
1

Hierarchical Multidimensional Search in
Peer-to-Peer Networks

D. A. Tran† T. Nguyen§
† Department of Computer Science, University of Massachusetts, Boston, MA 02125, USA

§ School of EECS, Oregon State University, OR 97331, USA
Email: {† duc@cs.umb.edu,§ thinhq@eecs.oregonstate.edu}

Abstract— We propose a P2P search solution, called EZSearch,
that enables efficient multidimensional search for remotely lo-
cated contents that best match the search criteria. EZSearch is a
hierarchical approach; it organizes the network into a hierarchy
in a way fundamentally different from existing search techniques.
EZSearch is based on Zigzag, a P2P overlay architecture known
for its scalability and robustness under network growth and
dynamics. The indexing architecture of EZSearch is built on
top of the Zigzag hierarchy, that allows bothk-nearest-neighbor
and range queries to be answered with low search overhead and
worst-case search time logarithmic with the network size. The
indices are fairly distributed over a small number of nodes at
a modest cost for index storage and update. The performance
results of EZSearch drawn from our performance study are
encouraging.

Index Terms— Peer-to-peer networks, information retrieval,
similarity search.

I. I NTRODUCTION

One of the most important problems in information retrieval
is similarity search. Informally, the problem is: given a simi-
larity query, whether it is ak-nearest-neighbor (k-NN) query
or a range query, we seek a set of contents (or data objects)
that are the most relevant to the search criteria according to
some semantic distance function. Our goal is a decentralized
solution to this problem for P2P networks.

Search techniques have been proposed for unstructured P2P
networks. Most of them, however, are based on query flooding
(e.g., [4]), which is communicationally inefficient, or based on
random walking (e.g., [15]), which is ineffective for similarity
queries. Therefore, a structuralization of the network is more
favorable, which should include two constituent components:
a communication architecture and an indexing architecture.
Their design must consider the following issues:

• Communication architecture: Without central servers, we
need a distributed overlay to interconnect the nodes for
efficient navigation between them. A main problem in
designing this overlay is due to the dynamics of P2P
networks; nodes can join, leave, publish, and remove data
at any time and so connections and data coherence may
be lost frequently. The overlay should be self-adjustable
in a way to minimize the effect of such changes. The
overlay must be robust in that failure recovery is fast and
graceful to avoid interruption in the on-going service. To
be part of the network, a node needs not know everything
about the network. For efficiency, a node should keep

track of just a small number of other nodes and process
a small share of service load. Since we target large-scale
networks, the overlay must be scalable with the network
size.

• Indexing architecture:The accumulative volume of dis-
tributed data in a P2P network is large and potentially
keeps growing. Therefore, instead of employing a number
of centralized servers (either dedicated or selected among
participating nodes) to carry the load for the entire net-
work, we should let every node in the network share the
load of indexing and searching. Then arise the questions:
how to determine which node to store an index? publish
or remove an index? achieve index-load balancing? deal
with the curse of dimensionality? organize and manage
these distributed indices so that search can be performed
fast and efficiently? etc. The indexing architecture, built
atop the communication architecture, must answer these
questions.

A. Existing solutions

The existing structural search solutions fall into two main
approaches:flat-basedand hierarchy-based. In the flat-based
approach, the communication architecture organizes the nodes
such that each node is mapped to a non-overlapping region
of a multi-dimensional space and adjacency links are added
between nodes if their corresponding regions are adjacent
[1], [11], and/or satisfy some relationship [17]. The indexing
architecture stores in each node the indices of all the objects
that directly, or indirectly via a transformation, belong to the
region assigned to this node. Search for an object is reduced to
routing to the node whose region contains the object. Nodes
with similar data may also be clustered [9] and additional
links between distant nodes may be added [9], [17] to reduce
the routing distance among them. Examples of the flat-based
approach include DHT [3], [11], [12], [17], [21], small-world
model [9], and Voronoi-diagram [1] based search techniques.

The flat-based approach is less efficient in high dimen-
sionality because of the many adjacency links a node has to
maintain with neighbor nodes. The number of neighbors is
typically Ω(d) whered is the dimension. This dimension can
be in the hundred’s as in the case of image and document
retrieval, causing the communication architecture a significant
maintenance overhead. Several techniques [9], [13], [16], [18]
employ multidimensional reduction methods to reduce the

2

data space to some manageable dimensionality. However,
as a tradeoff of dimensional reduction, search in the lower
dimensionality cannot be of the same quality as in the original
dimensionality; it either must search a wider scope or the
results may only be partial.

The hierarchy-based approach [8], [10] organizes the nodes
into a hierarchy and provides a node-to-index mapping to this
hierarchy so that it can utilize a multidimensional indexing
tree structure in traditional databases [14]. The success of tra-
ditional multidimensional indexing has been well-documented,
making the hierarchy-based approach potentially more suitable
than the flat-based counterpart for high-dimensional retrieval.
A hierarchy is also more scalable and tends to cope better with
network dynamics.

B. Contributions

Research in the hierarchical approach has been sparse,
the main reason due to the lack of an efficient hierarchi-
cal communication architecture that can best work with a
successful multidimensional indexing scheme such as the R-
tree [6] and kd-tree [2]. In the present paper, we propose a
fundamental change in the communication architecture used
in the search system. Our proposed search solution, called
EZSearch, uses the Zigzag hierarchy to significantly alleviate
the above problems. Zigzag is a hierarchy of dual-head clusters
and provides the followingdimension-invariantfeatures:

• Nodal degree is bounded by a constant, limiting the
amount of search traffic coming in or exiting every node

• The number of nodes that a node needs to know is
bounded by a constant on the average

• The hierarchy diameter is logarithmic with the network
size, therefore a search can be completed in logarithmic
time

• Cluster splitting/merging is infrequent and requires at
most a constant number of link changes

• A node’s failure/departure is handled regionally and re-
quires at most a constant number of link changes

Because the hierarchies used by existing techniques cannot
provide all these features, EZSearch has a more efficient and
robust communication foundation than the others. We propose
a scheme for the indexing architecture atop the Zigzag overlay.
The challenge of this task is to decide how clusters are formed,
split, and merged under network dynamics so that the indexing
costs can be minimized and balanced. Our indexing scheme
addresses effectively the issues of communication cost, storage
cost, and the update cost due to network changes.

