
Secure Multiparty Computation between Distrusted Networks Terminals

Sen-ching S. Cheung
University of Kentucky

sccheung@ieee.org

Thinh Nguyen
Oregon State University

thinhq@eecs.oregonstate.edu

October 2, 2007

The proliferation of capturing and storage devices as well as the ubiquitous presence of com-

puter networks make sharing of data easier than ever. Such pervasive exchange of data, however,

has increasingly raised questions on how sensitive and private information can be protected. For

example, it is now commonplace to send private photographs or videos to the hundreds of online

photo processing stores for storage, development and enhancement like sharpening and red-eye

removal. Few companies provide any protection of the personal pictures they receive. Hackers or

employees of the store may steal the data for personal use or distribute them for personal gain

without consent from the owner.

There are also security applications in which multiple parties need to collaborate with each

other but do not want any of their own private data disclosed. Consider the following example:

a law-enforcement agency wants to search for possible suspects in a surveillance video owned by

private company A, using a proprietary software developed by another private company B. The

three parties involved all have information they do not want to share with each other: the criminal

biometric database from law enforcement, the surveillance tape from company A and the proprietary

software from company B.

Encryption alone cannot provide adequate protection when performing the aforementioned ap-

plications. The encrypted data needs to be decrypted at the receiver for processing and the raw data

will then become vulnerable. Alternatively, the client can download the software and process her

private data in a secure environment. This, however, runs the risk of having the proprietary tech-

nology of the software company pirated or reverse-engineered by hackers. The Trusted Computing

(TC) Platform may solve this problem by executing the software in a secure memory space of the

client machine equipped with a cryptographic co-processor [1]. Besides the high cost of overhaul-

1



ing the existing PC platform, the TC concept remains highly controversial due to its unbalanced

protection of the software companies over the consumers [2].

The technical challenge to this problem lies in developing a joint computation and communica-

tion protocol to be executed among multiple distrusted network terminals without disclosing any

private information. Such a protocol is called a Secure Multiparty Computation (SMC) protocol

and has been an active research area in cryptography for more than twenty years [3]. Recently,

researchers in other disciplines such as signal processing and data mining have begun to use SMC

to solve various practical problems. The goal of this paper is to provide a tutorial on the basic

theory of SMC and to survey recent advances in this area.

1 PROBLEM FORMULATION

The basic framework of SMC is as follows: there are n parties P1, P2, . . . , Pn on a network who

want to compute a joint function f(x1, x2, . . . , xn) based on private data xi owned by party Pi for

i = 1, 2, . . . , n. The goal of the SMC is that Pi will not learn anything about xj for j �= i beyond

what can be inferred from her private data xi and the result of the computation f(x1, x2, . . . , xn).

SMC can be trivially accomplished if there is a special server, trusted by every party with its private

data, to carry out the computation. This is not a practical solution as it is too costly to protect

such a server. The objective of any SMC protocol is to emulate this ideal model as much as possible

by using clever transformations to conceal the private data.

Almost all SMC protocols are classified based on their models of security and adversarial be-

haviors. The most commonly-used security models are perfect security and computational security,

which will be covered in Section 2 and 3 respectively. Adversarial behaviors are broadly classified

into two types: semi-honest and malicious. A dishonest party is called semi-honest if she follows the

SMC protocol faithfully but attempts to find out about other’s private data through the commu-

nication. A malicious party, on the other hand, will modify the protocol to gain extra information.

We will focus primarily on semi-honest adversaries but briefly describe how the protocols can be

fortified to handle malicious adversaries.

We also assume that private data are elements from a finite field F and the target function

f() can be implemented as a combination of the field’s addition and multiplication. This is a

2



reasonably general computational model for two reasons: first, at the lowest level, any digital

computing device can be modeled by setting F as the binary field with the XOR as addition

and AND as multiplication. Second, while most signal processing and scientific computation are

described using real numbers, we can approximate the real numbers with a reasonably large finite

field and estimate any analytical function using a truncated version of its power series expansion,

which consists of only additions and multiplications.

2 SMC WITH PERFECT SECURITY

In this section, we discuss Perfectly Secure Multiparty Computation (PSMC) in which an adversary

will learn nothing about the secret numbers of the honest parties no matter how computationally

powerful the adversary is. The idea is that while the adversary may control a number of parties

who receives messages from other honest senders, these messages provide no useful information

about the secret numbers of the senders.

One of the basic tools used in PSMC is secret sharing. A t-out-of-m secret-sharing scheme

breaks a secret number x into m shares r1, r2, . . . , rm such that x cannot be reconstructed unless an

adversary obtains more than t−1 shares with t ≤ m. The importance of a secret-sharing scheme in

PSMC is illustrated by the following example: in a 2-party secure computation of f(x1, x2), party

Pi will use a 2-out-of-2 secret-sharing scheme to break xi into ri1 and ri2, and share rij with party

Pj . Each party then computes the function using the shares received, resulting in y1 � f(r11, r21) at

P1 and y2 � f(r12, r22) at P2. If the secret sharing scheme is homomorphic under the function f(),

that is y1 and y2 are themselves secret shares of the desired function f(x1, x2), f(x1, x2) can then

be easily computed by exchanging y1 and y2 between the two parties. Under our computational

model, all SMC problems can be solved if the secret-sharing scheme is doubly homomorphic – it

preserves both addition and multiplication. One such scheme was invented by Adi Shamir which

we shall explain next [4].

