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Joint Network Coding and Scheduling for Media
Streaming Over Multiuser Wireless Networks

Dong Nguyen, Thinh Nguyen, Member, IEEE, and Xue Yang

Abstract—We formulate the problem of network-coding (NC)-
based scheduling for media transmission to multiple users over
a wireless-local-area-network-like or WiMAX-like network as a
Markov decision process (MDP). NC is used to minimize the
packet losses that resulted from unreliable wireless channel con-
ditions, whereas the MDP is employed to find the optimal policy
for transmissions of unequally important media packets. Based
on this, a dynamic programming technique is used to give an
optimal transmission policy. However, this dynamic programming
technique quickly leads to computational intractability, even for
scenarios with a moderate number of receivers. To address this
problem, we further propose a simulation-based dynamic pro-
gramming algorithm that has a much lower run time yet empir-
ically converges quickly to the optimal solution.

Index Terms—Markov decision process (MDP), media stream-
ing, network coding (NC), packet scheduling, WiMAX.

I. INTRODUCTION

A LTHOUGH there has been a tremendous growth in mul-
timedia applications over the Internet, the packet loss,

delay, and time-varying bandwidth of the Internet have hindered
many high-quality multimedia applications. These problems
manifest more so in wireless networks, which often exhibit
higher loss rates and lower bandwidth. Many above-network-
layer approaches to multimedia streaming over the Internet
and wireless networks have been proposed to deal with packet
loss, delay, and time-varying bandwidth, ranging from transport
protocols and packet-scheduling algorithms [1], [2] to source
and channel coding techniques [3], [4]. A number of these
techniques are based on the differentiated principle in which
data of various importance levels are treated differently under
resource constraints. Notably, scalable video coding techniques
produce a layered compressed video bit stream that consists of
a base layer and several enhancement layers. The base layer
contributes the most to the visual quality of a video, whereas
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the enhancement layers provide successive quality refinements
[5]. As such, using a scalable video bit stream, the sender is
able to adapt a video bit rate to the current available network
bandwidth by sending the base layer and an appropriate number
of enhancement layers [5], [6].

That said, for a number of video-streaming applications,
their bandwidth requirements are sufficiently small that, even
without employing sophisticated techniques, a few of these ap-
plications can concurrently run over the existing wireless stan-
dards [i.e., IEEE 802.11(b) and (g)]. On the other hand, these
standards may not be able to support multimedia applications
with much larger bandwidth requirements, e.g., high-definition
quality video-streaming applications. In the near future, Inter-
net Protocol television and Video-on-Demand applications will
rely on wireless networks to deliver high-quality video from the
Internet to any TV set or home computer through a wireless
access point or base station. Therefore, it is imperative that
an efficient bandwidth-sharing/competing scheme among the
wireless applications be employed to satisfy the bandwidth and
delay requirements of each application.

Parallel to the advances of wireless technologies is the recent
development of the network coding (NC) paradigm, which
allows a source to efficiently disseminate information to mul-
tiple destinations in a given network topology. In a traditional
forward-and-store network, packets are forwarded hop by hop,
unmodified from the source to the destination. On the other
hand, NC techniques allow an intermediate node to combine
the data from different input links before sending the combined
data on its output links. For many problems such as multicast
and broadcast, using appropriate encoding schemes at each
intermediate nodes (typically linear combination of input data)
can achieve the network capacity. Although the original NC
problem is formulated in the context of a wire-line network,
it has also been used to reduce the energy consumption and
to increase the capacity of wireless ad hoc networks. For
example, in [7], Fragouli et al. provided an overview of NC
and its applications in wireless networks. Wu et al. also showed
how NC can be used to improve the capacity of information
exchange in a wireless ad hoc network [8].

This paper proposes a new NC technique to improve the
overall bandwidth efficiency while optimizing multiple con-
current multimedia applications with heterogeneous require-
ments in a wireless access network. The contributions of this
paper include the following: 1) a framework for increasing
the bandwidth efficiency of broadcast and unicast sessions in
a wireless network based on NC techniques and 2) optimized
scheduling algorithms based on the Markov decision process
(MDP) to maximize the quality of multimedia applications. We
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first provide a few preliminaries for media streaming, MDP,
and NC for wireless networks in Section II. In Section III, we
describe a basic NC-based retransmission scheme that improves
the bandwidth efficiency of broadcast and unicast sessions in a
one-hop wireless network. Next, we present the proposed NC-
based scheduling policy using MDP that optimizes multiple
concurrent flows under bandwidth and delay constraints. In
Section IV, we demonstrate the proposed simulation-based
dynamic algorithm as a viable solution for large MDPs.
Section V shows how our simulation-based algorithm is used
to solve the scheduling problem for the case of erroneous
feedback. Simulation results and discussions are provided
in Section VI. Finally, we conclude with a few remarks in
Section VII.