The Zigzag hierarchy is a result of our earlier work [20].
Our idea of using it as the overlay for P2P search is initiated
in [19]. As a significant extension from [19], the present paper
studies extensively and comprehensively all the cases involved
in the design of EZSearch. We provide search algorithm for
kNN queries. We propose algorithms of more detail for node
addition and departure, cluster merging and split, and index
publication. We have also conducted a new and extensive
performance study and present the results in the present paper.
None of these extensions are included in the preliminary work
[19].

22 26

1395 17 22 26 291

3 4

6

7 8

10

11 12

14

15 16

18

19 20

21

23

2

24

25

27 28

30

31 32

othershead associate-head

33 38 42 45
34

35 36

37

39 40

41

43 44

46

47 48

49 50

51 52

1395

17 22 26 29

2 33 37 41 45 49

Fig. 1. A zigzag-4 hierarchy of 52 nodes

The remainder of this paper is organized as follows. We
present the Zigzag hierarchy in Section II. Next in Section
III, we propose indexing and search mechanisms on top of
Zigzag and how to construct and maintain this hierarchy under
network dynamics. We provide the results of our simulation
study in Section IV. We conclude the paper in Section V with
pointers to our future research.

II. Z IGZAG HIERARCHY

A Zigzag hierarchy ofN nodes is a multi-layer hierarchy of
clusters. The size of a cluster is bounded by [z, 3z] wherez ≥
4. Parameterz, called the z-factor of the hierarchy, controls
the size of the cluster and so the height of the hierarchy.
The size range [z, 3z] provides flexibility for the hierarchy
to adapt with nodes joining and leaving. In each cluster, two
nodes are designated as the “head” and the “associate-head”,
respectively. The clusters at a layer of the hierarchy are formed
by the heads of the layer right below. The layer 0 contains all
the nodes. The top layer contains only one cluster and since
it does not have any layer above it, this cluster may have any
size in [2, 3z]. It is easy to prove that the number of layers
of this hierarchy is in [log3zN , logzN+1].

Figure 1 shows a possible Zigzag-4 hierarchy (the z-factor
is 4) of 52 nodes. All 52 nodes appear at layer 0. They are
partitioned into 13 clusters, each containing four nodes. From
left to right, the head and associate-head of these clusters,
respectively, are node 2 and node 1, node 5 and node 6, node
9 and node 10, node 13 and node 14, etc. All the layer-0 heads
(i.e., nodes 2, 5, 9, 13, 17, 22, 26, 29, 33, 37, 41, 45, and 49)
appear at layer 1. Since there are 13 such nodes at layer 1,
which is more than3z = 12 nodes, we partition them again
into 2 smaller clusters to satisfy the cluster size condition.
The head and associate head of the first layer-1 cluster are
nodes 22 and 17, respectively. The head and associate-head
of the other layer-1 cluster are chosen to be nodes 26 and
29, respectively. The layer-1 cluster heads (nodes 22 and 26)
automatically appear at layer 2 and form a single cluster. We
do not need to partition in this layer anymore because the
cluster size is 2, which is already less than3z.

We denote byhead(.) andahead(.) the head and associate-
head, respectively, of a cluster or a node. Below are theterms
we use for the rest of the paper:

• Foreign head: If X andY are clustermates at layerj > 0
and Z is a clustermate ofX at layer j − 1, then Y is
called a “foreign head” ofZ. E.g., in Figure 1, node 2 is
a foreign head of nodes 6, 7, 8, 10, 11, 12, 14, 15, 16,
18, 19, 20, 21, 23, and 24.

3

22: I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
8

I
9

I
10

I
11

I
12

I
13

25: I
7

33: I
7

I
8

37: I
9

41: I
10

45: I
11

I
13

49: I
12

2: I
2

9: I
1

I
4

13: I
5

I
6

21: I
6

6: I
2

14: I
4

42: I
11

50: I
13

1: I
1

5: I
3

18: I
5

10: I
3

34: I
9

30: I
8

38: I
10

46: I
12

29: I
7

I
8

I
9

I
10

I
11

I
12

I
13

17: I
1

I
2

I
3

I
4

I
5

I
6

26: I
1

I
2

I
3

I
4

I
5

I
6

Fig. 2. Index zone assignments of the 52-node Zigzag-4 hierarchy shown in
Figure 1

• Super cluster: A layer-j cluster is the “super cluster” of
any layer-(j−1) cluster whose head appears in the layer-j
cluster.

• Sibling cluster: Two clusters are “sibling” if they have
the same super cluster.

We define links between nodes in the Zigzag hierarchy as
follows:

• Intra-cluster links: In a cluster, the associate-head links to
every other non-head node.E.g., in Figure 1, associate-
head 17 of its layer-1 cluster has a link to all of its layer-1
non-head clustermates (nodes 2, 5, 9, 13). An exception
applies to the highest-layer cluster, where all nodes link
to the head.

• Inter-cluster links: The associate-head of a cluster must
be linked from one of its foreign heads.E.g., in Figure
1, associate-head 18 at layer 0 has a link from node 13,
which is one of node 18’s foreign heads.

