Hierarchical Multidimensional Search In
Peer-to-Peer Networks

D. A. Trany

T. Nguyerg

1 Department of Computer Science, University of Massachusetts, Boston, MA 02125, USA
§ School of EECS, Oregon State University, OR 97331, USA
Email: {{ duc@cs.umb.edd; thinhg@eecs.oregonstate.édu

Abstract—We propose a P2P search solution, called EZSearch,
that enables efficient multidimensional search for remotely lo-
cated contents that best match the search criteria. EZSearch is a
hierarchical approach; it organizes the network into a hierarchy
in a way fundamentally different from existing search techniques.
EZSearch is based on Zigzag, a P2P overlay architecture known
for its scalability and robustness under network growth and
dynamics. The indexing architecture of EZSearch is built on
top of the Zigzag hierarchy, that allows both k-nearest-neighbor
and range queries to be answered with low search overhead and
worst-case search time logarithmic with the network size. The
indices are fairly distributed over a small number of nodes at
a modest cost for index storage and update. The performance
results of EZSearch drawn from our performance study are
encouraging.

Index Terms— Peer-to-peer networks, information retrieval,
similarity search.

I. INTRODUCTION

track of just a small number of other nodes and process
a small share of service load. Since we target large-scale
networks, the overlay must be scalable with the network
size.

Indexing architectureThe accumulative volume of dis-
tributed data in a P2P network is large and potentially
keeps growing. Therefore, instead of employing a number
of centralized servers (either dedicated or selected among
participating nodes) to carry the load for the entire net-
work, we should let every node in the network share the
load of indexing and searching. Then arise the questions:
how to determine which node to store an index? publish
or remove an index? achieve index-load balancing? deal
with the curse of dimensionality? organize and manage
these distributed indices so that search can be performed
fast and efficiently? etc. The indexing architecture, built
atop the communication architecture, must answer these
questions.

One of the most important problems in information retrieval
is similarity search. Informally, the problem is: given a simi- o _
larity query, whether it is &-nearest-neighbor (k-NN) queryA. EXisting solutions

or a range query, we seek a set of contents (or data objectsyhe existing structural search solutions fall into two main
that are the most relevant to the search criteria aCCOfdingdﬁproachesﬂat-basedand hierarchy-basedIn the flat-based
some semantic distance function. Our goal is a decentralizgsproach, the communication architecture organizes the nodes
solution to this problem for P2P networks. such that each node is mapped to a non-overlapping region
Search techniques have been proposed for unstructured B2 multi-dimensional space and adjacency links are added
networks. Most of them, however, are based on query floodipgtween nodes if their corresponding regions are adjacent
(e.g., [4]), which is communicationally inefficient, or based o], [11], and/or satisfy some relationship [17]. The indexing
random walking (e.g., [15]), which is ineffective for similarityarchitecture stores in each node the indices of all the objects
queries. Therefore, a structuralization of the network is moggat directly, or indirectly via a transformation, belong to the
favorable, which should include two constituent componentggion assigned to this node. Search for an object is reduced to
a communication architecture and an indexing architectuiguting to the node whose region contains the object. Nodes
Their design must consider the following issues: with similar data may also be clustered [9] and additional
« Communication architectur&Vithout central servers, we links between distant nodes may be added [9], [17] to reduce
need a distributed overlay to interconnect the nodes fthre routing distance among them. Examples of the flat-based
efficient navigation between them. A main problem impproach include DHT [3], [11], [12], [17], [21], small-world
designing this overlay is due to the dynamics of P2model [9], and Voronoi-diagram [1] based search techniques.
networks; nodes can join, leave, publish, and remove dataThe flat-based approach is less efficient in high dimen-
at any time and so connections and data coherence nségnality because of the many adjacency links a node has to
be lost frequently. The overlay should be self-adjustabiteaintain with neighbor nodes. The number of neighbors is
in a way to minimize the effect of such changes. Thepically Q(d) whered is the dimension. This dimension can
overlay must be robust in that failure recovery is fast arfae in the hundred’'s as in the case of image and document
graceful to avoid interruption in the on-going service. Teetrieval, causing the communication architecture a significant
be part of the network, a node needs not know everythimgaintenance overhead. Several techniques [9], [13], [16], [18]
about the network. For efficiency, a node should keemploy multidimensional reduction methods to reduce the

data space to some manageable dimensionality. Howeveri head associale-head ofhers
as a tradeoff of dimensional reduction, search in the lower
dimensionality cannot be of the same quality as in the original
dimensionality; it either must search a wider scope or the G
results may only be partial.

The hierarchy-based approach [8], [10] organizes the node & o NS a2 2
|nt0 a hlerarChy and prOVIdES a nOde-tO-lndeX mapplng tO thIS 34 78 1112 1516 19 20 2324 27 28 31 32 35 36 39 40 4344 47 48 51 52
hierarchy so that it can utilize a multidimensional indexing
tree structure in traditional databases [14]. The success of tra-
ditional multidimensional indexing has been well-documented,

making the hierarchy-based approach potgntially more su_itablel-he remainder of this paper is organized as follows. We
than the flat-based counterpart for high-dimensional retr'evﬁiesent the Zigzag hierarchy in Section Il. Next in Section

A hierarchy is also more scalable and tends to cope better wjifh |, o propose indexing and search mechanisms on top of
network dynamics. Zigzag and how to construct and maintain this hierarchy under

network dynamics. We provide the results of our simulation
B. Contributions study in Section IV. We conclude the paper in Section V with

