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Network Protocol Designs:
Fast Queuing Policies via Convex Relaxation
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Abstract—With the recent rise of mobile and multimedia
applications, other considerations such as power consumption
and/or Quality of Service (QoS) are becoming increasingly
important factors in designing network protocols. As such, we
present a new framework for designing robust network protocols
under varying network conditions that attempts to integrate
various given objectives while satisfying some pre-specified levels
of Quality of Service. The proposed framework abstracts a
network protocol as a queuing policy, and relies on convex
relaxation methods and the theory of mixing time for finding
the fast queuing policies that drive the distribution of packets in
a queue to a given target stationary distribution. In addition, we
show how to augment the basic proposed framework to obtain
a queuing policy that produces ε-approximation to the target
distribution with faster convergence time which is useful in fast-
changing network conditions. Both theoretical and simulation
results are presented to verify the effectiveness of the proposed
framework.

Index Terms—Quality of service, queuing analysis, optimiza-
tion, convergence, probability distribution.

I. INTRODUCTION

W ITH the recent rise of mobile and multimedia ap-
plications made possible by various wireless network

architectures, other considerations such as power consumption
and/or Quality of Service (QoS), e.g., the requirements on
minimum bandwidth, maximum jitter, delay, or loss, are
becoming increasingly important factors in designing network
protocols. For example, a real-time video conference appli-
cation might employ a real-time video streaming protocol
which is designed with emphasis on packet delay. On the
other hand, a network protocol that consumes less power
is preferable for smart phones. In addition, to be efficient,
today network protocols must cope with the fast-changing
and non-stationary characteristics of wireless channels as well
as fluctuating traffic amount induced by the diversity of
modern applications. Therefore, in this paper, we present a
framework for customized designs of robust network protocols
that achieve various objectives and requirements imposed by
the heterogeneity of applications and hardware architectures
under fast-changing, non-stationary environments.

The proposed framework relies on three components: (1)
the abstraction of a network protocol as a queuing policy in
order to allow for generalization of protocol designs as well as
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tractable analysis using queuing theory; (2) the optimization
formulation, specifically the convex relaxation, that provides
the flexibility in specifying various objectives and constraints
induced by different applications and hardware architectures;
(3) the theory of mixing time that helps design the protocols
to promptly achieve the given objective in order to minimize
the effect of the abrupt changes in the environments.

Network Protocol as Queuing Policy. Many network
simulators such as NS [1] use queue to model a physical
link [2]. Specifically, the packets in transit can be thought
as to be in a ”queue”. The rates at which the packets being
injected to the network by a sender, and being read by a
receiver can be thought as the ”enqueue” and ”dequeue” rates,
respectively. More abstractly, queue is also used to model
higher level network protocols such as TCP. Specifically, TCP
packets that have not been acknowledged can be thought as in
the ”queue” or lost packets. The rates at which TCP packets
being sent and read by the sending and receiving applications
can be thought of as the ”enqueue” and ”dequeue” rates,
respectively. The TCP ACK signals is used to control the
”enqueue” rate while the ”dequeue” often depends on the
receiver’s platform. A queue can also directly model an actual
physical queue residing at a wireless transmitting device such
as Wi-Fi devices. In this case, the rates at which packets being
injected into a physical queue by a sending application and
being successfully sent out of the queue can be thought of
as the ”enqueue” and ”dequeue” rates, respectively which can
be controlled by the application and the MAC protocol. Thus,
understanding the dynamics of packets in queues over time as
a result of employing certain queuing policy/network protocol
enables the system engineers to characterize and to predict
various properties of the data flow such as bandwidth, packet
loss, and delay.

Stationary Distribution. Central to our approach is the
notion of the stationary distribution of packets in the queue
associated with each queuing policy. The stationary distri-
bution is important in characterizing various properties of a
protocol. Stationary distribution can be used to characterize the
traditional QoS metrics such as loss and delay. Also, it is an
important parameter to be optimized for many objectives such
as the average consumption power of the protocol. Therefore,
finding a queuing policy that produces a desired stationary
distribution in the fastest time is one of the main goals of the
paper.

Contribution: Our contributions include a convex opti-
mization framework for providing Quality of Service (QoS)
using a fast queuing policy that achieves a given stationary
distribution. A given stationary distribution allows for a more
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general and precise control of various QoS requirements. In
addition, we show how an even faster queuing policy can be
achieved when the queuing policy only needs to produce a
stationary distribution that is ε-close to the target stationary
distribution using the theory of fast mixing Markov chain
and convex optimization. The fast adaptive queuing policies
are especially useful for applications in fast-changing network
conditions. Finally, we show how the proposed framework can
be applied to optimize for a wide range of objectives beyond
the standard QoS requirements, such as power consumption.

II. RELATED WORK

Network protocols. There exists a vast literature on net-
work protocol designs. Typically, network protocols are de-
signed based on a few principles, and are optimized for
specific situations. Wireless network protocols such as Wi-
Fi protocols are completely different from the network pro-
tocols running on a wired network such as TCP in terms
of operations as well as objectives. There are also protocols
tailored for multimedia transmission applications [3], [4], [5]
where emphasis is on minimizing delay jitter and protocols
for sensing applications with a focus on minimizing power
consumption [6], [7], [8], [9], [10]. All of these protocols
are typically designed to achieve some certain objectives. For
example, TCP attempts to improve the bandwidth efficiency
through congestion control and avoidance mechanisms. While
many protocols are designed to respond quickly to changes
in network conditions, they are often designed in heuristic
ways. This paper provides a flexible framework for designing
network protocols that achieves a wide class of objectives, and
formalizes the notion of a fast response protocol via the notion
of mixing time.

Network protocols for multimedia traffic. Another as-
pect of network protocols/queuing policies design aims at
satisfying a given of QoS as specified by certain multimedia
applications such as audio/video interactive and streaming ap-
plications. The underlying principle for providing QoS under
a limited resource setting is to treat packets differently based
on their priorities. For example, packets of flows of different
priorities are classified and marked at the ingress routers
in the proposed DiffServ architecture [11]. The markings
are then used by the intermediate routers to determine their
forwarding/queuing policies.