The above rules guarantee a near-balanced tree structure
including all the nodes; we call this tree the Zigzag tree.
This tree hasheight bounded by2logzN + 1 andnode degree
bounded by3z−1. To maintain the hierarchy, each node must
track the existence of its clustermates, its parent node, and
its child nodes. However, traffic is only forwarded along the
hierarchy links and thus limited by its node degree. Under
network dynamics, the Zigzag hierarchy is highly robust. Due
to additions of new nodes and failures/departures of exiting
nodes, a cluster may overflow or underflow, in which case it
has to be split, or merged with another cluster, respectively.
Zigzag provides the following robustness properties (see [20]
for complete proofs and algorithms): (1)Recovery of a node
failure requires at mostO(z) link changes; and (2)A cluster
split or merger requires at mostO(z) link changes. All these
overheads are independent of the network size, making the
Zigzag hierarchy a highly scalable communication architec-
ture.

III. I NDEXING AND SEARCH MECHANISMS

EZSearch organizes nodes into a Zigzag hierarchy and
assigns to each cluster an index zone. All the zones at layer 0
form a complete disjoint partitioning of the entire index space.
At higher layers, the zone of a cluster is the union the zones
of all the clusters that call it their supercluster. Therefore, the
index zone of the top-most cluster is the entire index space.

Fig. 3. Examples of index zones in 2-dimension for the hierarchy in Figure 1
and Figure 2: the set of gray rectangles and set of striped rectangles represent
the index zones of node 17 and 45, respectively. Each single rectangle
represents an index zone at layer 0

Without loss of generality, an objectx is described as a point
(x1, x2, ..., xd) in the unitd-dimension hypercube.

The description of a clusterC ’s zone (denoted byzone(C))
is stored at its associate-headahead(C). In addition, each
nodeP stores a list of pairs(chi, zone(chi)) for each child
chi of P in the Zigzag tree, wherezone(chi) is the index
zone covered by this child. The index zone covered by a node
P , denoted byzone(P), is the union of its child zones. IfP
has no child,zone(P) = ∅.

For example, we consider the hierarchy in Figure 1. Suppose
that the index zones owned by the 13 layer-0 clusters areI1,
I2, .., I13 (respectively, from left to right); e.g.,zone(1) = I1,
zone(5) = I2, zone(9) = I3, etc. Because node 9 has two
children (peer 1 and peer 14), node 9 stores the information
{(1, I1), (14, I4)} and the description of its zonezone(9) =
I1∪I4. The index zone assignments are similar for other nodes
and shown in Figure 2. Since nodes other than the heads and
associate-heads at layer 0 do not manage any index zone, they
are not present in this figure.

A valid index zone in EZSearch must be a set of disjoint
hyperrectangles. An example for 2-dimensionality is given in
Figure 3 which shows the index zones of several nodes of the
hierarchy illustrated by Figure 1 and Figure 2. Each layer-
0 cluster’s zoneIi (i = 1, 2, ..., 13) is a rectangle. All these
rectangles form a complete partitioning of the unit square. The
set of gray rectangles therefore representszone(17) while the
set of striped rectangles representszone(45).

The actual indices arephysicallystored at the head nodes
of layer 0. Once an index zone is determined for each cluster,
the index of an objectx is stored in the cluster (to be exact,
the head of this cluster), whose zone containsx. For cost-
effectiveness and search efficiency, the index zone assignment
should achieve the following criteria:

• Indexing cost: The distance between the node that owns
an object and the node that stores this object’s index
should be short, so that the cost of index publication and
maintenance is kept small. This is already achieved by
EZSearch because the Zigzag hierarchy guarantees that
the path length between any two nodes is bounded by
O(log(N)). We should, however, need to minimize the

4

number of indices that may be migrated due to cluster
split/merge events.

• Index balancing: The indices are stored only at the head
nodes of layer 0. It is desirable that the index storage
is fairly distributed over these nodes. This balancing
also helps the search traffic be fairly distributed on the
hierarchy

• Index locality: Each index zone may contain more than a
hyperrectangle and so it is not always guaranteed that all
indices covered by the same cluster are near each other.
Therefore, index locality should be preserved in every
cluster so that a range search can be done quickly and
efficiently. In Figure 3, bothzone(17) (gray rectangles)
andzone(45) (striped rectangles) are not optimal because
each contains indices far away from each other.

In the following subsections, we firstly present how search
can be conducted given an existing zone assignment, and then
discuss how to obtain a good zone assignment, to construct the
hierarchy, and to main these two components under network
dynamics.

A. Search Algorithms

Given the index zones already assigned to the nodes, we
provide search algorithms for range and kNN queries below.

1) Range queries:A range query can be specified as a
hyperrectangle. The query follows the links in the Zigzag
tree to branches that lead to the index zonesoverlapping
with the query. Each time a query visits a node, the query
is forwarded to the node’s parent if the visited zone does not
strictly contain the query. The query is also forwarded to those
child nodes whose zone overlaps with the query. As a result,
there may be multiple instances of the same query, called
subqueries, travelling different branches of the hierarchy. All
the subqueries will eventually reach the layer-0 clusters whose
zone overlaps with the query region, where relevant objects
will be collected.

Our search algorithm guarantees completeness. In other
words, it retrieves all the results that satisfy the query. Until
layer 0 is visited, the search requires only overlap checking
instead of computing the intersections between the visited
index zones with the query, and so avoids the complexity and
time of doing the latter in high dimensionality.

The search path length is at most the diameter of the Zigzag
tree, and thereforeO(logzN). The search time also depends
on how long it takes a visited node to check whether its zone
overlaps with the query. Since the query is a hyperrectangle
and the node’s zone is a set of hyperrectangles, checking
for overlap should be very quick. The search overhead is
proportional to the total number of nodes contacted by all the
subqueries. This overhead depends on the range of the original
query; in our performance study, we found this overhead
indeed very small.

2) k-NN query: Consider a k-NN query that finds thek
objects most similar to the query pointq = (q1, q2, .., qd).
Firstly, we apply the range-query search algorithm onq to find
the layer-0 cluster whose zone containsq. This search is quick
with little overhead becauseq is a point, not a range. Suppose

that the query reaches the clusterC such thatq ∈ zone(C).
The associate-head ofC takes the steps below:

1) If zone(C) contains fewer thank objects, computeε0

as the maximum distance betweenq and the objects in
zone(C). Otherwise,ε0 is the distance betweenq and
the objectk-closest toQ in zone(C).

