we know that our proposed bounds are tight if the
channel is reliable, we want to examine quantitatively how
channel reliability affects various bounds. In this example, we
consider a special class of channel whose channel matrix en-
tries are controlled by a reliability parameter β for 0 ≤ β ≤ 1
as shown below:

A =


1− β 0.3β 0.4β 0.3β
0.4β 1− β 0.3β 0.3β
0.5β 0.4β 1− β 0.1β
0.1β 0.2β 0.7β 1− β

 .
When β is small, the channel tends to be reliable and when

β is large, the channel tends to be unreliable. Fig. 4 shows
various upper bounds as a function of β together with the
actual capacity. The actual channel capacities for various β are
numerically computed using a convex optimization algorithm
[12]. As seen, our closed-form upper bound expression for
capacity (red curve) from Proposition 1 is much closer to
the actual capacity (black dash curve) than other bounds for
most values of β. When β is small (β ≤ 0.6) or channel
is reliable, the closed-form upper bound is precise the real
channel capacity, and we can verify that the optimal conditions
in Proposition 3 holds. When the channel becomes unreliable,
i.e., β ≥ 0.6, our upper bound is no longer tight, however, it
is still the tightest among all the existing upper bounds. We
note that when the β is small, the channel matrix becomes
a nearly diagonally dominant matrix, and our upper bound is
tightest.

V. CONCLUSION

In this paper, we describe an elementary technique based
on Karush-Kuhn-Tucker (KKT) conditions to obtain (1) a
good upper bound of a discrete memoryless channel having

an invertible positive channel matrix and (2) a closed-form
expression for the capacity if the channel matrix satisfies
certain conditions related to its singular value and its Ger-
shgorin’s disk. We provide a number of channels where the
proposed upper bound becomes precisely the capacity. We also
demonstrate that our proposed bounds are tighter than other
existing bounds for these channels.

APPENDIX

A. Proof of Lemma 1

For claim (a), since the channel matrix is strictly diagonally
dominant, using Gershgorin circle theorem [23] that for any
eigenvalues λ1, λ2, . . . , λn, we must have:

λi ≥ Aii −
∑
j 6=i

|Aij | > 0.

Thus, det(A) = λ1λ2 . . . λn > 0. Therefore, A is invertible.
Claim (b) is a well-known algebra result [30].
For claim (c), due to AA−1 = I and Aij > 0 ∀ i, j,

therefore, ∀ j exists at least i such that A−1ij 6= 0. Therefore the
largest absolute entry in each column 6= 0. Claim (c) can be
obtained by contradiction. Suppose that the largest absolute
entry in jth column of A−1 is A−1ij in ith row, that said
|A−1ij | ≥ |A

−1
kj | ∀ k. We suppose that A−1ij < 0. Thus:

n∑
k=1

AikA
−1
kj ≤ −Aii|A−1ij |+

n∑
k=1,k 6=i

Aik|A−1ij | (63)

= (−Aii +
n∑

k=1,k 6=i

Aik)|A−1ij |

< 0, (64)

which contradicts with
∑n
k=1AikA

−1
kj = Iij ≥ 0. Thus, the

largest absolute value in each column of A−1 is positive. That
said in jth column, if |A−1ij | ≥ |A

−1
kj | ∀ k, then A−1ij > 0.

Now, suppose that the largest absolute element in jth

column of A−1, is A−1ij with i 6= j and A−1ij > 0. Then:

0 =
n∑
k=1

AikA
−1
kj

≥ Aii|A−1ij | −
n∑

k=1,k 6=i

Aik|A−1ij | (65)

= (Aii −
n∑

k=1,k 6=i

Aik)A
−1
ij

> 0, (66)

with (65) due to A−1ij is the largest absolute element in jth

column and (66) due to A is strictly diagonally dominant
matrix. This is a contradiction. Therefore, the largest absolute
entry in jth column of A−1 should be A−1jj and A−1jj > 0.
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B. Proof of Lemma 2

First, let’s show that the second largest absolute value in
each column of A−1 is a negative entry by contradiction
method. Suppose that the second largest absolute value in jth

column of A−1 is positive and in kth row (k 6= j), A−1kj ≥ 0.
Consider,

0 =
n∑
i=1

AkiA
−1
ij

≥ AkjA
−1
jj +AkkA

−1
kj − |

n∑
i=1,i6=k;i6=j

AkiA
−1
ij | (67)

≥ AkjA
−1
jj +AkkA

−1
kj −

n∑
i=1,i6=k;i6=j

|AkiA−1ij | (68)

≥ AkjA
−1
jj +AkkA

−1
kj −

n∑
i=1,i6=k;i6=j

Aki|A−1ij | (69)

≥ AkjA
−1
jj +AkkA

−1
kj −

n∑
i=1,i6=k;i6=j

Aki|A−1kj | (70)

= AkjA
−1
jj +A−1kj (Akk −

n∑
i=1,i6=k;i6=j

Aki) (71)

> 0, (72)

with (67) due to the fact that C ≥ −|C| ∀ C, (68) due to
the triangle inequality, (69) due to Aki is positive, (70) due
to A−1kj is the second largest absolute value in jth column of
A−1, (71) due to the assumption that A−1kj ≥ 0 and (72) due
to (11) such that Akk ≥

∑n
i=1,i6=k Aki ≥

∑n
i=1,i6=k;i6=j Aki.