The same principle is also applied in local wireless area net-
works (WLAN). Specifically, using the MAC protocol 802.11e
in the Enhanced Distributed Channel Access (EDCA) mode
[12], [13], [14], [15], packets are classified into different types:
Background (AC BK), Best Effort (AC BE), Video (AC VI),
Voice (AC VO). The minimum and maximum contention
window (CWmin, CWmax) and Arbitration Inter-Frame Space
(AIFS) are the primary parameters to control the priorities for
different packet types.

Another approach to provisioning flows of different priori-
ties is to employ multiple physical or virtual queues at a router.
Each queue consists of packets of the same type. A queuing
policy such as simple fair queuing [16] or weighted queuing
[17] is used at each transmission opportunity, to decide which
of the queues whose a packet should be transmitted. Recently,

there is also a number of queuing policies related to our
work, but are designed for different objectives. For example,
a queue can be implemented to give priority to small service
requests in order to reduce the mean queue length [18].
In these types of policies, the optimal one is known as
Shortest-Remaining-Processing-Time [19], [20], which shows
a dramatic improvement in term of the mean response time
[21], [22] [23], [24]. Unlike our work, all the above work do
not study the convergence rate which plays a critical role in
non-stationary environments.

III. PRELIMINARIES

A. Queuing Policy, Stationary Distribution, and QoS

A network protocol is abstracted as a queuing policy which
is governed by a tridiagonal transition probability matrix as
shown in Fig. 1. The dimension N of the matrix represents
the maximum length of the queue. The diagonal, left-of-
diagonal, right-of-diagonal entries in the tridiagonal transition
probability matrix represents the probabilities that the number
of packets in the queue stays the same, decreases by one, or
increases by one, respectively. We first use a simple example
of a discrete-time version of the classical M/M/1/k queuing
model to illustrate the relationship between the stationary
distribution induced by a queuing policy and QoS. Assume
that at the beginning of each time step, exactly one packet
arrives at the queue with probability p = 0.4. Otherwise, with
probability 1 − p = 0.6, no packet arrives during that entire
time step. We note that p captures the current traffic conditions,
i.e., how often packets arrive. Furthermore, a queuing policy
is used such that at the beginning of each time step, exactly
one packet is dequeued with probability q = 0.6. Otherwise,
with probability 1 − q = 0.4, no packet is dequeued during
that entire time step. For simplicity let k = 2 be the maximum
queue size, and a newly arrived packet is dropped if the queue
is full. The dynamic of the number of packets in the queue over
time can be shown to be governed by the following transition
probability matrix:

P =

⎛
⎝ 0.84 0.16 0

0.36 0.48 0.16
0 0.36 0.64

⎞
⎠ ,

where Pij denotes the probability that the queue will have j
packets in the next time step, given that it currently has i pack-
ets with i, j ∈ {0, 1, 2}. As seen, Pij depends on both queuing
policy and traffic characteristics. Now, for each aperiodic and
irreducible P , there exists a unique corresponding stationary
distribution π such that πTP = πT . In this particular case,
π =

(
0.61 0.26 0.12

)T
.

The stationary distribution π characterizes the long term or
stationary probability of the queue occupancy. In this case, out
of all the observed time slots, 61% of time the queue is empty,
27% of the time the queue has exactly one packet, and 12% of
the time the queue has two packets. Knowing the distribution ,
the average queuing delay can be precisely calculated. One can
also immediately bound the probability of dropped packets to
no more than 0.12. In addition, by setting the actual duration
of each time slots appropriately, one can effectively obtain the
desired the bandwidth, similar to the time-scaling techniques
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Fig. 1: Queuing policy can be viewed as a tridiagonal transition probability matrix

currently used in Wi-Fi network (802.11b vs. 802.11g). In
fact, any statistical measure, e.g., moments of any order can
be theoretically calculated for the given stationary distribution
and transition probability matrix.

As discussed, the transition probability matrix P is induced
by both a queuing policy and the traffic conditions which in
turn produces a stationary distribution π. Suppose the QoS
requirements are given in terms of maximum average packet
latency and minimum packet drop rate, then one can find a
stationary distribution π that satisfies such requirements. How-
ever, there are many transition probability matrices P ’s that
produces the same stationary distribution π. For simplicity,
let us assume that the traffic is stationary, then to find the
right desired transition probability matrix or queuing policy
among all the possible queuing polices, further requirements
and criteria on the desired queuing policy are needed. We
discussed these issues below.

Constraints on Queuing Policy. Intuitively, for a high
priority flow π = (1, 0, 0)T seems to be the best stationary
distribution since the queue is always empty. However, this im-
plies that a packet is always dequeued at every time slot. This
policy might not be possible or optimal due to several reasons.
For example, let us consider a wireless network consisting
of multiple nodes. First, if an application does not require
much throughput, then sending packets all the time consumes
more power than necessary. Second, if every node in the
wireless network implements the same greedy queuing policy,
then collisions will happen constantly, resulting in low overall
throughput. Thus, the transition probability matrix must be
selected from a pre-specified class of transition probability
matrices that gives rise to reasonable queuing policies for the
given settings. These types of constraints is an input to our
optimization framework.

Fastest Queuing Policy. The theory of Markov chain shows
that if we apply the same queuing policy over many time
steps, the distribution of packets in the queue will converge to
a unique stationary distribution corresponding to a stochastic,
aperiodic and irreducible matrix P . Formally, let ν be any
initial distribution of packets in the queue, then

lim
n→∞ νTPn = πT , (1)

where n is the number of time steps. As seen, π can be
obtained approximately using the same queuing policy after
some sufficiently large number of time steps. Among all the
P that have the same π, we want the queuing policy that
drives the distribution of packets in the queue to the desired
stationary distribution at the fastest rate. This is especially
useful when the network conditions change and thus fast
adapting queuing policy is preferable.