Research in the hierarchical approach has been spaRQinters to our future research.
the main reason due to the lack of an efficient hierarchi-
cal communication architecture that can best work with a II. ZIGZAG HIERARCHY
successful multidimensional indexing scheme such as the RA Zigzag hierarchy ofV nodes is a mu|ti_|ayer hierarchy of
tree [6] and kd-tree [2]. In the present paper, we proposecRysters. The size of a cluster is bounded by3] wherez >
fundamental change in the communication architecture usedparameter:, called the z-factor of the hierarchy, controls
in the search system. Our proposed search solution, califd size of the cluster and so the height of the hierarchy.
EZSearch, uses the Zigzag hierarchy to significantly alleviatie size rangez] 3] provides flexibility for the hierarchy
the above problems. Zigzag is a hierarchy of dual-head clustggsadapt with nodes joining and leaving. In each cluster, two
and provides the followinglimension-invarianfeatures: nodes are designated as the “head” and the “associate-head”,
- Nodal degree is bounded by a constant, limiting theespectively. The clusters at a layer of the hierarchy are formed
amount of search traffic coming in or exiting every nodby the heads of the layer right below. The layer O contains all
o The number of nodes that a node needs to know tise nodes. The top layer contains only one cluster and since
bounded by a constant on the average it does not have any layer above it, this cluster may have any
o The hierarchy diameter is logarithmic with the networlsize in [2, 3]. It is easy to prove that the number of layers
size, therefore a search can be completed in logarithn@t this hierarchy is in Jogs. N, log, N+1].

Fig. 1. A zigzag-4 hierarchy of 52 nodes

time Figure 1 shows a possible Zigzag-4 hierarchy (the z-factor
« Cluster splitting/merging is infrequent and requires as 4) of 52 nodes. All 52 nodes appear at layer 0. They are
most a constant number of link changes partitioned into 13 clusters, each containing four nodes. From

« A node’s failure/departure is handled regionally and rdeft to right, the head and associate-head of these clusters,
quires at most a constant number of link changes respectively, are node 2 and node 1, node 5 and node 6, node

Because the hierarchies used by existing techniques canf@nd node 10, node 13 and node 14, etc. All the layer-0 heads
provide all these features, EZSearch has a more efficient 4h@-, nodes 2, 5, 9, 13, 17, 22, 26, 29, 33, 37, 41, 45, and 49)
robust communication foundation than the others. We propoepear at layer 1. Since there are 13 such nodes at layer 1,
a scheme for the indexing architecture atop the Zigzag overl¥¢ich is more thar8z = 12 nodes, we partition them again
The challenge of this task is to decide how clusters are formdato 2 smaller clusters to satisfy the cluster size condition.
split, and merged under network dynamics so that the indexihje head and associate head of the first layer-1 cluster are
costs can be minimized and balanced. Our indexing schefifedes 22 and 17, respectively. The head and associate-head
addresses effectively the issues of communication cost, stor@§dhe other layer-1 cluster are chosen to be nodes 26 and
cost, and the update cost due to network Changes_ 29, respectively. The Iayer—l cluster heads (nodes 22 and 26)
The Zigzag hierarchy is a result of our earlier work [20j@utomatically appear at layer 2 and form a single cluster. We
Our idea of using it as the overlay for P2P search is initiatélp not need to partition in this layer anymore because the
in [19]. As a significant extension from [19], the present papé&tuster size is 2, which is already less than
studies extensively and comprehensively all the cases involvedVe denote byiead(.) andahead(.) the head and associate-
in the design of EZSearch. We provide search algorithm ffead, respectively, of a cluster or a node. Below arei¢has
kNN queries. We propose algorithms of more detail for nodie use for the rest of the paper:
addition and departure, cluster merging and split, and indexe Foreign headlf X andY are clustermates at laygr> 0
publication. We have also conducted a new and extensive and Z is a clustermate ofX at layerj — 1, thenY is
performance study and present the results in the present paper. called a “foreign head” ofZ. E.g., in Figure 1, node 2 is
None of these extensions are included in the preliminary work a foreign head of nodes 6, 7, 8, 10, 11, 12, 14, 15, 16,
[19]. 18, 19, 20, 21, 23, and 24.

[22:1,ULULUILUIEU UL UV UL, Ul Ul Ul |
l1o
|1 |2 |5
‘29: Lulgulgulyul,ul,ul,
| A l
[17: 1 uuuluigul | [83:1,ul, |[37:15][4111, |[45: 1, L 1y [[4921y,] ls I,
|
08 O 20N [[e N
o hs
14 l12
Fig. 2. Index zone assignments of the 52-node Zigzag-4 hierarchy shown in
Figure 1

Fig. 3. Examples of index zones in 2-dimension for the hierarchy in Figure 1

> : « ” and Figure 2: the set of gray rectangles and set of striped rectangles represent
« Super ClusterA Iayerj cluster is the super cluster” of the index zones of node 17 and 45, respectively. Each single rectangle

any layer{j—1) cluster whose head appears in the layerrepresents an index zone at layer 0
cluster.
« Sibling cluster Two clusters are “sibling” if they have
the same super cluster. Without loss of generality, an objectis described as a point
We define links between nodes in the Zigzag hierarchy &g, 72, ..., x4) in the unitd-dimension hypercube.
follows: The description of a cluste?’s zone (denoted byone(C))

« Intra-cluster linksIn a cluster, the associate-head links t& Stored at its associate-headicad(C). In addition, each
every other non-head nodE.g., in Figure 1, associate- N0de P’ stores a list of pairgch;, zone(ch;)) for each child
head 17 of its layer-1 cluster has a link to all of its layer-1h: Of P in the Zigzag tree, whereone(ch;) is the index
non-head clustermates (nodes 2, 5, 9,.18) exception Z°N€ covered by this child. The index zone covered by a node

applies to the highest-layer cluster, where all nodes lifk: denoted byzone(P), is the union of its child zones. IP
to the head. has no child,zone(P) = 0.