In Shamir’s secret sharing scheme, a party hides her secret number x as the constant term of a

secret polynomial g(z) of degree t − 1,

g(z) � at−1z
t−1 + at−2z

t−2 + . . . + a1z + x (1)

3



The coefficients a1 to at−1 are random coefficients distributed uniformly over the entire field. Given

the polynomial g(z), the secret number x can be recovered by evaluating it at z = 0. The secret

shares are computed by evaluating g(z) at z = 1, 2, . . . ,m and are distributed to m other parties.

It is assumed that each party knows the degree of g(z) and at which z her share is evaluated. We

follow the convention that the share received by party Pi is evaluated at z = i.

If an adversary obtains any t shares g(z1), g(z2), . . . , g(zt) with zi ∈ {1, 2, . . . ,m}, the adversary

can then formulate the following polynomial ĝ(z):

ĝ(z) �
t∑

i=1

g(zi)

∏t
j=1,j �=i(z − zj)∏t
j=1,j �=i(zi − zj)

(2)

We claim that ĝ(z) is identical to the secret polynomial g(z): first, the degree ĝ(z) is t− 1, same as

that of g(z). Second ĝ(z) = g(z) for z = z1, z2, . . . , zt because, when evaluating ĝ(z) at a particular

z = zi, every term in (2) will go to zero except for the one that contains g(zi) with its multiplier

become one. Consequently, the (t − 1)th-degree polynomial g(z) − ĝ(z) will have t roots. As the

number of roots is higher than the degree, g(z) − ĝ(z) must be identically zero or ĝ(z) ≡ g(z). As

a result, the adversary can reconstruct the secret number x = ĝ(0).

On the other hand, the adversary will have no knowledge about x even it possesses as many as

t−1 shares. This is because, for any arbitrary secret number x′, there exists a polynomial h(z) such

that h(0) = x′ and h(zi) = g(zi) for i = 1, 2, . . . , t − 1. h(z) is given as follows and its properties is

similar to those of (2):

h(z) � x′
∏t−1

j=1(z − zj)∏t−1
j=1(−zj)

+
t−1∑
i=1

g(zi)
z

∏t−1
j=1,j �=i(z − zj)

zi
∏t−1

j=1,j �=i(zi − zj)
(3)

Shamir’s secret-sharing scheme is obviously homomorphic under addition: given two secret

(t−1)th-degree polynomials g(z) and h(z), the secret shares of g(z)+h(z) are simply the summation

of their respective secret shares g(1)+h(1), g(2)+h(2), . . . , g(m)+h(m). Secrecy is also maintained

as the coefficients of g(z) + h(z) are uniformly distributed. On the other hand, the degree of the

product polynomial g(z)h(z) increases to 2(t−1). The locally-computed shares g(1)h(1), g(2)h(2),

. . . , g(m)h(m) cannot completely specify g(z)h(z) unless the number of shares m is strictly larger

than 2(t − 1) or equivalently, t ≤ �m
2 �. Even if this condition is satisfied, a series of product

4



can easily result in a polynomial with degree higher than m. Furthermore, the coefficients of the

product polynomial is not entirely random – for example, they are related in such a way that the

polynomial can be factored by the original polynomials. These problems can be solved by replacing

the product polynomial by a new (t − 1)th-degree polynomial as follows.

Pi first computes g(i)h(i) and then generates a random (t − 1)th-degree polynomial qi(z) with

qi(0) = g(i)h(i). Again, using the secret sharing scheme, Pi sends share qi(j) to party Pj for

j = 1, 2, . . . ,m. This step leaks no information about the local product g(i)h(i). In the final step,

Pi computes di based on all the received shares qj(i) for j = 1, 2, . . . ,m:

di �
m∑

j=1

γjqj(i) (4)

where γj for j = 1, 2, . . . ,m solve the following equation

g(0)h(0) =
m∑

j=1

γjg(j)h(j) (5)

Before explaining how Pi can solve Equation (5) without knowing g(0)h(0) and g(j)h(j) for j �= i,

we first note that di for i = 1, 2, . . . ,m are shares of a (t − 1)th-degree polynomial q(z) defined

below:

q(z) �
m∑

j=1

γjqj(z) (6)

The coefficients of q(z) are uniformly random as they are linear combinations of uniformly dis-

tributed coefficients of qj(z)’s. Furthermore, its constant term is our target secret number g(0)h(0):

q(0) =
m∑

j=1

γjqj(0) =
m∑

j=1

γjg(j)h(j) = g(0)h(0)

The second last equality is because g(j)h(j) is the secret number hidden by the polynomial qj(z).

The last equality is based on (5). This implies that di for i = 1, 2, . . . ,m are secret shares of the

scalar g(0)h(0). An example of the above protocol in a three-party situation is shown in Figure 1.

To address how each party can solve (5), we note that, based on our assumption, the degree of

the product polynomial g(z)h(z) is strictly smaller than the number of shares m. Let g(z)h(z) =

am−1z
m−1 + . . . + a0. The coefficients ai’s are completely determined by the values g(z)h(z) at

5



Party 2 Party 3Party 1

g(1)"h(1)

q1(z) with 
q1(0) = g(1)"h(1)

q(1) = ³ 1q1(1) + 
³ 2q2(1)+ ³ 3q3(1) 

q1(1)
q1(2)

q1(3)

g(2)"h(2)

q2(z) with 
q2(0) = g(2)"h(2)

q(2) = ³ 1q1(2) + 
³ 2q2(2)+³ 3q3(2) 

g(3)"h(3)

q3(z) with 
q3(0) = g(3)"h(3)

q(3) = ³ 1q1(3) + 
³ 2q2(3)+ ³ 3q3(3) 

q2(2)
q2(1) q2(3) q3(1)

q3(2) q3(3)

q(0) = 1q(1)+ 2q(2)+ 3q(3)=g(0)h(0) 