That said, our approach to network protocol design is based
on (1) stationary distribution and (2) constraint on queuing
policies rather the classic approach to protocol design based
on packet loss and congestion control. In addition, we do not
know whether the network conditions will change significantly
in the next second or not, so our approach is to find the
protocol that achieves a pre-specified objective as quickly as
possible, given the current conditions.

B. Mixing Time and Spectral Gap

In order to quantify ”fast” queuing policy, we first define
a similarity measure between two distributions. One common
similarity measure is the total variance distance defined below:

Definition 1 (Total variation distance): For any two proba-
bility distributions ν and π on a finite state space Ω, we define
the total variation distance as:

‖ν − π‖TV =
1

2

∑
i∈Ω

|ν(i)− π(i)| .

We now use the similarity measure to define an important
notion called mixing time below:

Definition 2 (Mixing time): For a discrete, aperiodic and
irreducible Markov chain with transition probability P and
stationary distribution π, given an ε > 0, the mixing time
tmix(ε) is defined as

tmix(ε) = inf
{
n : ‖νTPn − πT ‖TV ≤ ε, for all

probability distributions ν} .
Essentially, the mixing time of a discrete time Markov chain
is the minimum number of time step n until the total variance
distance between the n-step distribution and the stationary
distribution is less than ε. We will use the mixing time to
characterize the convergence rate of a queuing policy. One of
the successful techniques for bounding the mixing time of a
stochastic matrix is via its spectral characterization, i.e., its
eigenvalues.
Eigenvalues and Eigenvectors. A non-zero vector vi is called
a right (left) eigenvector of a square matrix P if there is
a scalar λi such that: Pvi = λivi or (vTi P = λvTi ). The
scalar λi is said to be an eigenvalue of P . If P is a stochastic
matrix, then |λi| ≤ 1, ∀i. Denote the set of eigenvalues in
non-increasing order:

1 = λ1(P ) ≥ λ2(P ) ≥ · · · ≥ λ|Ω|(P ) ≥ −1.

Definition 3 (Second largest eigenvalue modulus): The
second largest eigenvalue modulus (SLEM) of a matrix P is
defined as:

μ(P ) = max
i=2,...,|Ω|

|λi(P )| = max{λ2(P ),−λ|Ω|(P )}. (2)
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We also use the reversibility property of Markov chain
defined as follows:

Definition 4 (Reversible Markov Chain): A discrete
Markov chain with a transition probability P is said to be
reversible if

Pijπ(i) = Pjiπ(j). (3)

Proposition 1: For any discrete-time Markov chain with
tridiagonal stochastic transition matrix, the chain is reversible.

Proof: See [25].
We now show an important bound that relates the mixing

time of the Markov chain to the SLEM of a reversible matrix
P .

Theorem 1 (Bound on mixing time): [25] Let P be the
transition matrix of a reversible, irreducible and aperiodic
Markov chain with state space Ω, and let πmin := min

x∈Ω
π(x).

Then
tmix(ε) ≤ 1

1− μ(P )
log

( 1

επmin

)
. (4)

From Theorem 1, the error ε reduces over time at a rate of

no greater than
e−(1−μ(P ))t

πmin
. Thus, finding the matrix P with

minimum μ(P ) would result in the fastest convergence rate
which will be the topic in the next section.

IV. ROBUST QUEUING POLICIES/NETWORK PROTOCOLS

VIA CONVEX RELAXATION OPTIMIZATION

In this section, we present a number of convex relaxation
optimization formulations for finding tridiagonal transition
probability matrix with fast mixing rate that achieves a given
target stationary distribution. Based on this, we present an
augmented framework for finding fast queuing policies that
are optimized any convex objective in stationary distribution.

A. Fast Mixing Tridiagonal Matrix for a Given Stationary
Distribution

We assume that a stationary distribution is given. The goal
is to find a tridiagonal transition probability matrix with the
fastest mixing rate. It was shown in [26] that

μ(P ) = ||D1/2
π PD−1/2

π −√
π(
√
π)T ||2, (5)

where π denotes the stationary distribution of P , Dπ denotes
the square diagonal matrix whose diagonal entries are taken
from each elements of π, and ||.|| denote l2-induced matrix
norm. In (5), P must be reversible. Furthermore, μ(P ) is a
convex function in P with the following definition.

Definition 5 (Convex function): A function f : Rn → R is
said to be convex if

f(αx+ βy) ≤ αf(x) + βf(y)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥
0, β ≥ 0.

Our first convex optimization is: given a target stationary
distribution, design the fastest chain with transition matrix
(P ) that drives the chain from any initial distribution to the
target stationary distribution. We consider the fast chain is the
one with the maximum ”mixing rate” μ(P ), rather than the
”mixing time” tmix(ε). This is due to the fact that we cannot

order functions tmix(ε) by their values. On the other hand,
it is straightforward to order the functions via their highest
exponents or mixing rates μ(P ). This problem of finding the
chain with fastest mixing rate was first formulated broadly in
[26] as:

Problem 1 - FMMC (Fastest Mixing Markov Chain).

MinimizeP ||D1/2
π∗ PD

−1/2
π∗ −√

π∗(
√
π∗)T ||2

Subject to :

⎧⎨
⎩

P1 = 1

Dπ∗P = PTDπ∗

other convex constraints on P.

(6)

The objective function is SLEM. The first constraint ensures P
is a stochastic matrix. The second constraint is for reversibility.
The third constraint is imposed by limitations of certain
settings of the chain. The solution of the problem (if exists) is a
transition matrix Popt which has the smallest SLEM, resulting
fastest convergence time to the given target distribution π∗.
However, these constraints, especially the third constraint, can
be restricted that given a stationary distribution π∗, there might
not be a P that simultaneously satisfies all the constraints
and produces the desired stationary distribution. For example,
consider a queuing policy, if one restricts the queuing policy
to always send packets at some constant rate (q) regardless of
how many packets in the queue, then there is less flexibility
in producing the desired π∗. In addition, in many settings,
finding a queuing policy that produces a stationary distribution
that is within some small ε of the target stationary distribution,
but has faster convergence time might be preferable. This is
especially useful when network conditions change quickly.
Based on this, we propose the following optimization problem
(P2):

Problem 2.