2) Submit a range queryqε0 = [q1−ε0, q1+ε0] × [q2−ε0,
q2+ε0] × ..× [qd−ε0, qd+ε0], but only accept objects
x whose distance withq is less thanεx. Denote the result
set byRESULT .

3) There are two cases:
a) If |RESULT |≥ k, select the bestk objects from

RESULT and send the location links to the node
initiating q.

b) If |RESULT |< k, set ε = ε0 and follow the
algorithm below to find the remaining topk′ =
(k− |RESULT |) objects:
i) Compute range queryq′ = q2ε \ qε. Submit

query q′ but only accept objectsx whose dis-
tance withq is less than2ε. Denote the result
set byRESULT ′.

ii) If |RESULT ′ |≥ k′, return the bestk′ objects
from RESULT ′ to the node initiatingq. Oth-
erwise, setε = 2ε, k′ = k′− |RESULT ′ |, and
repeat Step (i).

The results are always correctly found. The worst-case
search path length to get allk nearest objects isD =
O(logzN) + p × D′, where D′ is the length due to Step
3b and p the probability that Step 3b occurs. Sinceε is
doubled each time Step 3b(i) is re-encountered, there are no
more thanlog2(1/ε0) times of running Step 3b(i). There-
fore, D′ = log2(1/ε0)O(logzN), and so,D = (1 + p ×
log2(1/ε0))O(logzN). In the next section, we discuss mecha-
nisms for construction and maintenance of the network and
index zones. One of our goals is to construct fairly-sized
index zones at layer 0. If this goal is achieved, assuming that
an average node contributes at least one object, the size of
each zone at layer 0 is at leastN/(3z). This size is greater
than z when N is large enough, and, therefore, we need not
run algorithm 3b and the worse-case search path length is
O(logzN). The search overhead should be small because the
search overheads for finding clusterC and for processing
range queryQε0 are small.

B. Hierarchy Construction: Initial Case

Initially, there is only one node in the network. It serves as
the head and associate-head of its self-formed clusterC. This
cluster grows larger as subsequent nodes join. The index zone
of this cluster iszone(C) = I = [0, 1)d. When the cluster
overflows,C is partitioned into two smaller clusters,C0 and
C1, whose sizes are in the interval [z, 3z]; some nodes ofC
forms clusterC0, the remainder forming clusterC0.

We propose to partitionI along a dimensionl into two
halvesI0l = [0, 1)l−1 × [0, 1/2)× [0, 1)d−l andI1l = [0, 1)l−1

× [1/2, 1)× [0, 1)d−l, each to be owned byC0 andC1. It is
possible that a node in clusterC0 has an object inI1l; in this
case, we “migrate” the index of this object toC1. Similarly,

5

if a node in clusterC1 has an object inI0l, this object’s index
is stored in clusterC0. We want tominimize the number of
such indices while balancing the index loadbetween cluster
C0 andC1. For this purpose, the following simple algorithm
is run at nodehead(C):

1) To balance index load, select dimensionl such that
(
∑

P∈C nP
1l −

∑
P∈C nP

0l)
2 is minimum wherenP

0l =
cardinality({object x in P | x ∈ I0l}) and nP

1l =
cardinality({objectx in P | x ∈ I1l}).

2) To keep index migration overhead low, partitionC
into C1 and C2 such that |C1|, |C2| ∈ [z, 3z] and∑

P∈C0
nP

1l +
∑

P∈C1
nP

0l is minimum. This summation
can be expressed as

∑

P∈C

nP
0l +

∑

P∈C0

(nP
1l − nP

0l) (1)

So, to minimize (1), we greedily addz nodesP with
least value of(nP

1l − nP
0l) to C0 (initially empty), and

then keep adding nodes with least value of(nP
1l−nP

0l) as
long as

∑
P∈C0

(nP
1l − nP

0l) decreases and|C0| < 3z/2.
As a result of this algorithm, we have two newly created

clustersC0 andC1 with the index zonesI0l and I1l, respec-
tively. For each clusterCi we randomly selects two nodes as
its headhead(Ci) and associate-headahead(Ci) (the old head
of clusterC, however, is preferred to remain head of the newly
created cluster it belongs to). For those objects that belong to a
node in clusterCi but map to points in zoneI(1−i)l, their index
will be stored athead(C1−i) of clusterC1−i. The description
of the index zone of clusterCi is stored at its associate-head
ahead(Ci), as required by the zone assignment policy.

Once the newly created clusters have designated their head
and associate-head, the heads will automatically belong to
layer 1 and form a new cluster. Since layer 1 now is the
highest layer, only the head needs to be designated; this head
is randomly chosen between the two member nodes. The index
zone owned by this cluster is the union of the zones owned
by its child clusters; in this case, it isI0l ∪ I1l = I.

C. Hierarchy Construction: Incremental Update

We assume that a Zigzag hierarchy of nodes currently
exists with the corresponding zone assignment. This section
details algorithms for the following sub-problems: (1) a node
publishes or removes an object, (2) a new node joins the
network, and (3) an existing node departs from the network.

1) Object publication and removal:Suppose that a nodeP
wants to publish an objectx. The index of this object is to be
stored at the layer-0 cluster whose index zone containsx. For
this purpose,P generates a publication request in the form of a
point queryq = x and then the range-query search algorithm is
used to find the destination cluster. Object removal is similar to
object publication, except that after finding the cluster whose
zone covers the deleted object, the corresponding associate
head removes the index of this object from its index database.