Party 2Party 2 Party 3Party 3Party 1Party 1

g(1) h(1)

q1(z) with 
q1(0) = g(1) h(1)

q(1) = 1q1(1) + 

2q2(1)+ 3q3(1) 

q1(1)
q1(2)

q1(3)

g(2) h(2)

q2(z) with 
q2(0) = g(2) h(2)

q(2) = 1q1(2) + 

2q2(2)+ 3q3(2) 

g(3) h(3)

q3(z) with 
q3(0) = g(3) h(3)

q(3) = 1q1(3) + 

2q2(3)+ 3q3(3) 

q2(2)
q2(1) q2(3) q3(1)

q3(2) q3(3)

q(0) = 1q(1)+ 2q(2)+ 3

γ
γ γ

γ
γ γ

γ
γ γ

γ γ γ

Figure 1: This diagram shows how three parties can share the secret g(0)h(0) based on the locally
computed products g(1)h(1), g(2)h(2) and g(3)h(3).

z = 1, 2, . . . ,m. In other words, the following matrix equation has an unique solution:

V a �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1m−1 1m−2 · · · 10

2m−1 2m−2 · · · 20

...
...

...

mm−1 mm−2 · · · m0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

am−1

am−2

...

a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g(1)h(1)

g(2)h(2)
...

g(m)h(m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The m × m invertible matrix V is called the Vandermonde matrix and it is a constant matrix.

Taking its inverse W = V −1 and considering the last row entries Wmi for i = 1, 2, . . . ,m, we have

m∑
i=1

Wmig(i)h(i) = a0 = g(0)h(0) (7)

Comparing (7) with (5), we have Wmi = γi for i = 1, 2, . . . ,m, which are constants.

The condition t ≤ �m
2 � on using Shamir’s scheme in PSMC posts a restriction on the number of

dishonest parties tolerated – it implies that the number of honest parties must be a strict majority.

In particular, we cannot use this scheme for a two-party SMC in which one party has to assume

that the other party is dishonest. A surprising result in [5] shows that the condition t ≤ �m
2 � is

not a weakness of Shamir’s scheme – in fact, except for certain trivial functions1, it is impossible
1The exceptions are those functions that are separable or f(x1, x2, . . . , xm) = f1(x1)f2(x2) . . . fm(xm).

6



to compute any f(x1, x2, . . . , xm) with perfect security if the number of dishonest parties equals to

or exceeds �m
2 �.

To conclude this section, we briefly describe how PSMC protocols can be modified to handle

malicious parties. There are two types of disruption: first, a malicious party can output erroneous

results and second, she may perform an inconsistent secret sharing scheme such as evaluating the

polynomial at random points. Provided the number of malicious parties is less than one-third of the

total number of parties, the first problem can be solved by replacing (2) with a robust extrapolation

scheme based on Reed-Solomon codes [5]. This bound on the number of malicious parties can be

raised to one-half by combining interactive zero-knowledge proof with a broadcast channel [6]. The

second problem can be solved by using a Verifiable Secret Sharing (VSS) scheme in which the

sender needs to provide auxiliary information so that the receivers can verify the consistency of

their shares without gaining knowledge of the secret number [5].

3 SMC WITH COMPUTATIONAL SECURITY

It is unsatisfactory that PSMC introduced in Section 2 cannot even provide secure two-party

computation. Instead of relying on perfect security, modern cryptographical techniques primarily

use the so-called computational security model. Under this model, secrets are protected by encoding

them based on a mathematical function whose inverse is difficult to compute without the knowledge

of a secret key. Such a function is called one-way trapdoor function and the concept is used in many

public-key cipher: a sender who wants to send a message m to party P will first compute a ciphertext

c = E(m,k) based on the publicly known encryption algorithm E() and P ’s advertised public key

k. The encryption algorithm acts as a one-way trapdoor function because a computationally-

bounded eavesdropper will not be able to recover m given only c and k. On the other hand, P

can recover m by applying a decoding algorithm D(E(m,k), s) = m using her secret key s. Unlike

perfectly secure protocols in which the adversary simply does not have any information about the

secret, the adversary in the computationally secure model is unable to decrypt the secret due to

the computational burden in solving the inverse problem. Even though it is still a conjecture that

true one-way trapdoor functions exist and future computation platforms like quantum computer

may drastically change the landscape of these functions, many one-way function candidates exist

7



and are routinely used in practical security systems 2.

The most fundamental result in SMC is that it is possible to design general Computationally

Secure Multiparty Protocols (CSMC) to handle arbitrary number of dishonest parties [3]. In this

section, we will discuss the basic construction of these protocols. Similar to Section 2, we consider

the protocols for addition and multiplication in finite fields. We will concentrate on the canonical

two-party case but our construction can be easily extended to more than two parties. Our starting

point of building general CSMC is a straightforward secret sharing scheme: each secret number

is simply broken down as a sum of two uniformly distributed random numbers: x1 = r11 + r12

and x2 = r21 + r22. Pi then sends rij to Pj for j �= i. This scheme is clearly homomorphic under

addition:

x1 + x2 = (r11 + r21) + (r12 + r22)

Multiplication, on the other hand, introduces cross-terms which breaks the homomorphism:

x1x2 = r11r21 + r12x2 + r11r22 (8)

While the first two terms can be locally computed by P1 and P2 respectively, it is impossible to

compute the third term without having one party revealed the actual secret number to the other.

In order to accomplish this under the computational security model, we will make use of a general

cryptographic protocol called the Oblivious Transfer (OT).