II. PRELIMINARIES

We first present a brief introduction to multimedia streaming,
MDP, and NC for wireless media transmission.

A. Multimedia Streaming

Many approaches to multimedia streaming have been pro-
posed, ranging from network protocols to source and chan-
nel coding techniques. From the channel coding perspective,
forward-error-correction techniques have been proposed to in-
crease reliability at the expense of bandwidth expansion [3],
[9]–[11]. From the source coding perspective, error-resilient
coding techniques have been explored to allow the quality of
a video to be gracefully degraded in lossy environments [6],
[12], [13]. In addition, layered video-coding techniques have
been proposed to deal with the heterogeneity and time-varying
nature of the Internet by adapting its bit rate to the available
bandwidth [5], [14], [15].

Based on the unequal contributions of different video bits,
the rate-distortion MDP-based optimization approach to packet
scheduling has produced many fruitful results in the past several
years [1], [16], [17]. The main idea of this approach is that,
using the observations at every single step, the scheduling
algorithm chooses the best action to perform (e.g., whether to
send a packet or not and which packet to send) to maximize the
expected video quality under limited network resources. The
optimal sequence of actions during a time duration of interest
is the solution to the MDP problem, which can be efficiently
solved in many settings.

B. MDP

Let us consider a decision maker or a controller who, at
every time step, is in charge of making a decision or choosing
an action, which can influence the evolution of a probabilistic
system. Assuming that the state of the system evolves in dis-
crete time steps, then the goal of the controller is to choose a
sequence of actions that maximizes some cumulative system
performance metrics (rewards) at the end of some finite or
infinite number of time steps. Since the system states and the
performance metrics depend on the chosen action at every time

step, it is wise for the controller to consider the future states
and the associated rewards in the decision-making process at
the present state. Finding the optimal sequence of actions is the
solution to the MDP problem.

An abstract MDP represents a dynamic system and is speci-
fied by a finite set of states S representing the possible states of
the system, a set of control actions A, a transition probability
P , and a reward function r. The transition probability specifies
the dynamics of the system and gives the probability p(s′|s, a)
of transitioning to state s′ after taking action a in state s. The
dynamics are Markovian in the sense that the probability of the
next state s′ depends only on the current state s and action a and
not on any previous history. The reward function assigns a real
number to the current state s and the action a taken in that state
so that r(s, a) represents the immediate reward of being in state
s and taking action a. A policy π is a mapping from states to
actions, which defines a controller that takes actions as specified
by the policy. We assume that time is discrete and that the
control policy selects one action at each time step. Every policy
π is associated with a value function V π such that V π(s) gives
the expected cumulative reward achieved by π when starting in
state s. The solution to an MDP problem is an optimal policy
that maximizes the expected cumulative reward over any finite
or infinite number of time steps.

When an MDP ends in a finite number of time steps N ,
we call it a finite-horizon MDP. Let dt denote a decision rule,
prescribing a procedure for action selection in each state at
a specified time step t. In other words, the decision rules
are functions dt : S → A, which specify the choice of action
when the system occupies state s at time step t. For each
s ∈ S, dt(s) = at ∈ A. A policy π = (d1, d2, d3, . . . , dN ) is a
sequence of actions at every time step.

Let Uπ
t denote the total expected reward obtained by using

policy π from the time t, t + 1, . . . , N − 1. Thus, for t < N ,
we have

Uπ
t (st) = Eπ

st

{
N−1∑
n=t

rn(sn, an) + rN (sN )

}
. (1)

Now, one can compute Uπ
1 (s) using the following recursive

equation:

Uπ
t (st) = rt(st, at) + Eπ

st

{
Uπ

t+1(st+1)
}

= rt(st, at) +
∑
j∈S

p(j|st, at)Uπ
t+1(j). (2)

where p(j|st, at) is the probability of transiting from state st to
state j when taking action at.