Thus, the second largest absolute value in column of A−1 is
negative (A−1kj < 0). Due to Lemma 1 part (c), A−1jj is the
largest absolute value entry and A−1jj > 0. Similarly,

0 =
n∑
i=1

AkiA
−1
ij

≤ AkjA
−1
jj +AkkA

−1
kj + |

n∑
i=1,i6=k;i6=j

AkiA
−1
ij | (73)

≤ AkjA
−1
jj +AkkA

−1
kj +

n∑
i=1,i6=k;i6=j

|AkiA−1ij | (74)

≤ AkjA
−1
jj +AkkA

−1
kj +

n∑
i=1,i6=k;i6=j

Aki|A−1ij | (75)

≤ AkjA
−1
jj −Akk|A

−1
kj |+

n∑
i=1,i6=k;i6=j

Aki|A−1kj |,(76)

with (73) due to the fact that C ≤ |C| ∀ C, (74) due to the
triangle inequality, (75) due to Aki ≥ 0, ∀ i and (76) due to
A−1kj < 0 and A−1kj is the second largest absolute value in jth

column. Hence,

AkjA
−1
jj ≥ Akk|A−1kj | −

n∑
i=1,i6=k;i6=j

Aki|A−1kj |

A−1jj ≥
|A−1kj |(Akk −

∑n
i=1,i6=k;i6=j Aki)

Akj

A−1jj ≥ |A−1kj |
Akk −

Akk
cmin(A)
Akk

cmin(A)

(77)

A−1jj ≥ |A−1kj |[cmin(A)− 1],∀j, (78)

with (77) due to Definition 2 and (9) such that
Akk

cmin(A)
≥∑n

i=1,i6=k Aki ≥
∑n
i=1,i6=k,i6=j Aki. Thus, we have:

cj(A
−T ) =

A−1
jj∑

k 6=j |A
−1
kj |
≥ cmin(A)− 1

n− 1
. (79)

Thus, (12) is proven.
Next, we note that from (78)

A−1
jj

cmin(A)− 1
≥ |A−1

kj |, ∀k. (80)

Moreover, from Lemma 1, A−1jj ≥ 0 and is the largest entry
in jth row. Thus, for an arbitrary L and S,

|A−1
Lj |+ |A

−1
Sj | ≤ A−1

jj +
A−1
jj

cmin(A)− 1

= A−1
jj

cmin(A)

cmin(A)− 1
,∀j. (81)

Thus, (13) is proven.

C. Proof of Lemma 3
Consider the matrix B = A−1A−T , B is symmetric, all its

eigenvalues are real and satisfy the Rayleigh quotient [31]. Let
λmaxB be the maximum eigenvalue of B then from [31]

R(B, x) =
x∗Bx

x∗x
≤ λmaxB . (82)

Consider the unit vector e = [0, . . . , 1, . . . , 0]T with entry
“1” is in the ith column. Let x = e in (82), we have:

Bii ≤ λmaxB . (83)

Thus,

λmaxB ≥ Bii

=
n∑
j=1

A−1ij A
−1
ij

≥ (A−1ii )
2
. (84)

Now since B is a symmetric matrix λmaxB = σmax(B)
[30]. However, from [30], σmax(B) = σmax(A

−1A−T ) =

σ2
maxA

−1 and σmaxA
−1 =

1

σmin(A)
. Thus:

1

σmin(A)
≥ A−1ii . (85)
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From Lemma 1-(c), the largest entry in A−1 must be a
diagonal element, thus

max
i,j

A−1ij ≤
1

σmin(A)
.

D. Proof of Lemma 4

For the first claim, since A is a stochastic matrix,

A1 = 1.

Left multiply both sides by A−1 results in 1 = A−11. For the
second claim, left multiplying y = A−Tx by 1T , we have:

1T y = 1TA−Tx = xTA−11 = xT 1 = 1,

where we use A−11 = 1 in the previous claim.
Thus, we have

∑n
i=1 p

∗
i = 1 since from (30), q∗ is a

probability mass vector.

E. Proof of Corollary 1

Lemma 5. Lower bound of σmin(A) and upper bound of
Hmax(A) are σ∗ and H∗max(A), respectively

σmin(A) ≥ σ∗ =
cmin(A)− n/2
cmin(A) + 1

, (86)

and

Hmax(A) ≤ H∗max(A), (87)

where

H∗max(A)=log(cmin(A)+1)+
log(n−1)−cmin(A) log cmin(A)

cmin(A)+1
.