A 1-out-of-N OT protocol allows one party (the chooser) to read one entry from a table with

N entries hosted by another party (the sender). Provided that both parties are computationally

bounded, the OT protocol prevents the chooser from reading more than one entry and the sender

from knowing the chooser’s choice. We first show how the OT protocol can be used to break r11r22

in (8) into random shares u and v such that r11r22 = u+v. Assume our finite field has N elements.

The sender P1 generates a random u and then creates a table T with N entries shown in Table 13.

Using the OT protocol, the chooser P2 selects the entry v � T (r22) = r22r11 −u without letting P1

know her selection or inspecting any other entries in the table.

It remains to show how OT provides the security guarantee. A 1-out-of-N OT protocol consists
2A list of one-way function candidates can be found in [7, ch.1].
3The role of P1 and P2 can be interchanged with proper adjustment to the table entries.

8



key values
0 −u
1 1r11 − u
2 2r11 − u
...

...
r22 r22r11 − u
...

...
N − 2 (N − 2)r11 − u
N − 1 (N − 1)r11 − u

Table 1: OT table at P1.

of the following five steps:

1. P1 sends N randomly-generated public keys k0, k1, . . . kN−1 to P2.

2. P2 selects kr22 based on her secret number r22, encrypts her public key k′ using kr22 and sends

E(k′, kr22) back to P1.

3. As P1 does not know P2’s key selection, P1 decodes the incoming message using all possible

keys or k̂′
i = D(E(k′, kr22), si) with private keys si for i = 0, 1, . . . , N − 1. Only one of k̂′

i’s

(k̂′
r22

) matches the real key k′ but P1 has no knowledge of it.

4. P1 encrypts each table entry T (i) using k̂′
i and sends E(T (i), k̂′

i) for i = 0, 1, . . . , N − 1 to P2.

5. P2 decrypts the rth
22 message using her private key s′: D(E(T (r22), k̂′

r22
), s′) = T (r22) as

k′
r22

= k′ is the public key corresponding to the secret key s′. P2 then obtains her random

share of v = T (r22) = r22r11 − u. Note that P2 will not be able to decrypt any other message

E(T (i), k̂′
i) for i �= r22 as it requires the knowledge of P1’s secret key si.

It is clear from the above procedure that OT can accomplish a table lookup secure to both P1 and

P2. As the definition of the table is arbitrary, OT can support secure two-party computation of

any finite field function. Following similar procedures as in Section 2, the above construction can

be extended using standard zero-knowledge proof and verifiable secret sharing scheme to handle

malicious parties that do not follow the prescribed protocols [8, ch. 7].

9



4 RECENT ADVANCES

In Section 2 and 3, we present the construction of general SMC protocols under the perfect security

model and the computational security model. While most of these results are established in 1980s,

SMC continues to be a very active research area in cryptography and its applications begin to

appear in many other disciplines. Recent advances focus on better understanding of the security

strength of individual protocols and their composition, improving CSMC protocols in terms of their

computation complexity [9, 10] and communication cost [11, 12, 13, 14], relating SMC to error

correcting coding [15, 16], and introducing SMC to a variety of applications [17, 18, 19, 20, 21, 22].

The rigorous study of protocol security is beyond the scope of this paper and thus, we will focus

on the remaining three topics.

4.1 REDUCTION OF COMPUTATION COMPLEXITY AND COMMUNI-

CATION COST

Both the computation complexity and communication cost of the 1-out-of-N OT protocol depend

linearly on the size N of the sender’s table that defines the function – it requires O(N) invocations

of a public-key cipher and O(N) messages exchanged between the sender and the chooser. In

many practical applications, the value of N could be very large. For example, computing a general

function on 32-bit computers requires a table of N = 232 or more than four billion entries! This

renders our basic version of OT hopelessly impractical. Improving the computation efficiency and

reducing the communication requirement of OT and other CSMC protocols thus become the focus

of intensive research effort.

In [9], Naor and Pinkas showed that the 1-out-of-N OT protocol can be reduced to applying a

1-out-of-2 OT protocol log2 N times. The idea is that the two parties repeatedly use the 1-out-of-2

OT on individual bits of the binary representation of the chooser’s secret number x2: in the ith

round, the sender will present two keys Ki0 and Ki1 to the chooser who will choose Kix2[i] based

on x2[i], the ith bit of x2. The keys Ki0 and Ki1 for i = 1, 2, . . . , log2 N are used by the sender to

encrypt the table entries T (k) as follows:

E(T (k)) = T (k) ⊕
log2 N⊕
i=1

f(Kik[i])

10



where k is a log N -bit number, f(s) is a random sequence generated by seed s and ⊕ denotes

XOR. The entire encrypted table is sent to the chooser. Since the chooser already knows Kix2[i] for

i = 1, 2, . . . , log2 N , she can use them to decrypt E(T (x2)) as follows:

T (x2) = E(T (x2)) ⊕
log2 N⊕
i=1

f(Kix2[i])

The same authors further improved the computation complexity of the 1-out-of-2 OT protocol

in [10]. They showed that it is possible to use one exponentiation, the most complex operation in

a public-key cipher, for any number of simultaneous invocations of the 1-out-of-2 OT at the cost of

increasing the communication overhead. Their public-key cipher is based on the assumed difficulty

of the Decisional Diffie-Hellman problem whose encryption process enables the sender to prepare

all her encrypted messages with one exponentiation without any loss of secrecy.