2) Node join: A node Pnew wants to join the network. It
will be added to the clusterC with highest index load at layer
0. This policy helpsbalance the index loadamong clusters.
Indeed, if a cluster has a heavy index load, it will be split

quickly because many new nodes join this cluster and make
it overflow. The question is howPnew knows this special
cluster C? The answer is simple. In the current version of
data structures at each node, a non-leaf node on the Zigzag
tree stores(chi, zone(chi) for each childchi. We extend this
structure by allowing a non-leaf node to also store the ID
of the child that, among all the children, leads to a layer-0
cluster storing the most indices. As a result, the root of the
Zigzag tree always knows the ID of the cluster at layer-0 with
maximal index load. The join request travels the following
path to reach the clusterC for Pnew to join: (1) Pnew sends
the join request to an existing nodePcon; (2) Pcon forwards
the request upstream until reaching the root nodeProot; and
(3) Proot informsPnew of the layer-0 clusterC with maximum
index load.Pnew will contact the associate-head node ofC to
join it.

The join results in only one new link added to the Zigzag
tree. The join delay consists of two delays: delay due to
searching for clusterC and delay due to publication of new
objects. In the worst case, the length of the longest travel path
is O(logzN), and so we expect the join delay to be short. The
join overhead consists of the total number of nodes contacted
during the search for clusterC and new object publications;
therefore, it is at mostO(mlogzN) wherem is the number
of objects whose index needs migrating.

3) Node removal:A node may leave the network inten-
tionally or fail to exist in the network. Either way, the layer-
0 clustermates of the quitting node can detect this departure
because members of the same cluster periodically keep track
of each other’s existence. Let us name the departing nodePquit

and its layer-0 clusterC. There are two cases:
• The highest layer ofPquit is layer 0(i.e., it does not ap-

pear at any higher layer): We do not need to process
further unlessPquit is the associate-head ofC. If Pquit

is the associate-head, a random non-head nodePpromoted

in C will be selected byhead(C) to assume the associate-
head role. Furthermorezone(Ppromoted) is set to the
index zone associated with clusterC. Ppromoted knows
this information fromhead(C).

• The highest layer ofPquit is layer iP ≥ 1: Since Pquit

must be the head of every layer-i cluster it belongs to (i <
iP), a different node has to be selected as the new head for
each of such clusters. The solution is straightforward. A
randomly selected layer-0 non-associate-head clustermate
of Pquit, say nodePpromoted, will assume the position
of Pquit in every clusterPquit used to be part of. In
addition, sincePquit is the head of its layer-0 cluster, it
may store some indices; these indices will be transferred
to Ppromoted.

In the casePquit departs due to a failure, all the indices
it stores (if any) are lost and, also, the indices of the objects
of Pquit stored remotely become invalid. To address this, it
is recommended that we employ the following mechanism. If
a nodeP1 has an objectx whose index is stored at another
node P2, these two nodes “ping” each other periodically to
check their existence. The ping period should be long enough
to avoid heavy communication overhead. IfP1 does not hear
from P2, P1 re-publishesx. Similarly, if P2 does not hear

6

from P1, the former deletes all the indices associated withP1.
This mechanism also helps the removal of an object become
very quick because we would not have to search for the node
that stores the index for the deleted object; this node is already
known by the owner of the object.

Since the zone covered by a node is the union of the
children’s zones, index zones are updated accordingly for those
nodes that change links as a result of a node’s removal. The
maximum number of nodes that change links is at most the
number of children of the departing node; hence, at most
3z−1. The overhead to deal with the departure of a node is
therefore small and independent of the system size.

D. Hierarchy Construction: Cluster Split and Merging

As nodes join and depart a cluster may overflow or under-
flow, in which case it must be split into smaller clusters or
merged with another cluster, respectively. This task involves
two main steps: (1) In a cluster’s split we must decide which
nodes belong to each new cluster, while in a cluster’s merger
we must decide which other cluster to merge with; (2) Once
such a decision is made, the Zigzag hierarchy will be updated
accordingly with no more thanO(z) link changes. Since our
earlier work [20] provides the algorithms for Step (2), in the
present paper we present only the criteria and algorithms for
Step (1).

1) Cluster Split : We consider splitting an overflowed
cluster C at layer h into two clustersCa and Cb. Let P =
{P1, P2, ..., Pn} (n = 3z+1) define the set of nodes inC. We
present the algorithm forh ≥ 1 in this section. This algorithm
can be modified to work with the caseh = 0 and so the this
case is omitted here due to lack of space.

Let C1, C2, ..., Cn be the clusters headed byP1, P2, ...,
Pn, respectively, at levelh− 1. The set of nodesP is halved
to form Ca = {P1, P2, .., Pbn/2c} and Cb = {Pbn/2c+1, ..,
Pn}. Hence,

zone(Ca) =
⋃

Pi∈Ca

zone(Ci) (2)

zone(Cb) =
⋃

Pi∈Cb

zone(Ci) (3)

We find Ca andCb such thatvolume(box(Ca)∩ box(Cb))
is minimum, wherebox(Ci) is the minimal hyperrectangle
boundingzone(Ci). This criterion guarantees that each clus-
ter’s index zone contains indices close to each other. Since
an index zone may contain many hyperrectangles, computing
the intersection between two zones may be time consuming.
Therefore, we propose the following heuristic algorithm:
• For each dimensiont , sortC1, C2, ...,Cn into the ordered

list Ct1 , Ct2 , ...,Ctn such that the t-dimension maximum
coordinate ofbox(Cti) is non-decreasing. Then, letCa

= {Pt1 , Pt2 , .., Ptbn/2c} andCb = {Ptbn/2c+1 , .., Ptn},
and compute

boxa = box(
⋃

Pti
∈Ca

box(Cti)) (4)

boxb = box(
⋃

Pti
∈Cb

box(Cti)) (5)

Vt = volume(boxa ∩ boxb) (6)

• After all dimensions are considered, select the dimension
t and the correspondingCa and Cb that minimizes the
valueVt.