MinimizeP,π ||D1/2
π PD−1/2

π −√
π(
√
π)T ||2

Subject to :

⎧⎪⎪⎨
⎪⎪⎩

P1 = 1
||π∗ − π||2 ≤ ε

DπP = PTDπ

Other convex constraints on P.

(7)

The optimization variables in (P2) are both P and π. Unfortu-
nately, (P2) is non-convex in P and π. Therefore, we propose
the following convex problem (P3) to find an approximate
solution for (P2).

Problem 3 - EFMMC (Extended Fastest Mixing Markov
Chain).

MinimizeP ||D1/2
π∗ PD

−1/2
π∗ −√

π∗(
√
π∗)T ||2

Subject to :

⎧⎪⎪⎨
⎪⎪⎩

P1 = 1

||π∗TP − π∗T ||2 ≤ δ
P is reversible.
Other convex constraints on P.

(8)

Unlike (P2), P is the only optimization variable in (P3). As a
result, Problem (P3) is now convex. Note that the constraint
DP = PTD in Problem 1 is convex for a given π. However,
when π is another optimization variable as in the Problem
3, the constraint DP = PTD is not convex in P and π.
Therefore, we cannot directly use DP = PTD for Problem
3. Instead, one can specify the reversibility by other means
without involving π explicitly. For example, Proposition 1
shows that any tridiagonal matrix is reversible. Thus, we
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can enforce the tridiagonal structure directly as Pij = 0 for
|i − j| > 2. These constraints are convex in P . In general,
there might be other forms of P beyond tridiagonal that are
reversible.

We note that there should likely exist a matrix P for which
πTP = πT as there are 2|Ω| equations (including stochastic
transition requirement) with |Ω|2 variables (entries) in P .
However, one can imagine that the constraints on P imposed
by a system can be so restrictive, e.g., a queuing policy cannot
send above certain rate and cannot reduce the incoming rate.
Then there isn’t a solution that satisfies the requirement, e.g.,
very small average packet loss rate. To make sure that there
exists a solution P , one might need to solve these equations
and constraints. We do not know an analytic way to do so. On
the other hand, from an algorithmic viewpoint, if there does
not exist a solution, most convex solvers will return infeasible
result after many iterations. In such cases, one can enlarge
the feasible region by increasing ε that controls the difference
between the target π∗ and a feasible π.

One issue to consider is how to pick δ in the constraint
||π∗TP − π∗T ||2 ≤ δ, so that the solution to (P3) satisfies
all the constraints in (P2). Specifically, we want to determine
the bound on the value of δ to guarantee that the constraint
||π∗ − π||2 ≤ ε in (P2) is satisfied. We have the following
propositions.

Proposition 2: For any irreducible aperiodic reversible P ,
we have:

||π∗ − π||2 ≤ π
1/2
max

π
1/2
min

||π∗TP − π∗T ||2
1− λ2

. (9)

Proof: See Appendix.
From Proposition 2, it is straightforward to see that if we

pick δ ≤ ε

√
πmin

πmax
(1−λ2), then ||π∗−π||2 ≤ ε. On the other

hand, we cannot possibly know πmin, πmax, and λ2 without
knowing P first. However, one often can find some upper and
lower bounds on these quantities based on the structure of the
class of the transition matrices. For example, one can bound λ2

via the conductance obtained by examining the corresponding
graph G(V,E) [27].

So far the proposed framework is applicable for a general
class of reversible matrices. Now we show the results appli-
cable to tridiagonal matrices, i.e., queuing policies. We have
the following results.

Proposition 3: Let P be a tridiagonal matrix with α ≤
Pij ≤ β; (0 < α < β < 1) for all (i, j) in the off-diagonal
line, we have ⎧⎪⎨

⎪⎩
πmin ≥ α|Ω|−1

πmax ≤ β

λ2 ≤ 1− 2α2|Ω|

From the queuing policy’s perspective , the values of α and
β can model the system limitations on maximum sending and
receiving rates under certain traffic conditions due to power
consumption or other constraints.

Proof: See Appendix.
Using Proposition 3, the following corollary is obtained for

selecting the right δ based on ε.

Corollary 2: For the class of tridiagonal matrices defined

in Proposition 3, pick δ = ε
2α(5|Ω|−1)/2

β1/2
we will guarantee

that
||π∗ − π||2 ≤ ε. (10)

We are ready to show the main result on bounding the optimal
objective value of problem (P2) with that of problem (P3).
Now, we have the following proposition:

Proposition 4: Let the μ2 and μ3 be the optimal objective
values of problems (P2) and (P3), respectively. Let Δ =

ε√
π∗
min

. π∗
min and π∗

max denote the maximum and minimum

entries in π∗, respectively. Then,

|μ2 − μ3| ≤ C, (11)

where

C =
Δ(2

√
π∗
min −Δ)

(
√
π∗
min −Δ)2

+ (
√

π∗
max + 2Δ)

Δ2

π∗
min

3/2

+ |Ω|Δ(2
√
π∗
max + 3Δ) (12)

Proof: See Appendix.
Proposition 4 provides both upper and lower bounds on

using solution to (P3) as an approximate solution for (P2).
Therefore, we can use (P3) to obtain a solution matrix P
whose stationary distribution is ε-close to stationary π, and
has faster mixing rate than that of (P1).

B. Algorithmic Solution to Proposed Framework

The proposed FMMC and EFMMC formulations are convex
optimization problems for which there are various well-known
algorithms to find the solutions. One such algorithm is the
Gradient algorithm in which, the search direction follows the
gradient direction at the current point. This method assumes
that the gradient can be computed efficiently. For many prob-
lems, it is difficult to compute the gradient especially when the
objective function has no derivatives at some point. Instead,
another well-known algorithm called Subgradient [28] is often
used. Using the Subgradient algorithm, the search direction
follows the ”negative” subgradient direction rather than the
gradient direction. The assumption is that the subgradient, to
be defined shortly, can be efficiently computed. Our algorithm
is based on the subgradient method due to the difficulty of
computing the gradient.