« Inter-cluster links The associate-head of a cluster must For example, we consider the hierarchy in Figure 1. Suppose
be linked from one of its foreign headg.g., in Figure that the index zones owned by the 13 layer-O clusters/are
1, associate-head 18 at layer 0 has a link from node 1%;. -, [13 (respectively, from left to right); e.gzone(1) = I,
which is one of node 18’s foreign heads. zone(5) = Iz, zone(9) = I3, etc. Because node 9 has two
C{:P}iédren (peer 1 and peer 14), node 9 stores the information

4{'{1, I), (14, 1)} and the description of its zonene(9) =
1UI4. The index zone assignments are similar for other nodes

The above rules guarantee a near-balanced tree stru
including all the nodes; we call this tree the Zigzag tre
This tree haseight bounded bglog. N + 1 andnode degree
bounded by3z — 1. To maintain the hierarchy, each node mudt
track the existence of its clustermates, its parent node, a
its child nodes. However, traffic is only forwarded along th@
hierarchy links and thus limited by its node degree. Under
network dynamics, the Zigzag hierarchy is highly robust. D
to additions of new nodes and failures/departures of exiti

nd shown in Figure 2. Since nodes other than the heads and
sdsociate-heads at layer 0 do not manage any index zone, they
re not present in this figure.

A valid index zone in EZSearch must be a set of disjoint
perrectangles. An example for 2-dimensionality is given in
igure 3 which shows the index zones of several nodes of the
nodes, a cluster may overflow or underflow, in which case erarchy illustrated by Figure 1 and Figure 2. Each layer-

has to be split, or merged with another cluster, respectiveR/.ClUStelr'S fzone[i (0= 1| 2, oo 13) i,S a rfet;}tanglle. Al theseh
Zigzag provides the following robustness properties (see [2r ctangles form a complete partitioning of the unit sguare. The
for complete proofs and algorithms): (Recovery of a node set of gray rectangles therefore represenise(17) while the
failure requires at most(z) link changesand (2)A cluster set of striped .rec.tangles represemsze(%).

split or merger requires at mos (=) link changesAll these The actual |nd|ce§ arphysmal.lystored gt the head nodes
overheads are independent of the network size, making gfdayer 0. Once an index zone is determined for each cluster,

Zigzag hierarchy a highly scalable communication architef1® index of an object is stored in the cluster (to be exact,
ture. the head of this cluster), whose zone contains~or cost-

effectiveness and search efficiency, the index zone assignment
should achieve the following criteria:

« Indexing cost: The distance between the node that owns
EZSearch organizes nodes into a Zigzag hierarchy and an object and the node that stores this object’s index
assigns to each cluster an index zone. All the zones at layer 0 should be short, so that the cost of index publication and
form a complete disjoint partitioning of the entire index space. maintenance is kept small. This is already achieved by
At higher layers, the zone of a cluster is the union the zones EZSearch because the Zigzag hierarchy guarantees that
of all the clusters that call it their supercluster. Therefore, the the path length between any two nodes is bounded by
index zone of the top-most cluster is the entire index space. O(log(N)). We should, however, need to minimize the

IIl. | NDEXING AND SEARCH MECHANISMS

number of indices that may be migrated due to clusténat the query reaches the clustérsuch thaty € zone(C).
split/merge events. The associate-head 6t takes the steps below:

« Index balancing: The indices are stored only at the head1) |f zone(C') contains fewer that objects, compute,
nodes of layer 0. It is desirable that the index storage as the maximum distance betweerand the objects in
is fairly distributed over these nodes. This balancing zone(C'). Otherwise,g, is the distance betweep and
also helps the search traffic be fairly distributed on the the objectk-closest toQ in zone(C).
hierarchy 2) Submit a range query, = [g1—&0, ¢1+0] X [g2—¢o,

« Index locality: Each index zone may contain more thana ¢, +¢¢] x .. x [qa—¢0, qa+€0], but only accept objects
hyperrectangle and so it is not always guaranteed that all ; whose distance with is less thar,,. Denote the result
indices covered by the same cluster are near each other. set by RESULT.

Therefore, index locality should be preserved in every 3) There are two cases:

cluster so that a range search can be done quickly and a) If [RESULT |> k, select the best objects from

efficiently. In Figure 3, bothone(17) (gray rectangles) RESULT and send the location links to the node
andzone(45) (striped rectangles) are not optimal because initiating .
each contains indices far away from each other. b) If [RESULT |< k, sete = ¢ and follow the
In the following subsections, we firstly present how search algorithm below to find the remaining topf =
can be conducted given an existing zone assignment, and then (k— |RESULT |) objects:
discuss how to obtain a good zone assignment, to construct the i) Compute range query’ = ga. \ ¢-. Submit
hierarchy, and to main these two components under network query ¢’ but only accept objects whose dis-
dynamics. tance withg is less tharke. Denote the result
set by RESULT'.
A. Search Algorithms i) If [RESULT" |> K, return the best’ objects

from RESULT' to the node initiating;. Oth-
erwise, set = 2¢, k' = k'— |RESULT' |, and
repeat Step (i).

The results are always correctly found. The worst-case
earch path length to get alk nearest objects isD =

Given the index zones already assigned to the nodes, we
provide search algorithms for range and kNN queries below.