Sincebox(Ci) can be computed off-line by the associate-
head of clusterCi (i.e., during its the idle time), the above
algorithm runs inO(d(zlog2z + dz) time. The algorithm is
run at the associate-head of clusterC. A cluster split does not
result in index migration unless the split occurs at layer 0.
Therefore, the main overhead of a cluster split is due toO(z)
link changes and the reassignment of index zone to the nodes
that change links.

2) Cluster Mergence:We consider merging an underflowed
clusterC at layerh with another clusterC ′. We findC ′ among
the sibling clusters ofC such that (1)|C +C ′| ∈ [z, 3z], and
(2) volume(box(C ∪ C ′)) is minimum.

These criteria guarantee that the combined zone contains
indices close to each other and looks similar to the form of
a hyperrectangle. As a result, the intersection of a query with
this zone will result in few subqueries. Since there are no more
than O(z) sibling clusters, we can devise an algorithm that
finds the best siblingC ′ in O(zdh) time. In the worst case,h
= O(logzN), and so this complexity isO(zdlogzN). To speed
up this algorithm, we can approximatevolume(box(C ∪C ′))
by

volume (box (box(C) ∪ box(C ′))) (7)

and hence reducing the running time toO(zd). The algorithm
to find C ′ is run at the associate-head of clusterC.

Since the true indices are stored at layer 0 and higher layers
only store the description of index zones, a cluster merging
does not result in index migration unless the merger occurs at
layer 0. Therefore, the main overhead of a cluster merging is
due toO(z) link changes and the reassignment of index zone
to the nodes that change links.

IV. PERFORMANCEEVALUATION

We verified the correctness of EZSearch and assessed its
performance via simulation. Since we wanted to model a
highly dynamic network, we set the z-factor to a small number
z = 5 so that cluster split and merging occur often. With this
z-factor, no cluster contains more than 15 nodes or fewer than
5 nodes. We also let the nodes join the network according
to a Poisson process at a rateλ = 6 arrivals per second.
Each node had an active session, after which it quitted the
network. The session’s period was generated according to a
Pareto distribution withpdf(x; k, x0) = kxk

0/xk+1 for x > x0.
Pareto has been widely used to model the node lifetime in a
distributed network [5]. We setk = 1.5 andx0 = 10 minutes as
also used in [5]. With this configuration, the expected lifetime
of a node wasEX = kx0/(k − 1) = 30 minutes and the
minimum lifetime wasx0 = 10 minutes.

A data object was generated as ad-D uniformly random
point in [0, 1)d. We considered three cases: 3-dimension, 6-
dimension, and 9-dimension. A node has randomly between 0
and 10 objects. We allowed for a total number of 12,035 nodes
to join and quit the network. When the network stabilized (i.e.,
no more node joined or departed), it contained 8900 nodes and
approximately 45,000 indices. We then started querying the

7

Node degree

0

2

4

6

8

10

12

14

1 623 1245 1867 2489 3111 3733 4355 4977 5599 6221 6843 7465 8087

Node ID

Fig. 4. The node degree for every node in the network

Number of contacts

0

5

10

15

20

25

30

35

1 594 1187 1780 2373 2966 3559 4152 4745 5338 5931 6524 7117 7710

Node ID

Fig. 5. The number of contact nodes for each node in the network

network with 800 kNN and range queries posted by random
nodes:
• 400 range queries: The range of a query can be 5%, 10%,

15%, or 20% of the index space, each case generating 100
queries

• 400 k-NN queries:k can be 5, 10, 15, and 20, each case
generating 100 queries

During the network construction phase, we collected the
statistics about the control overhead per node, index storage
overhead, its distribution in the network, and index migration
overhead due to each cluster split and merging. During the
query phase, for each query, the search always attempted to
return all the results that satisfy the query, and we collected
the information about the search time and search overhead.
In the following section, for the sake of convenience, we use
the “present tense” instead of “past tense” in discussing the
results.

A. Node Overhead

To assess the efficiency of the Zigzag hierarchy, we compute
the number of links (i.e., degree) of each node and the contact
list (i.e., number of neighbors that each node needs to keep
track of in order to maintain the hierarchy structure of the
network). A node should have a small degree to limit the
search traffic passing through it. A node should also have a
short contact list so it does not have to check the existence of
too many nodes; hence, less communication involved.

3D: Number of indices migrated

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000

Split/Merge Event ID

Fig. 6. 3-dimension: Index migration overhead

9D: Number of indices migrated

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000

Split/Merge Event ID

Fig. 7. 9-dimension: Index migration overhead

Figure 4 shows that no node has to forward or receive search
traffic on more than 13 links. This is close to the bound3z−1
= 14 found in our theoretical analysis (see Section II). Figure
5 provides the number of contact nodes that each node has
to keep track of in order to maintain the network hierarchy.
It is understandable that since we use a hierarchy, the nodes
appearing at high layers of the hierarchy should have more
contact nodes. However, the worst-case node needs to know
only about 30 other nodes (out of 8900 nodes in the network),
and more than 80% of the nodes each need to know fewer
than 10 other nodes. This overhead is considered small; it is
still a lot smaller the overhead in many existing DHT-based
techniques, in which the number of contacts per node is at
least the number of dimensions. In many applications, the
dimensionality could be more than 100. The Zigzag hierarchy
is therefore highly efficient.