The general definition of subgradient is defined in [28].
Here we define the subgradient of μ(P ) for a symmetric
matrix P .

Definition 6 (Subgradient of the SLEM): A subgradient of
μ(P ) is a symmetric matrix G that satisfies the inequality

μ(P̃ ) ≥ μ(P ) +Tr G(P̃ − P ) = μ(P ) +
∑
i,j

Gij(P̃ij − Pij)

(13)
for any symmetric matrix P̃ .

Proposition 5 (Subgradient via eigenvector): Suppose P is
a symmetric matrix and y is the unit eigenvector associated
with λmax(P ). Then the matrix G = yyT is a subgradient of
λmax(P ).

Proof: See Appendix.
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Now, since P is reversible but not necessarily symmetric in
our problem, we transform a reversible matrix P to the matrix
A = D1/2

π PD−1/2
π − √

π(
√
π)T . It can be shown that A is

symmetric and λmax(A) = μ(P ) [25, Section 12.1]. We now
can perform all the computations using the symmetric matrix
A and the subgradient yyT where y is the unit eigenvector
associated with λmax(A).

Given the subgradient, we can use the standard projected
subgradient algorithm given below: In Algorithm 1, αk is

Algorithm 1 Projected subgradient method

1: Start with a feasible matrix P0 and k := 0
2: repeat
3: Find eigenvector y of Pk then compute k := k + 1

and Gk = yyT .
4: Let P̃k := Pk − αkG

k/||Gk|| where stepsize αk

satisfies: αk ≥ 0, αk → 0,
∑
k

αk = ∞.

5: Project P̃ into the feasible set to get Pk+1 by solving
the following problem:

minimize ||P − P̃k|| subject to constraints on P (14)

6: until ||Pk+1 − Pk|| ≤ ε

the step size to control the search distance from one iteration
to the next. Because the search can go out of the feasible
region (i.e., violates the constraint), it is necessary to project
the current location back into the feasible set. Step 5 in the
algorithm ensures this by finding a point P the feasible set that
is close to P̃ . Also step 5 is another optimization problem,
but is a well-known convex quadratic problem, and can be
solved efficiently using convex solvers such as cvx [29]. The
constraints for matrix P is different for each problem (see (6)
and (8) for FMMC and EFMMC frameworks, respectively).
In fact, the results in section V were obtained with the help
of cvx.

C. Finding Fast Queuing Policies Optimized For A Given
Objective Function

1) Finding feasible queuing policy: Our discussion thus far
has been on finding the tridiagonal transition probability ma-
trix P with fast mixing rate. However, a tridiagonal transition
probability matrix might not produce a valid queuing policy,
i.e., produce a feasible way for controlling the enqueue and
dequeue rates. Let us consider the following scenario in which
the arrival and departure rates at the queue can be controlled
by a queuing policy. As a result, the probabilities of a packet
arriving and departing at the queue when the queue length
is i, are ai and si, respectively. We assume a discrete-time
queuing system in which packets can only arrive and depart
at the beginning of each time slot.

Let us denote:

• |Ω|: Maximum queue length.
• s = (s0, . . . , s|Ω|) where s0 = 0: Departing probability

vector.
• a = (a0, . . . , a|Ω|) where a|Ω| = 0: Arrival probability

vector.
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Fig. 2: Tangent at x0 = 0.3 of the function
f(x) = (1−√

x)2

Then the dynamics of the number of packets in a queue
over time is governed by a discrete Markov chain with the
transition probability matrix below:

Q =

⎛
⎜⎜⎜⎜⎜⎝

1 − a0 a0
s1(1 − a1) 1 − s1 − a1 + 2s1a1 (1 − s1)a1

.
.
.

.
.
.

.
.
.

s|Ω| 1 − s|Ω|

⎞
⎟⎟⎟⎟⎟⎠

. (15)

Note that for non-zero entries of each row, the left, middle,
and right entries denote the probabilities that the number of
packets in the queue decreases by one, stays the same, or
increases by one, respectively. Now, let us compare the above
matrix Q to the matrix P which is the solution obtained from
the problem (P1) or (P3) above. In general, P is a tridiagonal
matrix with the entries: ri, qi, pi.

P =

⎛
⎜⎜⎜⎝
r0 p0
q1 r1 p1

. . .
. . .

. . .
q|Ω| r|Ω|

⎞
⎟⎟⎟⎠ . (16)

The main challenge is how to find the corresponding si and
ai, i.e., enqueue and dequeue rates for given ri, qi, pi. It is
possible that si and ai might be negative or complex numbers
which cannot be used in a feasible queuing policy. However,
we can determine the conditions on qi and pi for which there
exist real and non-negative solutions for si and ai, leading to
a feasible queuing policy. We proceed to derive the conditions
as follows.

From (15) and (16), we need to solve these following
equations:{

si(1− ai) = qi → ai = 1− qi/si
(1− si)ai = pi → ai = pi/(1− si)

⇐⇒ 1− qi/si = pi/(1− si) for i = 1, . . . , |Ω| − 1

⇐⇒ (1 − si)si = (1− si)qi + sipi for i = 1, . . . , |Ω| − 1

⇐⇒ s2i−si(1+qi−pi)+qi = 0 for i = 1, . . . , |Ω|−1. (17)

Let us denote s′i and s′′i as two roots of (17), we have:{
s′i + s′′i = 1 + qi − pi
s′is

′′
i = qi.
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Since qi, pi ∈ (0, 1) for i = 1, . . . ,Ω− 1, if (s′i, s
′′
i ) are real,

at least one of s′i or s′′i will be in the range of (0, 1) which
satisfies the requirements for departing probability vector s
and arrival probability vector a.