1) Range queries:A range query can be specified as a
hyperrectangle. The query follows the links in the Zigzag
tree to branches that lead to the index zomserlapping , .
with the query. Each time a query visits a node, the queé)élogzN) +p x D', where D" is the length due to Step
is forwarded to the node’s parent if the visited zone does ng¢ and» the probability that Step 3b occurs. Sineeis
strictly contain the query. The query is also forwarded to tho&@UPIed each time Step 3b(i) is re-encountered, there are no
child nodes whose zone overlaps with the query. As a resyli®® tbanlou‘h(l/&o) times of running Step 3b(i). There-
there may be multiple instances of the same query, calllfe; D’ = loga(1/29)O(log:-N), and so,D = (1 +p x
subqueries, travelling different branches of the hierarchy. Aff92(1/0))O(log-NV). In the next section, we discuss mecha-
the subqueries will eventually reach the layer-0 clusters whd2§Ms for construction and maintenance of the network and
zone overlaps with the query region, where relevant objedfélex zones. One of our goals is to construct fairly-sized
will be collected. index zones at layer 0. If this goal is achieved, assuming that

Our search algorithm guarantees completeness. In otRg, average node contributes at least one object, the size of
ch zone at layer 0 is at lead¥/(3z). This size is greater

words, it retrieves all the results that satisfy the query. Un 8 hen oV is | h and. theref q
layer 0 is visited, the search requires only overlap checkifigd"# When IV is large enough, and, therefore, we need not
algorithm 3b and the worse-case search path length is

instead of computing the intersections between the visit

index zones with the query, and so avoids the complexity aQo(logzN)' The search qver_head should be small becaqse the
time of doing the latter in high dimensionality. search overheads for finding clustér and for processing

The search path length is at most the diameter of the Zigzrfgﬁ1ge quenge, are small
tree, and therefor€®(log.N). The search time also depends . N
on how long it takes a visited node to check whether its zoffe Hierarchy Construction: Initial Case
overlaps with the query. Since the query is a hyperrectanglelnitially, there is only one node in the network. It serves as
and the node’s zone is a set of hyperrectangles, checkihg head and associate-head of its self-formed clustérhis
for overlap should be very quick. The search overhead dhister grows larger as subsequent nodes join. The index zone
proportional to the total number of nodes contacted by all th this cluster iszone(C) = I = [0,1)%. When the cluster
subqueries. This overhead depends on the range of the origmarflows,C is partitioned into two smaller cluster§}, and
query; in our performance study, we found this overhead,, whose sizes are in the interval, [3z]; some nodes of®
indeed very small. forms clusterCy, the remainder forming cluster.

2) k-NN query: Consider a k-NN query that finds the We propose to partition along a dimensioni into two
objects most similar to the query point= (g1, g2, .., ga)- halvesly =[0,1)!"! x [0, 1/2) x [0,1)% ! andI;; = [0,1)! !
Firstly, we apply the range-query search algorithmyda find ~ x [1/2, 1) x [0,1)4~!, each to be owned bg, andC;. It is
the layer-0 cluster whose zone containg his search is quick possible that a node in clustéf, has an object iy;; in this
with little overhead becausgis a point, not a range. Supposecase, we “migrate” the index of this object €. Similarly,

if a node in clustelC; has an object ify;, this object’s index quickly because many new nodes join this cluster and make
is stored in clustelCy. We want tominimize the number of it overflow. The question is how?,.,, knows this special
such indices while balancing the index loaétween cluster cluster C? The answer is simple. In the current version of
Cy and (. For this purpose, the following simple algorithndata structures at each node, a non-leaf node on the Zigzag
is run at nodehead(C): tree storegch;, zone(ch;) for each childeh;. We extend this
1) To balance index load, select dimensibrsuch that Structure by allowing a non-leaf node to also store the ID
Cpec nt — S rec ”(1)31)2 is minimum Wherenopl — of the child_ that, among_all_the children, leads to a layer-0
cardinalityobject z in P | z € Iy}) and ni cluster storing the most indices. As a result, the root of the
cardinality(objectz in P | z € I;}). Zigzag tree always knows the ID of the cluster at layer-0 with
To keep index migration overhead low, partitigi Mmaximal index load. The join request travels the following
into C; and Cy such that|Cy|, |Cy| € [z,32] and path to reach the clustér for P, to join: (1) Py, sends
> pecy M+ XY pec, néy is minimum. This summation the join request to an existing nod&,,.; (2) Feon forwards
can be expressed as the request upstream until reaching the root nétlg,; and
(3) Proot informs P,,.,, of the layer-0 cluste€ with maximum
Z nb + Z (nh —nk) index load.P,.., will contact the associate-head node(dto
pPeC PeCy

join it.
So, to minimize (1), we greedily add nodes P with The join results in only one new link added to the Zigzag
least value of(nf, — nl}) to Cy (initially empty), and

tree. The join delay consists of two delays: delay due to
then keep adding nodes with least valugof, — %) as searching for cluste€ and delay due to publication of new
long asy_ -, (n1; — n¢;) decreases and’y| < 3z/2. i

objects. In the worst case, the length of the longest travel path
) . O(log,N), and so we expect the join delay to be short. The
As a result of this algorithm, we have two newly createfi (log=N) b] y
clustersC, and C; with the index zonedy, and I;,

in overhead consists of the total number of nodes contacted
. respec- during the search for cluster and new object publications;
tively. For each cluste€; we randomly selects two nodes 8$herefore. it is at mosO (mlog, N) wherem is the number

its headhead(C;) and associate-headead(C;) (the old head ¢ objects, whose index needsz migrating

of clusterC', however, is preferred to remain head of the newly 3) Node removal:A node may leave .the network inten-
created cluster it belongs to). For those objects that belong tqghaly or fail to exist in the network. Either way, the layer-
node in cluster’; but map to points in zong, _, theirindex o ¢jystermates of the quitting node can detect this departure
will be stored athead(C ;) of clusterC, ;. The description pecase members of the same cluster periodically keep track
of the index zone of cluster; is stored at its associate-heaqt aach other’s existence. Let us name the departing fogle
ahead(C;), as required by the zone assignment policy. and its layer-0 cluste€. There are two cases:

Once the newly created clusters have designated their heag The highest layer of,,;; is layer (.., it does not ap-
and associate-head, the heads will automatically belong t0 e r—r—Zrv-picnar Iqat;er)' We do not need to process
layer 1 and form a new cluster. Since layer 1 now is the further unlessP,,;, is the éssociate-head 6. If P,

qut . qut

highest layer, only the head needs to be designated; this head is the associate-head, a random non-head ff8uoed
is randomly chosen between the two member nodes. The index in C will be selected b,yzead(C) to assume the assgtceiate-

zone owned by this cluster is the union of the zones owned head role. Furthermoreone(P, wed) iS set to the
. promote

by its child clusters; in this case, it & U I = I. index zone associated with clusté€t P, omotca knows

this information fromhead(C).