Based on (2), it can be shown that the optimal policy π∗ =
(d∗(s1), d∗(s2), . . . , d∗(sN )) can be solved using the backward
induction algorithm (BIA) [18] to produce the maximum final
cumulative reward

π∗ = arg max
a∈A

Eπ
st

{
N−1∑
n=t

rn(an, an) + rN (sN )

}
. (3)
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The BIA
1) t = N , and U ∗

N (sN ) = 0 for all sN ∈ S.
2) Substitute t − 1 for t, and compute U ∗

t (st) for each
st ∈ S by

U ∗
t (st)= max

a∈A

⎧⎨
⎩rt(st, a)+

∑
j∈S

p(j|st, a)U ∗
t+1(j)

⎫⎬
⎭ (4)

d∗(st)= arg max
a∈A

⎧⎨
⎩rt(st, a)+

∑
j∈S

p(j|st, a)U ∗
t+1(j)

⎫⎬
⎭ . (5)

3) If t = 1, stop. Otherwise, return to step 2.

We note that solving a typical MDP problem involves two
tasks: 1) modeling and 2) selection of solution tools. In the
modeling task, a particular real-world problem is translated into
an abstract MDP problem. This involves modeling the states,
the actions, the immediate rewards, the transition probabilities,
and the desired objective.1 This modeling process can be hard
and often requires domain experts. In other cases, accurately
representing the system states may require a large state and
action spaces, making it hard to solve a large MDP in practice.
Thus, approximate algorithms are typically used to solve large
MDP problems in a reasonable amount of time [18], [19].

C. NC for Wireless Media Transmissions

The original NC problem is first studied by Ahlswede et al.
[20], which shows that the throughput of multicast networks
can be significantly improved by appropriate mixing of data
at the intermediate network nodes. Chachulski et al. shows
in a canonical work [21] that NC not only helps improve
the multicast throughput but avoids complicated routing and
scheduling as well, particularly in wireless ad-hoc or sensor
networks. Many other works also exploit these characteristics
of NC [8], [22]–[26]. NC can also be considered as a general
form of erasure-correcting coding [27], [28].

Recently, NC for wireless media transmissions has been
studied [29]–[32]. The main approach of NC for wireless media
transmission is not to network code every packets equally.
Rather, NC is judiciously applied according to media packets
of different importance levels and delay requirements. One
approach is to use the MDP framework, as proposed by Nguyen
et al. [29]. This approach describes a basic MDP framework
for optimizing the video quality, taking into account the packet
importance levels and the constraints on bandwidth and delay.
The solution proposed in [29] is to use the classical BIA, which
does not scale with large MDPs. In this paper, we propose a
heuristic simulation basic dynamic programming algorithm for
solving large MDPs. We also extend the MDP framework in
[29] to consider the case of erroneous feedback, which was
preliminarily studied in [30]. In addition, this paper provides the
following: 1) simulation results for the convergence properties
of the proposed heuristic; 2) more realistic simulation settings;

1The desired objective does not have to be the sum of all the immediate
rewards. A popular reward is the discount reward, where the future reward
weighs less than the current reward.

and 3) a unified view of MDP solutions from its workshop
publications [29], [30].

The most related work to ours is that of Seferoglu et al.
[31] and its extended version in [32]. Both the work in [32]
and ours aim to optimize the video quality via NC techniques.
However, the differences lie in the formulation of the objective
function, the network model, and the solution approach. In
[32], the authors describe three algorithms: 1) Network coding
for video (NCV); 2) NCVD; and 3) network coding rate dis-
tortion optimized (NC-RaDiO). Because NC-RaDiO is built
on NCV and NCVD and is the best of the three, we will
mainly discuss the differences between NC-RaDio and our
work. First, NC-RaDiO explicitly optimizes the rate-distortion
function with the incorporation of NC. The authors consider
only one packet at a time, i.e., the proposed algorithm will
choose the packet that minimizes the rate distortion function.
In a sense, this is a greedy algorithm since it selects the
packet that gives the most value at the present transmission
opportunity without taking into account the future. In contrast,
our MDP formulation is a sequential decision-making process
in which the decision is made at every time step and takes into
consideration the future actions to minimize the expected video
distortion over a finite time horizon (number of transmission
opportunities). In our approach, the rate is implicitly modeled
in the constraint on the number of transmission opportunities.
The second difference between NC-RaDiO and our work is the
network or environmental modeling. RaDiO assumes a more
sophisticated network model based on [10]. Specifically, the
packet loss probability is a function of round trip time (RTT),
which models the queuing delay in a multihop network due to
congestion. For a single-hop wireless network, we argue that
RTT is perhaps less of an indicator for packet loss, particularly,
at the medium access control (MAC) layer, where every suc-
cessfully transmitted MAC packet is accompanied by an ACK
after a prespecified time. For that reason, we assume Bernoulli
trial and Gilbert’s models for packet losses. In addition, note
that NC-RadiO attempts to solve a much harder problem due to
the distributed setting, while our work takes a centralized ap-
proach. Finally, solution approaches taken by RaDiO and ours
are quite different. RaDiO uses continuous optimization via the
Lagrangian method, whereas ours uses discrete optimization
via a combination of dynamic programming and simulation-
based methods, which have been extensively studied in artificial
intelligence and optimization communities [33], [34].