Hence, in order to guarantee the existence of feasible
solution of (17), we need:

Δ = (1 + qi − pi)
2 − 4qi ≥ 0 for i = 1, . . . , |Ω| − 1. (18)

Therefore, we can add these constraints directly to the two
convex formulations above. However, these constraints are not
convex, thus making it hard to solve in general. Therefore, our
approach is to relax (18) by making it a convex constraint as
follows.

(1+qi−pi)
2−4qi ≥ 0 ⇐⇒ 1+qi−pi > 2

√
qi since qi > 0

⇐⇒ (1−√
qi)

2 > pi. (19)

Consider function f(x) = (1 − √
x)2 for x ∈ (0, 1), we can

find an approximate lower bound function f(x) in the form of

tangent y = ax + b where a = f ′(x0) and f ′(x) =
√
x− 1√
x

(See (Fig. 2)).
Hence, (19) is equivalent to the following convex con-

straints:

a(x0)qi + b(x0) > pi for i = 1, . . . , |Ω| − 1. (20)

Now, we can incorporate the constraints in (20) to the (P1)
and (P3) problems and we will guarantee their solutions to be
feasible queuing policies.

2) Procedure for Optimizing a Given Objective via Queuing
Policy: In this section, we describe the procedure of using
our proposed framework to find a fast queuing policy that
minimizes a given convex objective in the stationary distri-
bution while satisfying other standard QoS requirements. Our
approach consists of two steps. In the first step, we find a
stationary distribution π∗ that minimizes a given objective
f(π) subject to all the given constraints. Essentially, this
step translates the QoS requirements into the target stationary
distribution π. In the second step, we substitute π∗ into either
the FMMC or EFMMC framework with the convex constraints
in (20) to find the fastest queuing policy. This fastest queueing
policy is represented by P whose constraints on the entries
reflect the network conditions. We give a specific example
below.

Step 1. Let X be a discrete random variable representing
the number of packets in the queue (X ∈ [0, . . . , L]). Suppose
a video application requires that the queuing delay average
and the second moment must be bounded within a range. For
example, ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
E[X ] =

L∑
x=0

π(x)x < Y 1

E[X2] =
L∑

x=0

π(x)x2 < Y 2.

Furthermore, suppose that there is a cost function c(x)
where x denotes the number of packets in the queue. c(x)
could be any function that might represent energy, resources

that depends on queue occupancy. Now, suppose we want to
minimize the total expected cost

f(π) =

x=L∑
x=0

c(x)π(x).

Note that f(π) is convex in π. Then the optimization
problem can be formulated as follows.

Minimize
x=L∑
x=0

c(x)π(x)

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L∑
x=0

π(x)x < Y 1

L∑
x=0

π(x)x2 < Y 2

L∑
x=0

π(x) = 1

πmin < π(x) ∀x = 0, 1, . . . , L

(21)

Step 2. The solution of (21), i.e., P which gives us the target
stationary distribution π∗ satisfying the QoS requirements and
the given objective. Now, we apply the FMMC and EFMMC
formulations to find tridiagonal matrices with fast mixing
rates. Using P and the method shown in Section IV-C1, we
can find the matrix Q, i.e., the enqueuing and dequeuing rates
as a function of the number of packets in the queue. This will
result in a queuing policy that achieves the target distribution
quickly while satisfying the QoS requirements.

V. PERFORMANCE EVALUATION OF QUEUING POLICY

APPLICATION

In this section, we present the performance evaluation of our
approach using the example above with specific parameters.
We assume the maximum physical queue length L = 9. In
general, the cost function c(x) is to be designed by the system
engineers based the factors in consideration. To be concrete,
we consider the following three basic cases. In case one, the
cost function is assumed to be monotonically decreased with
the queue occupancy. Intuitively, this case might appropriately
model the reduction in the energy consumption with lower
sending rate that leads to larger queue occupancy. Obviously,
using too low a sending rate would save power but might not
satisfy a given QoS requirements. In case two and case three,
the cost is assumed to be a parabolic function of the queue oc-
cupancy. For case two, this cost function might appropriately
model an efficient operating point of a particular hardware
architecture that reduces power consumption (sending rates)
while increasing efficiency by avoiding too much idle time.
For case three, the cost function is approximately reversed of
that in case two. Fig. 3 shows the cost functions for the three
cases with their analytical expressions. The denominator in
each expression is simply a normalization factor. In addition,
the QoS requirements on the means Y 1 and the second
moments Y 2 for these three cases are:
Case 1: {Y 1 = 15;Y 2 = 50; πmin = 0.01}; Case 2: {Y 1 =
5;Y 2 = 15; πmin = 0.01}; Case 3: {Y 1 = 20;Y 2 = 50;
πmin = 0.01}. Using the approximation method for obtaining
a feasible queuing policy in Section IV-C, we choose the
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Fig. 3: Cost functions c(x)
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Fig. 4: Target and resulted stationary distributions
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Fig. 5: Comparison of the convergence times

tangent at x0 = 0.2; we set δ = 0.001 for case 1, δ = 0.005 for
case 2 and δ = 0.0001 for case 3 in the EFMMC framework.

To compare the effectiveness of the proposed framework,
we also consider a straw-man solution which is a queuing
policy in the feasible solution set of the FMMC framework
and called it ’Feasible’ policy. Note that it is difficult to have
a meaningful comparison with other current protocols such
as MAC or TCP since their objectives are quite different.
Furthermore, none of the well-known protocols are optimized
for fast mixing rates.

Fig. 4 shows the shape of the target stationary distribution
π∗ and π as the results of steps one and two in Section IV-C2,

respectively. As seen, π∗ and π are very close indicating a very
good approximation of our approach.

Note that we only show the performance results for three
specific scenarios with three different shapes of the objective
functions as seen in Fig. 4. These scenarios result in three
very different π’s whose masses are concentrated in on the
right (Case 1), in the middle (Case 2), and on both sides
(Case 3). Yet, the approximation for three cases are very good.
In general, our empirical study indicate that the proposed
approximation is often accurate for many typical scenarios.