The highest layer of,,,;; is layerip > 1: Since P,
must be the head of every layecluster it belongs toi(<

ip), a different node has to be selected as the new head for

2)

@)

C. Hierarchy Construction: Incremental Update .

We assume that a Zigzag hierarchy of nodes currently
exists with the corresponding zone assignment. This section

details algorithms for the following sub-problems: (1) a node

publishes or removes an object, (2) a new node joins the

network, and (3) an existing node departs from the network.
1) Object publication and removalSuppose that a node

wants to publish an objeat. The index of this object is to be

stored at the layer-0 cluster whose index zone contairtor

this purposeP generates a publication request in the form of a

each of such clusters. The solution is straightforward. A
randomly selected layer-0 non-associate-head clustermate
of Pyyit, say nodeP,,,moteqd, Will assume the position

of Py in every clusterP,,;; used to be part of. In
addition, sinceP,,;; is the head of its layer-0 cluster, it
may store some indices; these indices will be transferred

to Ppromoted-

point queryq = x and then the range-query search algorithm is In the caseF,,;; departs due to a failure, all the indices
used to find the destination cluster. Object removal is similar tiostores (if any) are lost and, also, the indices of the objects
object publication, except that after finding the cluster whosé F,,;; stored remotely become invalid. To address this, it
zone covers the deleted object, the corresponding associateecommended that we employ the following mechanism. If
head removes the index of this object from its index databasenode P; has an object: whose index is stored at another
2) Node join: A node P,.,, wants to join the network. It node P, these two nodes “ping” each other periodically to
will be added to the clustet’ with highest index load at layer check their existence. The ping period should be long enough
0. This policy helpshalance the index loa@mong clusters. to avoid heavy communication overhead.Af does not hear
Indeed, if a cluster has a heavy index load, it will be splftom P, P, re-publishesz. Similarly, if P, does not hear

from Py, the former deletes all the indices associated \ith « After all dimensions are considered, select the dimension
This mechanism also helps the removal of an object become ¢ and the corresponding, and C; that minimizes the
very quick because we would not have to search for the node valueV;.

that stores the index for the deleted object; this node is alread\sijnce boxz(C;) can be computed off-line by the associate-

known by the owner of the object. head of clusterC; (i.e., during its the idle time), the above
Since the zone covered by a node is the union of thggorithm runs inO(d(zlogsz + dz) time. The algorithm is
children’s zones, index zones are updated accordingly for thgg@ at the associate-head of clustérA cluster split does not
nodes that change links as a result of a node’s removal. Tl&ult in index migration unless the split occurs at layer O.
maximum number of nodes that change links is at most th@erefore, the main overhead of a cluster split is du@to)

number of children of the departing node; hence, at magik changes and the reassignment of index zone to the nodes
3z—1. The overhead to deal with the departure of a node tisat change links.

therefore small and independent of the system size. 2) Cluster MergenceWe consider merging an underflowed
. Lo . , clusterC' at layerh with another cluste€’. We findC’ among
D. Hierarchy Construction: Cluster Split and Merging the sibling clusters o€’ such that (1jC + C’| € [z, 3], and

As nodes join and depart a cluster may overflow or undgR) volume(boz(C'U C")) is minimum.
flow, in which case it must be split into smaller clusters or These criteria guarantee that the combined zone contains
merged with another cluster, respectively. This task involv@sdices close to each other and looks similar to the form of
two main steps: (1) In a cluster’s split we must decide which hyperrectangle. As a result, the intersection of a query with
nodes belong to each new cluster, while in a cluster's mergfis zone will result in few subqueries. Since there are no more
we must decide which other cluster to merge with; (2) OngRan O(z) sibling clusters, we can devise an algorithm that
such a decision is made, the Zigzag hierarchy will be updatgfids the best sibling” in O(zdh) time. In the worst casé
accordingly with no more tha(z) link changes. Since our — O(log. V'), and so this complexity i€ (zdlog. N). To speed
earlier work [20] provides the algorithms for Step (2), in thep this algorithm, we can approximatelume(boxz(C U C"))
present paper we present only the criteria and algorithms gy
Step (1). volume (boz (box(C') U box(C"))) (7)

1) Cluster Split : We consider splitting an overflowed
cluster C' at layerh into two clustersC, and C,. Let P = @and hence reducing the running time@gzd). The algorithm
{P\,Py,...,P,} (n = 32+1) define the set of nodes ifi. We to fmd C" is run gt the associate-head of cluster .
present the algorithm fok > 1 in this section. This algorithm ~ Since the true indices are stored at layer 0 and higher layers
can be modified to work with the cage— 0 and so the this only store the description of index zones, a cluster merging

case is omitted here due to lack of space. does not result in index migration unless the merger occurs at
Let Cy, Cs, ..., C, be the clusters headed Wi, P,, ..., layer 0. Therefore, the main overhead of a cluster merging is
P,, respectively, at leveb — 1. The set of node® is halved due toO(z) link changes and the reassignment of index zone
to form C, = {Py, Ps, .., Pluja)} and Gy = {Pl/ajs1, - to the nodes that change links.
P,}. Hence,
o= o @ IV. PERFORMANCEEVALUATION
zone(Ca) = PiLeJca zone(Ci) We verified the correctness of EZSearch and assessed its
' performance via simulation. Since we wanted to model a
zone(Cy) = U zone(C;) () highly dynamic network, we set the z-factor to a small number
PieCe z = 5 so that cluster split and merging occur often. With this