B. Index Migration Overhead

Due to the dynamics of the network, clusters may be split
or merged to satisfy the cluster-size bounds, and so indices
may have to be moved between nodes. One goal of EZSearch
is to keep the overhead of index migration low. During the
hierarchy construction phase, there are almost 2000 cluster
splits and mergers. Figure 6 and Figure 7 plot the number of

8

3D: Index Load per Cluster Distribution

0

10

20

30

40

50

60

70

80

90

100

1 89 177 265 353 441 529 617 705 793 881 969 1057 1145

Layer-0 Cluster ID

Fig. 8. 3-dimension: The distribution of indices over all layer-0 clusters

9D: Index Load per Cluster Distribution

0

10

20

30

40

50

60

70

80

90

1 87 173 259 345 431 517 603 689 775 861 947 1033 1119

Layer-0 Cluster ID

Fig. 9. 9-dimension: The distribution of indices over all layer-0 clusters

indices moved after each cluster split/merger for two cases:
3-D and 9-D, respectively. In both cases, each cluster split
or merger causes 30 moved indices on average. When the
network is growing larger, some splits and mergers result
in more indices moved but never more than 92 migrations
(out of 45,000 indices in the network). Also, many splits and
mergers result in just a few index migrations (less than 20).
Therefore, EZSearch addresses the network dynamics very
well, even when we increase the dimension from 3-D to 9-
D. This study substantiates our use of the Zigzag hierarchy as
a highly efficient communication architecture for information
retrieval.

C. Index Storage Overhead

Load balancing is desirable in any distributed system. It is
achieved in EZSearch as illustrated in Figure 8 and Figure 9.
These two figures plot the number of indices stored at each
layer-0 cluster for 3-D and 9-D, respectively. In both cases,
the head of each cluster at layer-0 stores about 40 indices and
never more than 90 indices. This is a tiny storage overhead if
we consider the fact that there are more than 45,000 objects in
the network. Similar to the study of index migration overhead,
increasing the dimensionality does not affect the index load-
balancing and small-overhead properties.

Percentage of nodes visited

0

0.05

0.1

0.15

0.2

0.25

0.05 0.1 0.15 0.2

Range volume

3D

6D

9D

Fig. 10. Effect of volume on range queries: Percentage of the network nodes
that are visited during each range search

Percentage of nodes visited

0

0.05

0.1

0.15

0.2

0.25

3D 6D 9D

Data Dimensionality

0.05

0.1

0.15

0.2

Fig. 11. Effect of dimensionality on range queries: Percentage of the network
nodes that are visited during each range search

D. Search Efficiency

In our evaluation study, EZSearch always attempts to return
all the objects that satisfy each query (i.e., 100% precision
and 100% recall). To measure search efficiency, we record the
number of nodes visited by each query. Figure 10 and Figure
12 show the percentage of this number to the network size for
the cases of range queries and kNN, respectively. There are
100 queries for each case (range query or kNN) and the result
plotted in the figures is the average value over all these 100
queries.

1) Range Queries:As expected, more nodes are visited if
we increase either the range of the query or the dimensionality
of the data space. This is a common problem in all multi-
dimensional search techniques. However, EZSearch provides
quite good results. When the query asks for 5% of the entire
data space, it visits only 5% of all the nodes in the network
when the data dimensionality is 3, and only 18% when the
dimensionality is 9. When the query asks for 20% of the data
space, only 12% of the node is visited in the 3-D case and 22%
in the 9-D case. This study illustrates that the search efficiency
decreases only linearly with the dimensionality and the query
range, rather than exponentially as in many other search

9

Percentage of nodes visited

0

0.1

0.2

0.3

0.4

0.5

0.6

5NN 10NN 15NN 20NN

kNN scope

3D

6D

9D

Fig. 12. Effect of k on kNN queries: Percentage of the network nodes that
are visited during each range search

Percentage of nodes visited

0

0.1

0.2

0.3

0.4

0.5

0.6

3D 6D 9D

Data Dimensionality

5NN

10NN

15NN

20NN

Fig. 13. Effect of dimensionality on kNN queries: Percentage of the network
nodes that are visited during each range search

techniques that suffer the curse of dimensionality problem.
2) KNN queries: The curse of dimensionality does not

seem to be a severe problem either for kNN queries as
illustrated by Figure 12. When the dimensionality is low (3-
D), the search for kNN queries is quite efficient. A 5NN query
visits only 20% of the nodes while a 20NN query visits less
than 30% of the nodes. When the dimension is 9, a 20NN
query visits approximately a half of the network. This is not
as desirable as we want. This is probably because we use
simplified algorithms for cluster split and merging (see Section
III-D.1 and Section III-D.2). Enhancing these algorithms will
certainly improve the efficiency of the search in general and
especially for kNN queries in high-dimensionality.

E. Search Time

To measure search time, we record the time it takes to
process each query from the time it is posted until when all
the results are returned. The search time is averaged over all
100 queries for each type. Our simulation is run on a HP
Worsktation 6200 Intel Pentium 4 3Ghz CPU 1GB DRAM
with Debian Linux. The simulation is centralized and the
absolute search time does not reflect the true search time in a

Search time (second)

0

5

10

15

20

25

0.05 0.1 0.15 0.2

Range volume

3D

6D

9D

Fig. 14. Effect of volume on range queries: Search time for each query

Search time (second)

0

2

4

6

8

10

12

14

16

5NN 10NN 15NN 20NN

kNN scope

3D

6D

9D

Fig. 15. Effect of k on kNN queries: Search time for each query

distributed setup because communication time is not included.
However, in a real-world setup, we expect the communication
time to be small because of the short routing path between
every two nodes. Also, studying the relative differences be-
tween search times may be meaningful for implying the effect
of dimensionality and query range.

Similar to the case of search overhead, increasing the range
of the query also increases the search time because we search
for more objects (see Figure 14 for range queries and Figure
15 for kNN queries). However, it is noted that increasing
the dimensionality plays only a small impact on the search
time (see Figure 16 for range queries and Figure 17 for kNN
queries). This is a desirable property that shows the robustness
of EZSearch under the effect of dimensionality and query
range.