Next, Fig. 5 shows the convergence rates, i.e., the total
variance distance as function of number of time steps, for
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Fig. 6: Total variation distances as functions of time under changing environments
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Fig. 7: Costs as function of time for different queuing policies under changing environments

FMMC, EFMMC, and Feasible policies in stationary environ-
ments for all three cases. As seen, the EFMMC policy has
the fastest convergence rate as expected while the Feasible
queuing policy has the slowest convergence rate of all. We
also note that FMMC and Feasible policies are able to drive
any initial distribution to the target distribution for a given
sufficient large number of time steps. This is indicated by the
fact the total variance distances of the FMMC and Feasible
policies approach zero with increasing number of time steps.
In contrast, the EFMMC policies fails to do so. Still, the
EFMMC design is preferable in fast-changing environments
as will be discussed shortly.

To illustrate this point, Fig. 6 shows the total variance
distance between the current distributions produced by the
FMMC, EFMMC and the Feasible queuing policies, and the
target stationary distribution in a non-stationary environment.
The non-stationary environment is simulated based on the
bursty traffic Poisson patterns with λ = 30. Specifically, in
addition to the regular traffic, there are 5 bursts of packets
arriving at the queue. On average, the time duration between
these bursts are 30 time slots. One can imagine that this
simulation scenario models a stationary background traffic
with non-stationary burst of packets as often occurred in the
Internet traffic. As shown in Fig. 6, all three curves have
spikes when a burst of packets arrives. This prevents the
current distributions in three cases from approaching the target
stationary distribution (i.e, the curves approaching zero). On
the other hand, the queuing policy based on the EFMMC
framework is better than that of FMMC since it produces as

close as possible to the target distribution quickly.
Next, Fig. 7 shows the current expected cost of the systems

by applying the Feasible queuing policy and also that of
FMMC and EFMMC policies under the same non-stationary
environment in the two cases. It can be seen that the expected
cost induced by the EFMMC policy (the area under the curve)
is the lowest of all and also it approaches the optimum cost
in the fastest time. Hence, the EFMMC policy is the most
efficient in all three cases.

Finally, since Proposition 4 only provides a way to pick
the δ to guarantee an upper bound on the approximation, we
evaluate the approximation empirically. Fig. 8 indicates that
faster convergence rates can be obtained by increasing δ, and
therefore ε. This makes sense since a larger ε implies relaxing
the difference between π and π∗, and thus enlarging the set of
P which results in finding a P with faster convergence rate.

VI. CONCLUSION

In this paper, we introduce a new flexible framework for
designing robust network protocols under varying network
conditions that attempts to integrate various given objectives
while satisfying some pre-specified levels of Quality of Ser-
vice. The proposed framework abstracts a network protocol as
a queuing policy, and relies on the convex relaxation methods
and the theory of mixing time for finding the fast queuing
policies that drive the distribution of packets in a queue to
a given target stationary distribution. In addition, we show
how to augment the basic proposed framework in order to
obtain a queuing policy that produces ε-approximation to the
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Fig. 8: Convergence of EFMMC framework in stationary environment for various values of δ

target distribution with even faster convergence time. This
fast adaptation is especially useful for networking applications
in fast-changing network conditions. Both theoretical and
simulation results are presented to verify the effectiveness of
the proposed framework.

APPENDIX

Proposition 2
Proof: We assume P has n eigenvalues {λ1, λ2, . . . , λn}

and n left eigenvectors {v1, v2, . . . , vn} such that: 1 = λ1 ≥
λ2 ≥ · · · ≥ λn ≥ −1.

Let 〈f, g〉 1
π
:=

∑
i∈Ω

f(i)g(i)

π(i)
denote the inner product with

respect to π(i). Due to the reversibility of P , it can be shown
that the set of eigenvectors {vi} forms an orthonormal basis
with 〈., .〉 1

π
. The eigenvector corresponding to the largest

eigenvalue λ1 = 1 is equal to the stationary distribution:

v1 = π. We have: π∗T − πT =
n∑

i=1

〈π∗ − π, vi〉 1
π
vTi

Since vTi P = λiv
T
i , then (π∗T − πT )(P − I) =

n∑
i=1

(λi − 1)〈π∗ − π, vi〉 1
π
vTi .

Also,

〈π∗ − π, v1〉 1
π
= 〈π∗ − π, π〉 1

π
=

n∑
i=1

(π∗(i)− π(i)) = 0.

Hence,

||π∗T − πT || 1
π
= ||π∗ − π|| 1

π
=

√∑
i=2

〈π∗ − π, vi〉21
π

and

||(π∗T − πT )(P − I)|| 1
π
=

√∑
i=2

(λi − 1)2〈π∗ − π, vi〉21
π

Therefore:

||(π∗T − πT )(P − I)|| 1
π
≥ min

i=2,...,n
|1− λi|||(π∗ − π)|| 1

π

→ ||(π∗T − πT )(P − I)|| 1
π
≥ (1− λ2)||(π∗ − π)|| 1

π

→ ||(π∗TP − π∗T )|| 1
π
≥ (1 − λ2)||(π∗ − π)|| 1

π

Since for any vector x:

||x||2√
πmin

≥ ||x|| 1
π
≥ ||x||2√

πmax

Then we conclude:

||π∗ − π||2 ≤ π
1/2
max

π
1/2
min

||π∗P − π∗||2
1− λ2

Proposition 3
Proof: Since πTP = πT , for any 1 ≤ k ≤ |Ω| we have:

πk =
∑
i

πiPi,k.

Also Pi,k = 0 for |k − i| > 1,

πk = πk−1Pk−1,k + πkPk,k + πk+1Pk,k+1

where P1,0 = 0 and P|Ω|,|Ω|+1 = 0.
Hence for any k,

πk < πk−1 maxPk−1,k + πk maxPk,k + πk + 1maxPk,k+1

→ πk < (πk−1 + πk + πk+1)β < β

since πk−1 + πk + πk+1 < 1

→ πmax < β (22)

We see that P has the form:

P =

⎛
⎜⎜⎜⎜⎝

P1,1 P1,2

P2,1 P2,2 P2,3

. . .
. . .