III. WIRELESS STREAMING WITH NETWORK CODING

A. Model and Assumption

We now describe the broadcast and unicast models in wire-
less local area network (WLAN)-like and Worldwide Interop-
erability for Microwave Access (WiMAX)-like networks. We
show how NC and MDP can be used to increase the band-
width efficiency while optimizing the concurrent applications
based on their requirements. In particular, we are interested in
designing a packet-scheduling algorithm running at a WLAN-
like access point (AP) or WiMAX-like broadcast station that
optimizes multiple concurrent wireless applications. Specifi-
cally, we present an optimized packet-scheduling algorithm
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exclusively designed for video broadcast and unicast flows from
the AP to one or more receivers. The objective of the algorithm
is to maximize the visual quality of videos received at the
receivers under certain bandwidth and delay constraints.

We make the following assumptions for our model.
1) There are M receivers R1, R2, . . . , and RM .
2) The AP has a set Ω = {l1, l2, . . . , lK} of K packets to be

delivered to the receivers after some time slots N . In a
broadcast setting, all the receivers request all K packets,
whereas in a unicast setting, each receiver requests a
different subset of Ω. In a semibroadcast setting, there are
two or more receivers requesting the same subset of Ω.

3) There is a limit on the total number of time slots N
used to transmit these K packets. After N time slots,
the AP moves to the next batch of K packets, regardless
of whether all current K packets have been successfully
received at the intended receivers.

4) Any receiver can cache packets transmitted from the AP
to other receivers, even though those packets are not
directly useful to themselves.

5) Data are divided into packets, and each is sent in a time
slot of fixed duration.

6) The AP knows which packet from which receiver is lost.
This can be accomplished through the use of positive or
negative acknowledgments (ACK/NAKs).

7) The distribution of packet loss at a receiver Ri follows the
Bernoulli distribution with parameter pi. One can develop
a more accurate model [35] and [36], although it will
complicate the analysis.

B. Wireless Transmission With NC

Consider a broadcast scenario. Suppose two packets a and
b are broadcast from an AP to two receivers R1 and R2. In
an 802.11x network, if a packet is correctly received, the AP
should receive an ACK within an appropriate amount of time
after the data packet is sent. Otherwise, the data packet is
considered lost and must be retransmitted. Using this scheme,
a packet loss at any receiver will require the AP to retransmit
that packet. If there are two distinct lost packets at two different
receivers, the AP will need at least two retransmissions or a
total of four transmissions to successfully transmit both packets
a and b to receivers R1 and R2, as shown in Fig. 1(a). We now
consider an NC technique that requires only one retransmission
to recover two lost packets at both receivers. Using this NC
scheme, the AP does not immediately retransmit the lost packet
a at R1. Instead, the AP continues to broadcast the next packet
until there is a lost packet b at receiver R2. At this time, the AP
broadcasts the new packet (a ⊕ b) to both receivers. If R1 has
packet b but not a, and R2 has packet a but not b, then both
receivers will be able to reconstruct their missing packets by
simply XOR-ing the packet they have, with the packet (a ⊕ b).
As shown in Fig. 1(b), R1 reconstructs a as b ⊕ (a ⊕ b), and
R2 reconstructs b as a ⊕ (a ⊕ b). Therefore, one retransmission
from the AP will enable both receivers to correctly reconstruct
their lost packets. This coding scheme is also considered as a
class of maximum-distance-separable or digital fountain codes
[37] and, in general, can substantially outperform the traditional

Fig. 1. (a) Traditional wireless transmission requiring a total of four trans-
missions to successfully transmit two packets to two receivers. (b) Wireless
transmission with NC requiring only three transmissions.

retransmission scheme when the loss patterns among many
receivers are uncorrelated.