(88)

Proof. Due to the channel matrix is a strictly diagonally
dominant positive matrix. Thus, we have

Akk ≥
cmin(A)

cmin(A) + 1
, (89)

Rk(A) = 1−Akk ≤ 1− cmin(A)

cmin(A) + 1
=

1

cmin(A) + 1
, (90)

Ck(A) =

j=n∑
j=1,j 6=k

Ajk ≤
j=n∑

j=1,j 6=k

Rj(A) ≤
n− 1

cmin(A) + 1
,∀k,

(91)
with (89) due to (10), (90) due to (89), (91) due to the fact
that ∀ j 6= k, Ajk ≤

∑
j 6=k Ajk = Rj(A) and each Rj(A) ≤

1

cmin(A) + 1
which is proven in (89). Now, we are ready to

establish the upper bound of Hmax(A) and the lower bound
of σmin(A), respectively.

• Suppose that Hmax(A) achieves at kth row, then

Hmax(A) = −(
n∑
i=1

Aki logAki)

= −(Akk logAkk +
n∑

i=1,i6=k

Aki logAki)

= −Akk logAkk

− (1−Akk)
n∑

i=1,i6=k

Aki
1−Akk

(log
Aki

1−Akk
+log(1−Akk))

= −Akk logAkk

− (1−Akk)
n∑

i=1,i6=k

Aki
1−Akk

log
Aki

1−Akk
− (1−Akk) log(1−Akk)
≤ −Akk logAkk + (1−Akk) log(n− 1)

− (1−Akk) log(1−Akk) (92)

= −(Akk logAkk + (1−Akk) log(
1−Akk
n− 1

))

≤ −( cmin(A)

cmin(A) + 1
log

cmin(A)

cmin(A) + 1

+ (1− cmin(A)

cmin(A) + 1
) log

1− cmin(A)

cmin(A) + 1

n− 1
) (93)

= log(cmin(A)+1)+
log(n−1)−cmin(A) log cmin(A)

cmin(A) + 1
,

with (92) is due to −
∑n
i=1,i6=k

Aki
1−Akk

log
Aki

1−Akk
is the

entropy of n−1 elements which is bounded by log(n−1). For

(93), first we show that f(x) = −(x log x+(1−x) log(1− x
n− 1

))

is monotonically decreasing function for
x

1− x
≥ n − 1.

Indeed,

d(f(x))

d(x)
= log x− log(1− x)− log(n− 1)

= −(log x

1− x
− log(n− 1)).

Thus, if
x

1− x
≥ n− 1 then

d(f(x))

d(x)
≤ 0. However, from

(89),

Akk
1−Akk

≥

cmin(A)

cmin(A) + 1

1− cmin(A)

cmin(A) + 1

= cmin(A). (94)

From (50)

cmin(A) ≥ 1+(n−1)22
nH∗

max(A)

σ∗ ≥ 1+(n−1)2 > n−1, (95)

due to nH∗
max(A)
σ∗ ≥ 0 and n ≥ 2. Thus,

Akk
1−Akk

> n − 1.

From (94) and (95), f(x) is decreasing function and (93) is
constructed by plugging the lower bound of Akk in (89).
• Secondly, the lower bound of σmin(A) can be found in

[32] (Theorem 3)

σmin(A) ≥ min
1≤k≤n

|Akk| −
1

2
(Rk(A) + Ck(A)), (96)
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or in [33] (Theorem 0)

σmin(A)≥ min
1≤k≤n

1

2
({4|Akk|2+(Rk(A)−Ck(A))2}1/2−[Rk(A)+Ck(A)]),

(97)
with Rk(A) =

∑j=n
j=1,j 6=k |Akj | and Ck(A) =∑j=n

j=1,j 6=k |Ajk|, respectively. Thus, if we use the lower
bound established in (97),

σmin(A) ≥ 1

2
({4[ cmin(A)

cmin(A) + 1
]2}1/2

− [
1

cmin(A) + 1
+

n− 1

cmin(A) + 1
]) (98)

=
cmin(A)− n/2
cmin(A) + 1

= σ∗,

with (98) due to (89), (90), (91) and the fact that {Rk(A) −
Ck(A)}2 ≥ 0.

A similar lower bound can be constructed using (96)

σmin(A) ≥ cmin(A)

cmin(A) + 1

− 1

2
(

1

cmin(A) + 1
+

n− 1

cmin(A) + 1
) (99)

=
cmin(A)− n/2
cmin(A) + 1

= σ∗,

with (99) due to (89), (90) and (91). As seen, both our
approaches yield a same lower bound of σmin(A). However,
(97) is tighter than (96) due to {Rk(A)− Ck(A)}2.
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