F. Comparison with DPTree

To the best of our knowledge, the hierarchical P2P search
approach most related to EZSearch is DPTree [8]. While
EZSearch uses Zigzag, DPTree uses Skipnet [7] as the com-
munication overlay and an R-tree-like balanced tree as the
indexing architecture, mapping each node of the overlay to a
branch of the index tree. A nice property of DPTree is load
balancing; however, it is a complex structure with many details

10

Search time (second)

0

5

10

15

20

25

3D 6D 9D

Data Dimensionality

0.05

0.1

0.15

0.2

Fig. 16. Effect of dimensionality on range queries: Search time for each
query

Search time (second)

0

2

4

6

8

10

12

14

16

3D 6D 9D

Data Dimensionality

5NN

10NN

15NN

20NN

Fig. 17. Effect of dimensionality on kNN queries: Search time for each
query

undisclosed. Its indexing robustness under network dynamics
and its scalability with data dimensionality have yet to be
evaluated. For example, DPTree was evaluated only for 2
dimensions and it remains unclear about the cost of rebuilding
the index tree and migrating indices upon structural changes in
the overlay. Also, DPTree’s effectiveness may vary depending
on its parameter setting. Therefore, it is difficult for us to
compare EZSearch with DPTree experimentally on a fair basis.
We will nevertheless, in our future work, try to obtain further
information on DPTree for a meaningful comparison.

V. CONCLUSIONS

We have presented EZSearch – a system design for multidi-
mensional search in P2P networks. The fundamental unique-
ness of EZSearch is its use of the Zigzag hierarchy for connect-
ing the nodes and so EZSearch inherits from Zigzag a highly
efficient foundation for communication purposes. EZSearch
implements an indexing architecture on top of Zigzag. We
have shown that this indexing architecture is robust under the
network dynamics. It distributes the index storage overhead
fairly over the network nodes. Equally importantly, it allows
fast range and kNN query searches with the search path length
logarithmic with the network size. EZSearch keeps the search

overhead reasonably small and is scalable with the query range
and data dimensionality.

EZSearch can be enhanced in several ways. For example,
since EZSearch is a hierarchical approach, high-layer nodes
likely have to process more query load the low-layer nodes.
EZSearch can be extended with a role-switch algorithm that
switches the positions of high-layer nodes with low-layer
nodes to achieve better fairness. Or, better algorithms for
cluster split and merge events may be devised to improve
the effectiveness of EZSearch’s handling kNN queries in high
dimensionality. We would also like to compare EZSearch with
other hierarchical techniques such as DPTree [8] with real data
traces.

ACKNOWLEDGEMENT

The authors would like to thank the US National Science
Foundation for sponsoring this research (Grant CNS-0615055,
PI: D. A. Tran). We are also thankful to the reviewers for their
valuable comments on our work.

REFERENCES

[1] F. Banaei-Kashani and C. Shahabi, “SWAM: A family of access
methods for similarity-search in peer-to-peer data networks,” inACM
International Conference on Information and Knowledge Management,
Washington, DC, November 2004.

[2] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,”Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[3] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
scalable multi-attribute range queries,” inACM SIGCOMM, Portland,
OR, August–September 2004.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” inACM SIGCOMM,
Karlsruhe, Germany, 2003.

[5] P. B. Godfrey, S. Shenker, , and I. Stoica, “Minimizing churn in
distributed systems,” inACM Sigcomm, Pisa, Italy, December 2006.

[6] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in ACM SIGMOD Conference on Management of Data, 1984, pp. 47–57.

[7] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,
“Skipnet: A scalable overlay network with practical locality properties,”
in USENIX Symposium on Internet Technologies and Systems, Seattle,
WA, March 2003.

[8] M. Li, W.-C. Lee, and A. Sivasubramaniam, “DPTree: A balanced tree
based indexing framework for peer-to-peer networks,” inIEEE Inter-
national Conference on Networking Protocols, Boston, MA, November
2006.

[9] M. Li, W.-C. Lee, A. Sivasubramaniam, and D. L. Lee, “A small
world overlay network for semantic based search in p2p systems,” in
IEEE International Conference on Network Protocols, Berlin, Germany,
October 2004.

[10] A. Mondal, Yilifu, and M. Kitsuregawa, “P2PR-tree: An r-tree-based
spatial index for peer-to-peer environments,” inICDE/EDBT PhD Work-
shop, Crete, Greece, 2004.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content addressable network,” inACM SIGCOMM, San Diego,
CA, August 2001, pp. 161–172.

[12] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” inIFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), Heidelberg, Germany, November 2001, pp. 329–350.

[13] O. D. Sahin, A. Gulbeden, F. Emekci, D. Agrawal, and A. E. Abbadi,
“PRISM: Indexing multi-dimensional data in p2p networks using ref-
erence vectors,” inACM Multimedia Conference, Singapore, November
2005.

[14] H. Samet,Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann Publishers, 2006.

[15] N. Sarshar, P. O. Boykin, and V. P. Roychowdhury, “Percolation search
in power law networks: Making unstructured peer-to-peer networks
scalable,” inIEEE Conference on P2P Computing, Zurich, Switzerland,
August 2004.

11

[16] C. Schmidt and M. Parashar, “Flexible information discovery in de-
centralized distributed systems,” inIEEE International Symposium on
High-Performance Distributed Computing, Seattle, WA, June 2003.

[17] I. Stoica, R. Morris, D. Karger, M. Kaashock, and H. Balakrishman,
“Chord: A scalable peer-to-peer lookup protocol for internet applica-
tions,” in ACM SIGCOMM, San Diego, CA, August 2001, pp. 149–160.

[18] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information retrieval
using self-organizing semantic overlay networks,” inACM SIGCOMM,
Karlsruhe, Germany, 2003.

[19] D. A. Tran, “Hierarchical semantic overlay approach to p2p similarity
search,” inUSENIX Annual Technical Conference, Anaheim, CA, April
2005.

[20] D. A. Tran, K. Hua, and T. Do, “A peer-to-peer architecture for media
streaming,” IEEE Journal on Selected Areas in Communications –
Special Issue on Advances in Service Overlay Networks, vol. 22, no. 1,
January 2004.

[21] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, , and
J. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, January 2004.