We find C, and C;, such thatvolume(boxz(C,) Nbox(Cy)) z-factor, no cluster contains more than 15 nodes or fewer than
is minimum, wherebox(C;) is the minimal hyperrectangle 5 nodes. We also let the nodes join the network according
boundingzone(C;). This criterion guarantees that each cluso a Poisson process at a rate= 6 arrivals per second.
ter's index zone contains indices close to each other. Sinegch node had an active session, after which it quitted the
an index zone may contain many hyperrectangles, computifgtwork. The session’s period was generated according to a
the intersection between two zones may be time consumireto distribution withvdf (z; k, z0) = kaf /o +1 for z > .
Therefore, we propose the following heuristic algorithm: Pareto has been widely used to model the node lifetime in a

« For each dimensioh, sortC1, Cy, ...,C,, into the ordered distributed network [5]. We sét= 1.5 andzy = 10 minutes as

list Cy,, C4,, ..., Ct, such that the t-dimension maximumalso used in [5]. With this configuration, the expected lifetime
coordinate ofbox(C;,) is non-decreasing. Then, I€l, of a node wasEX = kzo/(k — 1) = 30 minutes and the
=Py, Piyy s Pip o y @ndCy = {P; 5 15 - P}y, minimum lifetime waszo = 10 minutes.
and compute A data object was generated asdd uniformly random
_ point in [0,1)%. We considered three cases: 3-dimension, 6-
boza = box(U box(C1,)) “) dimension, and 9-dimension. A node has randomly between 0

Prs€Ca and 10 objects. We allowed for a total number of 12,035 nodes
boxy = box(] box(Cy,)) (5) to join and quit the network. When the network stabilized (i.e.,
P eCh no more node joined or departed), it contained 8900 nodes and

Vi = volume(box, N boxy) (6) approximately 45,000 indices. We then started querying the

Node degree 3D: Number of indices migrated

100

1 623 1245 1867 2489 3111 3733 4355 4977 5599 6221 6843 7465 8087
Node ID

1000 1500 2000
SplitMerge Event ID

o
(o))
o
o

Fig. 4. The node degree for every node in the network

Fig. 6. 3-dimension: Index migration overhead

Number of contacts

9D: Number of indices migrated

25 100

54—

1 594 1187 1780 2373 2966 3559 4152 4745 5338 5931 6524 7117 7710
Node ID

0 500 1000 1500 2000

Fig. 5. The number of contact nodes for each node in the network Split/Merge Event ID
network with 800 kNN and range queries posted by random Fig. 7. 9-dimension: Index migration overhead

nodes:

« 400 range queries: The range of a query can be 5%, 10%,)
15%, or 20% of the index space, each case generating lo(iﬂgure 4 shows that no node has to forward or receive search

queries traffic on more than 13 links. This is close to the bouad- 1
« 400 k-NN queriesk can be 5, 10, 15, and 20, each casg 14 fgund in our theoretical analysis (see Section Il). Figure
generating 100 queries 5 provides the number of contact nodes that each node has

During the network construction phase, we collected tﬁg_keep track of in order t9 maintain the n_etwork hierarchy.
statistics about the control overhead per node, index stora{ & un_derstanc_iable that since we use a hierarchy, the nodes
overhead, its distribution in the network, and index migratioﬂ pearing at high layers of the hierarchy should have more
overhead due to each cluster split and merging. During thgntact nodes. However, the worst-case nodg needs to know
query phase, for each query, the search always attemptec?%’ about 30 other nodes (out of 8900 nodes in the network),
returnall the results that satisfy the query, and we coIIecte?g;JI more than 80% of the nodes each need to know fewer

the information about the search time and search overhedf" 10 other nodes. This overhead is considered small; it is

In the following section, for the sake of convenience, we ust]ha' lot smlallerhtlh(re] or\]/erheadbln n}any existing DHT(;ba_sed
the “present tense” instead of “past tense” in discussing t niques, in which the number of contacts per node is at

results east the number of dimensions. In many applications, the
' dimensionality could be more than 100. The Zigzag hierarchy

A. Node Overhead is therefore highly efficient.

To assess the efficiency of the Zigzag hierarchy, we compute o

the number of links (i.e., degree) of each node and the contBctIndex Migration Overhead

list (i.e., number of neighbors that each node needs to keeue to the dynamics of the network, clusters may be split
track of in order to maintain the hierarchy structure of ther merged to satisfy the cluster-size bounds, and so indices
network). A node should have a small degree to limit theay have to be moved between nodes. One goal of EZSearch
search traffic passing through it. A node should also haveisato keep the overhead of index migration low. During the
short contact list so it does not have to check the existencehiérarchy construction phase, there are almost 2000 cluster
too many nodes; hence, less communication involved. splits and mergers. Figure 6 and Figure 7 plot the number of

3D: Index Load per Cluster Distribution Percentage of nodes visited

100 0.25
90
e
80 0.2
70 — /
60 | 0.15 ——3D
50 et Ll], ./ e 6D
40 0.1 — ——9D
30 //
20 I t r 1 | T I | | || 3Rl 0.05
10 ' I
0 0 T T T
1 89 177 265 353 441 529 617 705 793 881 969 1057 1145 0.05 0.1 0.15 0.2
Layer-0 Cluster ID Range volume

Fig. 8. 3-dimension: The distribution of indices over all layer-0 clustersFig. 10. Effect of volume on range queries: Percentage of the network nodes
that are visited during each range search

9D: Index Load per Cluster Distribution
Percentage of nodes visited

90
80 4 0.25
70 4 ‘
60 0.2 1
50
| “ | il | | ‘ ‘ | ! ——0.05

0 ‘M Ty it \““ AR W “‘\‘ il “ | “H il 0.15 - o
30 I ‘ i i ‘ ‘ “ ‘ ‘ | 014 o
20 “ ‘ ‘ : ——0.2
10 0.05 -