An aspect that the above algorithms do not address is the communication requirement of general

CSMC protocols. There are three different facets to the communication problem. First, our basic

version of the 1-out-of-N OT protocol requires the sender to send N random keys and N encrypted

messages to the chooser. The random keys can be considered as setup cost, provided that the

sender changes her random share u and the chooser changes her key k′ in every invocation of

the protocol. However, it seems necessary to send the N encrypted messages every time as the

messages depend on u. A closer examination reveals that all the chooser needs is one particular

message that corresponds to her secret number. The entire set of N messages are sent simply to

obfuscate her choice from the sender. This sub-problem of obfuscating a selection from a public

data collection is called Private Information Retrieval (PIR). PIR attracts much research interest

lately and is treated in Section 4.2. It suffices to know that there are techniques that can reduce

the communication cost from O(N) to O(log N) [23].

The second facet involves the communication cost of the original unsecured implementation of

the target function. The CSMC protocols in Section 3 provide a systematic procedure to secure each

addition and multiplication operation in the original implementation. However, not all operations

need to be secured – local operations can be performed without any modification. As such, it

is important to minimize the number of cross-party operations that need to be fortified with the

OT protocol. Consider the following example: P1 and P2, each with n
2 secret numbers, want to

11



find the median of the entire set of n numbers. The best known unsecured algorithm to find the

median requires O(n) comparison operations. To make this algorithm secure, we can use the 1-

out-of-N OT protocol to implement each comparison4, resulting in communication requirement of

O(n log N). This, however, is not the optimal solution – a distributed median-finding algorithm

requires much less communication [13]. The idea is to have P1 and P2 first compared their respective

local medians. The party with the the larger median can then discard the half of the local data

larger than the local median – the global median cannot be in this portion of the local data

as the local median is larger half of the local and remote. Following the same logic, the other

party can discard the smaller half of her local data. The two parties again compare their local

medians of the remaining data until exhaustion. Notice that all the local computation can be done

without invocations of OT. As a result, this algorithm only requires O(log n) cross-party secure

comparison and this results in a communication cost of O(log n log N), a significant reduction from

the naive implementation. In fact, it has been shown that if a communication-efficient unsecured

implementation exists for a general function, we can always convert it into a secure one without

much increase in communication [12].

The final facet of communication requirements has to do with the interactivity of the CSMC

protocols. All the protocols introduced thus far require multiple rounds of communications between

the parties. Such frequent interaction is undesirable in many applications such as batch processing

in which one party needs to reuse many times the same secret information from another party, and

asymmetric computation in which a low-complexity client wants to leverage a sophisticated server

to privately perform a complex computation. Earlier work in this area showed that one round of

message exchange is indeed possible for secure computation of any function [11]. However, the

length of the replied message depends on the complexity of the implementation of the function.

As a result, this requires the end receiver to devote much time in decoding the message even

though the output can be as small as a binary decision. This problem can be resolved using a

doubly-homomorphic public-key encryption scheme in which arbitrary computation can be done

on the encrypted data without size expansion. It is an open problem in cryptography on whether

a doubly-homomorphic encryption scheme exists. The closest scheme, which we will explain next,
4Secure comparison is also called the Secure Millionaire Problem, one of the earliest problem studied in SMC

literature [3].

12



can support arbitrary numbers of additions and one multiplication on encrypted data [14].

The construction is based on two public-key ciphers defined on two different finite cyclic groups

G and Ĝ of the same size n = q1q2 where q1 and q2 are large private primes. These two groups

are related by a special bilinear map e : G × G → Ĝ such that e(uα, vβ) = e(u, v)αβ for arbitrary

u, v ∈ G and integers α, β5. Furthermore, e(g, g) is a generator for Ĝ if g is a generator for G. The

public keys for the cipher defined on G are a generator g and a random h = gαq2 for some α. The

public keys for the cipher on Ĝ are ĝ = e(g, g) and ĥ = e(g, h) = ĝαq2 . Given a message m, the

sender generates a random integer r and computes the ciphertext C = gmhr ∈ G. To decrypt this

ciphertext, the receiver first removes the random factor by raising C to the power of the private

key q1:

Cq1 = (gmhr)q1 = (gq1)mgαq2rq1 = (gq1)m (9)

where we use the basic fact gq1q2 = gn = 1 from group theory. Provided that the message space

is small enough, the receiver can then retrieve m by computing the discrete logarithm of Cq1 base

gq1 . The security of the cipher is based on the assumed hardness of the so-called Subgroup Decision

Problem which we refer the readers to the original paper [14]. We now focus on the homomorphic

properties of this scheme. Given two ciphertext messages C1 = gm1hr1 and C2 = gm2hr2 , it is easy

to see that C1C2 = gm1+m2hr1+r2 which is the ciphertext of message m1 + m2. For multiplication,

we apply the bilinear map e(·, ·) on C1 and C2:

e(C1, C2) = e(gm1hr1 , gm2hr2)

= e(gm1+αq2r1 , gm2+αq2r2)

= e(g, g)m1m2+αq2(m1r2+m2r1+αq2r1r2)

= e(g, g)m1m2e(g, h)m1r2+m2r1+αq2r1r2

= ĝm1m2 ĥr′

The last expression is clearly a ciphertext for m1m2. Unfortunately, e(C1, C2) belongs to Ĝ, not in

G. This means that one cannot further combine this with other ciphertext in G and as such this

scheme falls short of being a completely homomorphic encryption scheme.
5An example of such construction is based on the modified Weil paring on the elliptic curve y2 = x3 + 1 defined

over a finite field [14].

13



4.2 PRIVATE INFORMATION RETRIEVAL

Private Information Retrieval (PIR) protocols allow a party (a user) to select a record from a

database owned by another party (a server) without the server knowing the selection of the user.