. . .
P|Ω|−1,|Ω|−2 P|Ω|−1,|Ω|−1 P|Ω|−1,|Ω|

P|Ω|,|Ω|−1 P|Ω|,|Ω|

⎞
⎟⎟⎟⎟⎠

(23)
and P 2 has the form:

P 2 =

⎛
⎜⎝

P
2
1,1 P

2
1,2 P

2
1,3

P
2
2,1 P

2
2,2 P

2
2,3 P

2
2,4

.
.
.

.
.
.

.
.
.

.
.
.

P
2
|Ω|,|Ω|−2 P

2
|Ω|,|Ω|−1 P

2
|Ω|,|Ω|

⎞
⎟⎠

where P 2
i,j are entries of P 2. We see that the non-zero entries

of P 2 has enlarged to one in each row compare to P and these
entries has minimum value equal α2. By induction, P |Ω|−1

would have all non-zero entries and the minimum entry value
of α|Ω|−1.
Since πTP |Ω|−1 = πT , for any 1 ≤ k ≤ |Ω| we have: πk =
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∑
i

πiP
|Ω|−1
i,k where P

|Ω|−1
i,j denote the entry of row i and

column j of matrix P |Ω|−1. Hence,

πk ≥
∑
i

πi minP
|Ω|−1
i,k =

∑
i

πiα
|Ω|−1 = α|Ω|−1

→ πmin ≥ α|Ω|−1 (24)

Let Q(S, SC) =
∑

i∈S;j∈SC

π(i)Pij for any subset S in state

space Ω and Sc is complement set of S. By definition of
Conductance [25], we have: Φ∗ = min{ΦS : S ∈ Ω;π(S) ≤
1/2}, where ΦS =

Q(S, Sc)

π(S)
for any subset S of state space

and π(S) =
∑
i∈S

π(i).

Now, we can have a lower bound on Q(S, SC) for any subset
S:

Q(S, SC) =
∑

i∈S;j∈SC

π(i)Pij

≥ πmin minPij ≥ α|Ω|−1α = α|Ω|. (25)

Hence, Conductance Φ∗ ≥ πminα

1/2
= 2α|Ω|.

Also, for a reversible Markov chain, let γ = 1−λ2 then
Φ2

∗
2

≤
γ ≤ 2Φ∗ where Φ∗ is Conductance of the chain. Therefore,

Φ2
∗
2

≤ γ → γ ≥ 2α2|Ω| → λ2 = 1− γ ≤ 1− 2α2|Ω| (26)

Proposition 4
Proof: Denote a vector s =

√
π∗−√

π then |si| ≤ Δ ∀i ∈
Ω where Δ =

επ√
π∗
min

> 0

Using Taylor series for function f(x) =
1

c+ x
at point

x = 0 in the interval x ∈ (−Δ,Δ), we have:

1√
π∗
i

=
1√

πi + si
=

1√
πi

− 1

πi
si +Ri

where Ri is the Taylor Remainder then |Ri| ≤ 1

π∗
min

3/2
Δ2.

Denote R is a vector whose entries are Ri then{
D

1/2
π∗ = D1/2

π +Ds

D
−1/2
π∗ = D−1/2

π −Ds/π +DR

We also denote:{
A = D

1/2
π∗ PD

−1/2
π∗ −√

π∗(
√
π∗)T → μ3 = ||A||2

B = D1/2
π PD−1/2

π −√
π(
√
π)T → μ2 = ||B||2

(27)

Then we have:

A = (D1/2
π +Ds)P (D−1/2

π −Ds/π +DR)

− (
√
π + s)(

√
π + s)T

= B +DsPD−1/2
π −D1/2

π PDs/π

− DsPDs/π +D1/2
π PDR +DsPDR

− s(
√
π)T −√

πsT − ssT (28)

Since ||P || = 1, using sub-multiplicative property of matrix
norm each element in the right side of (28) (except B) can be
bound as following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

||DsPD−1/2
π || ≤ maxi| si√

πi
| = Δ√

π∗
min −Δ

||D1/2
π PDs/π|| ≤ maxi| si√

πi
| = Δ√

π∗
min −Δ

||DsPDs/π|| ≤ maxi|s
2
i

πi
| = Δ2

(
√
π∗
min −Δ)2

||D1/2
π PDR|| ≤ maxi|√πi||Ri|

→ ||D1/2
π PDR|| ≤ (

√
π∗
max +Δ)

Δ2

π∗
min

3/2

||DsPDR|| ≤ max
i

|si||Ri| = Δ3

π∗
min

3/2

||s(√π)T || ≤ |Ω|max
i

|si(
√
π∗
i − si)|

→ ||s(√π)T || ≤ |Ω|δ(√π∗
max +Δ)

||(√π)sT || ≤ |Ω|max
i

|si(
√
π∗
i − si)|

→ ||(√π)sT || ≤ |Ω|δ(√π∗
max +Δ)

||ssT || ≤ |Ω|max
i

|s2i | = |Ω|Δ2

Sum up all these elements, we now have:

||A−B|| ≤ C =
Δ(2

√
π∗
min −Δ)

(
√

π∗
min −Δ)2

+ (
√

π∗
max + 2Δ)

Δ2

π∗
min

3/2

+ |Ω|Δ(2
√
π∗
max + 3Δ) (29)

Also, |min ||A||−min ||B||| ≤ max ||A−B||. From (27), we
have:

|μ3 − μ2| ≤ C (30)

Proposition 5 The proof can be found in [26, Section 5.1]
Proof: Since P is symmetric and y is a unit eigenvector

associated with λmax(P ), we have λmax(P ) = yTPy and
λmax(P̃ ) ≥ yT P̃ y. From these two equations, we have the
desired inequality:

λmax(P̃ ) ≥ λmax(P ) + yT (P̃ − P )y (31)

= λmax(P ) +
∑
i,j

yiyj(P̃ij − Pij). (32)

Hence, G = yyT is a subgradient of P .
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