0

1 87 173 259 345 431 517 603 689 775 861 947 1033 1119 0 . .
Layer-0 Cluster ID 3D 6D 9D

Data Dimensionality

Fig. 9. 9-dimension: The distribution of indices over all layer-0 clusters
Fig. 11. Effect of dimensionality on range queries: Percentage of the network
nodes that are visited during each range search

indices moved after each cluster split/merger for two cases:

3-D and 9-D, respectively. In both cases, each cluster split

or merger causes 30 moved indices on average. When EheSearch Efficiency

network is growing larger, some splits and mergers result
in more indices moved but never more than 92 migrationﬂ

(out of 45,000 indices in the network). Also, many splits aln%nd 100% recall). To measure search efficiency, we record the

mergers result in just a few index migrations (less than 2 umber of nodes visited by each query. Figure 10 and Figure

Therefore, EZSearch addresses the network dynamics vi by : .
. . . show the percentage of this number to the network size for
well, even when we increase the dimension from 3-D to 9-

D. This study substantiates our use of the Zigzag hierarchy he cases of range queries and kNN, respectively. There are
. e o . . . queries for each case (range query or kNN) and the result

a highly efficient communication architecture for information . ' !
plotted in the figures is the average value over all these 100

In our evaluation study, EZSearch always attempts to return
the objects that satisfy each query (i.e., 100% precision

retrieval.)
queries.
1) Range QueriesAs expected, more nodes are visited if
C. Index Storage Overhead we increase either the range of the query or the dimensionality

Load balancing is desirable in any distributed system. It &f the data space. This is a common problem in all multi-
achieved in EZSearch as illustrated in Figure 8 and Figure @mensional search techniques. However, EZSearch provides
These two figures plot the number of indices stored at eaghite good results. When the query asks for 5% of the entire
layer-0 cluster for 3-D and 9-D, respectively. In both casedata space, it visits only 5% of all the nodes in the network
the head of each cluster at layer-0 stores about 40 indices aviten the data dimensionality is 3, and only 18% when the
never more than 90 indices. This is a tiny storage overheadlimensionality is 9. When the query asks for 20% of the data
we consider the fact that there are more than 45,000 objectspace, only 12% of the node is visited in the 3-D case and 22%
the network. Similar to the study of index migration overheadh the 9-D case. This study illustrates that the search efficiency
increasing the dimensionality does not affect the index loadecreases only linearly with the dimensionality and the query
balancing and small-overhead properties. range, rather than exponentially as in many other search

Percentage of nodes visited Search time (second)

0.6 25
e T 20
04
——3D 15 ——3D

0.3 - —=—6D —=—6D

//‘ —«9D 10 4 —«9D
02

0.1

5NN 10NN 15NN 20NN 0.05 0.1 0.15 0.2
kNN scope Range volume

Fig. 12. Effect of k on KNN queries: Percentage of the network nodes thaFig. 14. Effect of volume on range queries: Search time for each query
are visited during each range search

Search time (second)
Percentage of nodes visited

0.6 14 A
05 1 12 <~
10 —+—3D

0.4 1

8 A —=6D
0.3 1 6 - ——9D
0.2 4 44

2 4
0.1 1

0 T T T

0 T T 5NN 10NN 15NN 20NN
3D 6D 9D kNN scope

Data Dimensionality

Fig. 15. Effect of k on KNN queries: Search time for each query
Fig. 13. Effect of dimensionality on kNN queries: Percentage of the network
nodes that are visited during each range search
distributed setup because communication time is not included.

) ,) . However, in a real-world setup, we expect the communication
techniques that suffer the curse of dimensionality problem.time to be small because of the short routing path between

2) KNN queries: The curse of dimensionality does nofyery two nodes. Also, studying the relative differences be-

seem to be a severe problem either for kNN queries gGeen search times may be meaningful for implying the effect
illustrated by Figure 12. When the dimensionality is low (3¢ dimensionality and query range.

D), the searcrtl) for kNN queries is quite efficient. A SNN query gimjjar to the case of search overhead, increasing the range
visits 0”0|y 20% of the nodes while a 20NN query Visits |es§t the query also increases the search time because we search
than 30% of the nodes. When the dimension is 9, a 20Nl more objects (see Figure 14 for range queries and Figure
query visits approximately a half of the network. This is no{5 for kNN queries). However, it is noted that increasing
as desirable as we want. This is probably because we ysg gimensionality plays only a small impact on the search
simplified aIgont_hms for cluster split _and merging (s_ee Sectl_qnne (see Figure 16 for range queries and Figure 17 for kNN
II-D.1 and Section 11I-D.2). Enhancing these algorithms will jeries). This is a desirable property that shows the robustness

certainly improve the efficiency of the search in general anf} £zsearch under the effect of dimensionality and query
especially for KNN queries in high-dimensionality. range.

E. Search Time F. Comparison with DPTree

To measure search time, we record the time it takes toTo the best of our knowledge, the hierarchical P2P search
process each query from the time it is posted until when @pproach most related to EZSearch is DPTree [8]. While
the results are returned. The search time is averaged overEalSearch uses Zigzag, DPTree uses Skipnet [7] as the com-
100 queries for each type. Our simulation is run on a Hfunication overlay and an R-tree-like balanced tree as the
Worsktation 6200 Intel Pentium 4 3Ghz CPU 1GB DRAMndexing architecture, mapping each node of the overlay to a
with Debian Linux. The simulation is centralized and théranch of the index tree. A nice property of DPTree is load
absolute search time does not reflect the true search time inadancing; however, it is a complex structure with many details

25

Search time (second)

20 1
; / —+-0.05
5 i —=—0.1
.1
10 — ——0.15
— ——0.2
54 P/a/'
0 T
3D 6D 9D

Data Dimensionality

10

overhead reasonably small and is scalable with the query range
and data dimensionality.