PIR is a step in OT as explained in Section 4.1. Unlike OT, PIR does not prevent the sender from

obtaining information about the collection beyond her choice. Due to its asymmetric protection,

the paradigm of PIR is useful for privacy protection of ordinary citizens in using search engine,

shopping at online stores, participating in public survey and electronic voting. As we have seen

in Section 4.1, the simplest form of PIR is to send the entire database to the user. This imposes

a communication cost in the order of the size of the database. Recent advances in PIR protocols,

however, show that the goal can be accomplished with a much smaller communication overhead.

The problem of PIR was first proposed in the seminal paper by Chor et al. as follows [24]: the

server has an n-bit binary string x, and a user wants to know x[i], the ith bit of x, without the

server knowing about i. The first important result shown in [24] is that, under the perfect security

model, it is impossible to send less data than the trivial solution of sending the entire x to the user.

On the other hand, if identical databases are available at k ≥ 2 non-colluding servers, then perfect

security can be achieved with the communication cost of O(n1/k). Their results are based on the

following basic two-server scheme that allows a user to privately obtain x[i] by receiving a single

bit from each of the two servers. Let us denote

S ⊗ a =

⎧⎪⎨
⎪⎩

S ∪ {a}, if a /∈ S

S \ {a}, if a ∈ S
(10)

The user first randomly selects the indexes j ∈ {1, 2, ...n} with probability of 1/2 for each value

of j, to form a set S. Next, the user computes S ⊗ i where i is the desired index. The user then

sends S to server one and S ⊗ i to server two. Upon receiving S, server one replies to the user with

a single bit which is the result of XORing all the bits in the positions specified by S. Similarly,

server two replies to the user with a single bit which is the result of XORing of all the bits in the

positions specified by S ⊗ i. The user then computes x[i] by XORing the two bits received from

the two servers. This scheme works because every position j �= i will appear twice – one in S and

one in S ⊗ i, therefore the result from XORing all x[j]’s together will be 0. On the other hand,

14



i appears only once in either S or S ⊗ i, therefore the result of XORing all x[j]’s and x[i] will be

x[i]. Provided the two servers do not collude, every bit is equally likely to be selected by the user.

In this scheme, each server sends one bit to the user but the user has to send a n-bit message6

to each server. Thus, the overall communication cost is still O(n). With minor modification, this

basic scheme can be extended to reduce the number of bits sent by the user to O(n1/k) [24].

Recently, an interesting connection is made between PIR and a special type of forward error

correcting codes (FEC) called Locally Decodable Codes (LDC) and it has created a flurry of interest

in the information theory community [16]. FEC is used to combat transmission errors by adding

redundancy to the transmitted data. Formally, the sender uses an encoding function C(·) to map

a n-bit message x to a m-bit message C(x) with m > n, and then sends C(x) over a noisy channel.

Upon receiving a string y possibly different from C(x), a receiver attempts to recover x using a

decoding algorithm D(C(x)). In the conventional FEC, it will takes at least O(n) complexity to

recover a n-bit x since O(n) is required just to record x. LDC, on the other hand, allows the user

to inspect only a small fraction of C(x), say k 
 n bits, in order to fully recover a specific bit

in x. To see how LDC is used in PIR, we assume that each of the k servers has the same m-bit

C(x) generated using a LDC encoding function on the n-bit database x. In order to retrieve x[i],

the user sends q1, q2, . . . , qk ∈ {1, 2, . . . ,m}, the locations of bits in C(x) needed to recover x[i], to

each of the k servers respectively. Note that these locations depends only on i and the particular

LDC used. Upon receiving qj, the jth server simply replies with C(x)[qj ] for j = 1, 2, . . . , k. After

gathering all the k replies, the user can then run the decoding algorithm to recover x[i]. Using

this framework, the communication cost of the PIR system is k(l + log m) with k log m and kl

corresponded to the user’s and server’s communication costs, respectively.

In fact, the two-server basic scheme introduced earlier can be viewed as using the Hadamard

code in the LDC framework. The Hadamard code H(x) of an n-bit message x has 2n bits. The kth

bit of H(x) for k ∈ {0, 1, . . . , 2n − 1} is defined as follows:

H(x)[k] =
n⊕

j=1

x[j]k[j]

To retrieve x[i] from the servers, the user first randomly picks a n-bit number k, and then sends
6The message is simply a n-bit number with ones indicated the desired bit.

15



k to server one and k ⊕ ei to server two where ei is a n-bit number with a single one in the ith

position. Upon receiving k and k ⊕ ei, server one and two reply with H(x)[k] and H(x)[k ⊕ ei]

respectively. The user can then decode x[i] by computing

H(x)[k] ⊕ H(x)[k ⊕ ei] =
n⊕

j=1,j �=i

x[j]k[j] ⊕ x[i]k[i] ⊕
n⊕

j=1,j �=i

x[j]k[j] ⊕ x[i](∼ k[i])

= x[i](k[i]⊕ ∼ k[i]) = x[i]

The symbol ∼ denotes negation. This scheme is almost equivalent to the scheme by Chor et al.,

except that the XOR of all possible selections of bits in x are already contained in the Hadamard

code H(x). We mention again that the communication cost of this scheme is O(n) due to the

exponential code length of the Hadamard code. Nevertheless, the possibility of using better error

correcting codes in the place of the Hadamard code opens many opportunities for new PIR schemes.

PIR schemes based on Reed-Solomon codes and Reed-Muller codes can be found in [16]. The best

published result on PIR uses LDC to achieve a communication complexity of O(n10−7
) with three

non-colluding servers [25].