EZSearch can be enhanced in several ways. For example,
since EZSearch is a hierarchical approach, high-layer nodes
likely have to process more query load the low-layer nodes.
EZSearch can be extended with a role-switch algorithm that
switches the positions of high-layer nodes with low-layer
nodes to achieve better fairness. Or, better algorithms for
cluster split and merge events may be devised to improve
the effectiveness of EZSearch’s handling kNN queries in high
dimensionality. We would also like to compare EZSearch with
other hierarchical techniques such as DPTree [8] with real data
traces.

Fig. 16. Effect of dimensionality on range queries: Search time for each ACKNOWLEDGEMENT
query The authors would like to thank the US National Science
Foundation for sponsoring this research (Grant CNS-0615055,
PI: D. A. Tran). We are also thankful to the reviewers for their
Search time (second) valuable comments on our work.
16 REFERENCES
14
12 [1] F. Banaei-Kashani and C. Shahabi, “SWAM: A family of access
methods for similarity-search in peer-to-peer data networks AGM
—— 5NN . .
10 e 10NN International Conference on Information and Knowledge Management
8 —— 15N Washington, DC, November 2004.
s / 20NN [2] J. L. Bentley, “Multidimensional binary search trees used for associative
4 / - searching,"Communications of the ACMol. 18, no. 9, pp. 509-517,
L 1975.
2 - [3] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
0 ‘ scalable multi-attribute range queries,” ACM SIGCOMM Portland,
3D 6D oD OR, August—September 2004.
Data Dimensionality [4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” IACM SIGCOMM
Karlsruhe, Germany, 2003.
. . . .)) [5] P. B. Godfrey, S. Shenker, , and |. Stoica, “Minimizing churn in
Fig. 17. Effect of dimensionality on kNN queries: Search time for each distributed systems” iI\CM SigcommPisa, Italy, December 2006.
query [6] A.Guttman, “R-trees: A dynamic index structure for spatial searching,”

[71
undisclosed. Its indexing robustness under network dynamics
and its scalability with data dimensionality have yet to be
evaluated. For example, DPTree was evaluated only for (]
dimensions and it remains unclear about the cost of rebuilding
the index tree and migrating indices upon structural changes in
the overlay. Also, DPTree’s effectiveness may vary depending)
on its parameter setting. Therefore, it is difficult for us to
compare EZSearch with DPTree experimentally on a fair basis.
We will nevertheless, in our future work, try to obtain furthef10]
information on DPTree for a meaningful comparison.

[11]
V. CONCLUSIONS

We have presented EZSearch — a system design for multiﬁ'b]
mensional search in P2P networks. The fundamental unique-
ness of EZSearch is its use of the Zigzag hierarchy for connect-
ing the nodes and so EZSearch inherits from Zigzag a higrmg]
efficient foundation for communication purposes. EZSearch
implements an indexing architecture on top of Zigzag. We
have shown that this indexing architecture is robust under t
network dynamics. It distributes the index storage overhead
fairly over the network nodes. Equally importantly, it allows!5!
fast range and kNN query searches with the search path length
logarithmic with the network size. EZSearch keeps the search

in ACM SIGMOD Conference on Management of Dd1384, pp. 47-57.

N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,
“Skipnet: A scalable overlay network with practical locality properties,”
in USENIX Symposium on Internet Technologies and Systgeadtle,
WA, March 2003.

M. Li, W.-C. Lee, and A. Sivasubramaniam, “DPTree: A balanced tree
based indexing framework for peer-to-peer networks,1EEE Inter-
national Conference on Networking ProtocoBoston, MA, November
2006.

M. Li, W.-C. Lee, A. Sivasubramaniam, and D. L. Lee, “A small
world overlay network for semantic based search in p2p systems,” in
IEEE International Conference on Network Protocdberlin, Germany,
October 2004.

A. Mondal, Yilifu, and M. Kitsuregawa, “P2PR-tree: An r-tree-based
spatial index for peer-to-peer environments,I@GDE/EDBT PhD Work-
shop Crete, Greece, 2004.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content addressable network,A@M SIGCOMM San Diego,
CA, August 2001, pp. 161-172.

A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systemsFIio/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), Heidelberg, Germany, November 2001, pp. 329-350.

O. D. Sahin, A. Gulbeden, F. Emekci, D. Agrawal, and A. E. Abbadi,
“PRISM: Indexing multi-dimensional data in p2p networks using ref-
erence vectors,” iMCM Multimedia ConferengeSingapore, November
2005.

@] H. SametFoundations of Multidimensional and Metric Data Structures

Morgan Kaufmann Publishers, 2006.

N. Sarshar, P. O. Boykin, and V. P. Roychowdhury, “Percolation search
in power law networks: Making unstructured peer-to-peer networks
scalable,” inlEEE Conference on P2P Computingurich, Switzerland,
August 2004.

[16]

[17]

(18]

[19]

[20]

[21]

C. Schmidt and M. Parashar, “Flexible information discovery in de-
centralized distributed systems,” IEEE International Symposium on
High-Performance Distributed Computin§eattle, WA, June 2003.

I. Stoica, R. Morris, D. Karger, M. Kaashock, and H. Balakrishman,
“Chord: A scalable peer-to-peer lookup protocol for internet applica-
tions,” in ACM SIGCOMM San Diego, CA, August 2001, pp. 149-160.
C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information retrieval
using self-organizing semantic overlay networks,’A@M SIGCOMM
Karlsruhe, Germany, 2003.

D. A. Tran, “Hierarchical semantic overlay approach to p2p similarity
search,” inUSENIX Annual Technical Conferendenaheim, CA, April
2005.

D. A. Tran, K. Hua, and T. Do, “A peer-to-peer architecture for media
streaming,” IEEE Journal on Selected Areas in Communications —
Special Issue on Advances in Service Overlay Netwods 22, no. 1,
January 2004.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, , and
J. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communicatjons
vol. 22, no. 1, January 2004.

11