All of the above constructions provide PIR under the perfect security model. By making certain

computational assumptions, PIR can also achieve sublinear communication complexity with only

one database [26, 23]. We briefly review the scheme in [26] as follows: it is based on the assumed

hardness of determining whether a number in a finite field F is a quadratic residue, i.e. without

knowing the prime factorization of the field size N , it is difficult to compute the following predicate:

QR(u) =

⎧⎪⎨
⎪⎩

1 if u = v2 for some v ∈ F

0 otherwise
(11)

It is easy to see that QR() is homomorphic under multiplication, i.e. QR(xy) = QR(x)QR(y). The

basic principle of using QR to retrieve x[i] is straightforward: the user sends the server n numbers

y1, . . . , yn ∈ F , all of them quadratic residues except yi, i.e QF (yj) = 1 for j �= i and QF (yi) = 0.

The server then replies with m ∈ F computed as follows:

m � Πn
j=1wj where wj =

⎧⎪⎨
⎪⎩

yj if x[j] = 0

y2
j if x[j] = 1

(12)

16



Since all yj’s are quadratic residues except for yi, we have QR(wj) = 1 for j �= i and QR(wi) = x[i].

Combining the homomorphic property, we get the desired result QR(m) = QR(wi) = x[i]. This

scheme, however, is very wasteful as the user needs to send n log N bits. We can improve this by

rearranging x as a s × t matrix M with s = n(L−1)/L and t = n1/L for some integer L. Assume

x[i] is the entry at the ath row and the bth column of M . The user then sends the server yj for

j = 1, 2, . . . , t, all quadratic residues except for yb. The communication for this step is O(n1/L).

Using these t numbers, the server carries a similar computation as (12) for each row of M , resulting

in mk for k = 1, 2, . . . , s. Of all the mk’s, all the user needs is ma from the ath row because it is

sufficient to retrieve x[i] as QR(ma) = x[i]. Since each of the mk is a log N -bit number, this is

equivalent to carrying out the PIR procedure log N times – but this time the database size shrinks

from n to s = n(L−1)/L. This observation allows the same procedure to be applied recursively with

exponentially-decreasing communication cost. As a result, the communication is dominated by the

first step which is O(n1/L) and we can make L as big as we want. Subsequent work by Cachin et

al. showed that the communication cost can be further reduced to logarithmic complexity [23].

4.3 PRACTICAL APPLICATIONS OF SMC

While the theoretical studies of SMC have advanced significantly in recent years, developing prac-

tical applications using SMC has been slow. The data mining community is the first to introduce

SMC into practical usage. The goal is to compute aggregate statistics over private data stored

in distributed databases. Using the OT protocol as the core, different SMC protocols have been

developed to construct linear algebra routines [27], median computation [13], decision trees [17],

neural network [19] and others. Even though these algorithms provide innovative implementations

for many data mining schemes, their security relies on modular arithmetic operations on very large

integers which are computationally intensive. In a recent study on PIR, the authors of [28] showed

that even with the most advanced CPUs, the modular arithmetic in the SMC protocol requires

more time than simply sending the entire database through a typical broadband connection.

While an algorithm in a typical data mining application may need to handle millions of records

on a daily basis, a real-time signal processing algorithm needs to handle millions of samples within

milliseconds. Very efficient algorithms have recently been developed at the expense of privacy. The

pioneering work by Avidan and Moshe showed the feasibility of building a secure distributed face

17



detector [20]. While keeping OT as the core, they provide an efficient implementation based on the

assumption that certain visual features used in the detector are non-invertible and as such, do not

leak important information about the images.

Another noteworthy scheme is a collection of statistical routines, developed in [18], that use

linear subspace projection for privacy projection. We illustrate the idea with a simple inner product

computation. Assume two party Alice and Bob have a n-dimensional vector x1 and x2 respectively.

They both know an invertible matrix M and its inverse M−1. M is broken down into top and

bottom halves T ∈ R
�n

2
�×n and B ∈ R

(n−�n
2
�)×n, while M−1 into left and right halves L ∈ R

n×�n
2
�

and R ∈ R
n×(n−�n

2
�). The inner product xT

1 x2 can then be decomposed as follows:

xT
1 x2 = xT

1 M−1Mx2 = xT
1 LTx2 + xT

1 RBx2 (13)

Alice then sends xT
1 R to Bob who computes xT

1 RBx2 while Bob sends Alice Tx2 so that she can

compute xT
1 LTx2. Bob can then send his scalar to Alice or vice versa to obtain the final answer.

They cannot recover each other’s data as the transmitted data xT
1 R and Tx2 are all n/2-dimensional

vector. Using a randomly-generated M and x1 = x2, Figure 2(a) shows the least square estimates

by Alice and Bob based on the received data. Following a similar approach, we have also developed

secure two-party routines for linear filtering [21] and thresholding [22]. Even though all of the above

algorithms are computationally very efficient, they all leak private information to a certain degree

and thus may not be suitable for applications that demand the utmost privacy and security.

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

150

200

250
Original Signal
Alice’s Estimate
Bob’s Estimate

Figure 2: Original signal and least-square estimates in secure inner product.

18



5 CONCLUSIONS

In this article, we have briefly reviewed the foundation of SMC protocols and some of the latest

developments. As we do not assume any background in cryptography, we focus on the intuition

rather than the rigorous treatment of the subject. Serious readers should consult the comprehensive

text of [8] and the collection of papers at specialized bibliography sites [29, 30]. As the demand

for secure and privacy-enhancing applications is rapidly growing, we believe that it is a great

opportunity for our community to understand the concepts of SMC and to develop practical SMC

protocols for various signal processing applications.

Acknowledgment

The authors would like to thank the constructive comments from the anonymous reviewers.

References

[1] Trusted Computing Group, https://www.trustedcomputinggroup.org/, TCG Specification Architecture
Overview, revision 1.2 edition, April 2004.

[2] R. Anderson, Trusted Computing Frequently Asked Questions, http://www.cl.cam.ac.uk/∼rja14/tcpa-
faq.html, 1.1 edition, August 2003.

[3] A. C. Yao, “Protocols for secure computations,” in Proceedings of the 23rd Annual IEEE Symposium
on Foundations of computer science, 1982, pp. 160–164.

[4] Adi Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 1, pp. 612–613, 1979.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness thorems for non-cryptographic fault-
tolerant distributed computation,” in Proceedings of the 20th ACM Symposium on the Theory of Com-
puting, 1988, pp. 1–10.

[6] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty protocols with honest majority,” in
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 1989, pp. 73–85.

[7] S. Goldwasser and M. Bellare, Lecture Notes on Cryptography, Massachusetts Institue of Technology,
2001.

[8] O. Goldreich, Foundations of Cryptography: Volume II Basic Applications, Cambridge, 2004.

[9] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evaluation,” in Proceedings of the 31st
Annual ACM symposium on Theory of computing, 1999, pp. 245–254.

[10] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in Proceedings of SODA 2001 (SIAM
Symposium on Discrete Algorithms), Washington D.C., Jan 2001, pp. 448–457.

[11] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Muller, “One-round secure computation and
secure autonomous mobile agents,” in Automata, Languages and Programming, 2000, pp. 512–523.

[12] Moni Naor and Kobbi Nissim, “Communication complexity and secure function evaluation,” Electronic
Colloquium on Computational Complexity (ECCC), vol. 8, no. 062, 2001.

19



[13] G. Aggarwal, N. Mishra, and B. Pinkas, “Secure computation of the kth ranked element,” in Pro-
ceedings of Advances in Cryptology - EUROCRYPT 2004: International Conference on the Theory and
Applications of Cryptographic Techniques, 2004, pp. 40–55.

[14] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim, “Evaluating 2-dnf formulas on ciphertexts,” in Proceedings
of Theory of Cryptography Conference 2005, Joe Killian, Ed. 2005, vol. 3378 of LNCS, pp. 325–342,
Springer-Verlag.

[15] W. Gasarch, “A survey on private information retrieval,” The Bulletin of the EATCS, vol. 82, pp.
72–107, 2004.

[16] L. Trevisan, “Some applications of coding theory in computational complexity,” Quaderni di matem-
atica, vol. 13, pp. 347–424, 2004.

[17] Yehuda Lindell and Benny Pinkas, “Privacy preserving data mining,” Journal of Cryptology, vol. 15,
no. 3, pp. 177–206, 2002.

[18] W. Du et al., “Privacy-preserving multivariate statistical analysis: Linear regression and classification.,”
in Proceedings of the 4th SIAM International Conference on Data Mining, 2004, pp. 222–233.

[19] Y.-C. Chang and C.-J. Lu, “Oblivious polynomial evaluation and oblivious neural learning,” Theoretical
Computer Science, vol. 341, pp. 39–54, 2005.

[20] S. Avidan and B. Moshe, “Blind vision,” in Proceedings of the 9th European Conference on Computer
Vision, 2006, pp. 1–13.

[21] N. Hu and S.-C. Cheung, “Secure image filtering,” in Appeared in Proc. of IEEE International Con-
ference on Image Processing (ICIP 2006), http://vis.uky.edu/mialab/Publications for Secure Image
Processing.html, Oct 2006.

[22] N. Hu and S.-C. Cheung, “A new security model for secure thresholding,” in To appear in
Proc. of IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP 2007),
http://vis.uky.edu/mialab/Publications for Secure Image Processing.html, April 2007.

[23] C. Cachin, S. Micali, and M. Stadler, “Computationally private information retrieval with polylogarith-
mic communication,” in Proceedings of Advances in Cryptology - EUROCRYPT 1999: International
Conference on the Theory and Applications of Cryptographic Techniques, 1999, vol. 1592, pp. 402–414.

[24] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan, “Private information retrieval,” in
IEEE Symposium on Foundations of Computer Science, 1995, pp. 41–50.

[25] Sergey Yekhanin, “New locally decodable codes and private information retrieval schemes,” Tech. Rep.
127, Electronic Colloquium on Computational Complexity, 2006.

[26] Eyal Kushilevitz and Rafail Ostrovsky, “Replication is not needed: Single database, computationally-
private information retrieval,” in IEEE Symposium on Foundations of Computer Science, 1997, pp.
364–373.

[27] R. Cramer and I. Damgaard, “Secure distributed linear algebra in constant number of rounds,” in
Proceedings 21st Annual IACR CRYPTO’01. 2001, vol. 2139 of LNCS, pp. 119–136, Springer-Verlag.

[28] R. Sion and B. Carbunar, “On the computational practicality of prive information retrieval,” in To
appear in Proceedings of the 14th ISOC Network and Distributed Systems Security Symposium (NDSS),
Feb 2007.

[29] Helger Lipmaa, Oblivious Transfer or Private Information Retrieval, University College London,
http://www.adastral.ucl.ac.uk/∼helger/crypto/link/protocols/oblivious.php.

[30] Kun Liu, Privacy Preserving Data Mining Bibliography, University of Maryland, Baltimore County,
http://www.cs.umbc.edu/∼kunliu1/research/privacy review.html.

20