This NC technique can be readily applied to the unicast
setting. Assume that R1 wants to receive packet a, whereas
R2 wants to receive packet b. Clearly, if R1 is willing to
cache packet b intended for R2 and R2 is willing to cache
packet a intended for R1, then the two unicast sessions are now
equivalent to a single broadcast session in the previous example.

The key to improving bandwidth efficiency is an efficient
generation of XOR packets to enable all the receivers to quickly
recover their lost packets. If the packet loss rate is low, the AP
has fewer opportunities to broadcast the XOR packets of distinct
lost packets at different receivers; thus, there is not much bene-
fits from using NC. In addition, for higher bandwidth efficiency,
longer delay of some packets may be necessary to allow packet
losses to occur at other receivers, leading to more opportunities
for the AP to generate the XOR packets. However, this might
not be acceptable for applications with strict playback deadline.
Thus, the AP must consider the tradeoff between the delay and
the bandwidth efficiency based on the application requirements.

C. Optimal-MDP-Based Packet Scheduling

We discuss the modeling of the set of states S, the set
of actions A, the immediate reward r(st, at), the transition
probabilities P (st+1|st, at), and the cumulative rewards.

Our packet-scheduling algorithm works as follows: At every
time step, the AP sends a packet and waits for an ACK message.
If a receiver receives a packet, an ACK is immediately sent
back, similar to the 802.11x protocol. If no ACK is received
within a specified time frame, the data packet is considered lost.
The AP can then choose to send a new packet, retransmit a lost
packet, or transmit an XOR packet. We now proceed to model
our packet-scheduling algorithm as an MDP of finite horizon
N , where N is the maximum number of allowable time slots to
transmit K packets.

State Representation: At any given time slot, receiver Ri

possesses a subset of packets that belonged to Ω, including
the packets that are intended for other receivers. This subset
can be represented by an K-bit vector as (b1

j , b
2
j , . . . , b

K
j ),

where bi
j ∈ {0, 1}. bi

j = 1 indicates the presence of packet li



1090 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 3, MARCH 2011

at Rj , whereas bi
j = 0 indicates otherwise. Since there are M

receivers, a system configuration or state s can be represented
by an M × K matrix with binary entries as

s =

⎡
⎢⎢⎢⎣

b1
1 b2

1 · · · bK
1

b1
2 b2

2 · · · bK
2

· · · · · · · · · · · ·
b1
M b2

M · · · bK
M

⎤
⎥⎥⎥⎦ . (6)

Thus, there are 2M×K possible states.
Action Representation: At any given time slot, the AP can

perform the following: 1) Broadcast any li ∈ Ω; 2) broadcast
any XOR packet resulting from XOR-ing the distinct lost packets
from different receivers; and 3) broadcast nothing. This implies
that the number of possible actions J at any time step

J = K +
L∑

i=2

(
L

i

)
+ 1 (7)

where L denotes the number of packets that are lost at one or
more receivers. The maximum number of lost packets L is K;
however, this case is extremely rare for a large K.

Transition Probability: Given the Bernoulli model with pa-
rameter pi for packet loss at each receiver Ri, it is straightfor-
ward to compute the transition probability P (st+1 = s′|st =
s, at = a). For example, consider broadcasting two packets to
two receivers, i.e., K = 2, and M = 2. Let us denote

s =
[

1 0
0 1

]
, s′ =

[
1 0
1 1

]
.

Suppose that, at time t, the system is in state s, i.e., R1

has packet l1 and R2 has packet l2; then, choosing action
a = “send l1” in state s will move the system to state s′ with
probability

P (st+1 = s′|st = s, at = a) = 0 (8)

whereas choosing action a′ = “send l2” will move the system
to state s′ with probability

P (st+1 = s′|st = s, at = a′) = 1 − p1. (9)

Reward Modeling: The immediate reward r(s, a) for each
pair of a state and an action must be chosen such that the sum of
these immediate rewards accurately models our objective. Since
our objective is to optimize the quality of multimedia streaming
applications, we model the immediate rewards as the sum of
the reduction in distortion for one or more receivers upon
receiving a particular packet. Thus, maximizing the overall
reward is equivalent to minimizing the overall distortion for
all the receivers’ applications under some bandwidth and delay
constraints. In our setting, we know the explicit reward amount
r(s′, s) when the system moves from state s to state s′. For
example, if state s indicates that a receiver has layers 1 and
2, and state s′ indicates that a receiver has layers 1, 2, and 3,
then moving from state s to state s′ would reward us with an
amount r(s′, s) equal to the distortion reduction contributed by
layer 3. Since we know the transition probability between the

states under an action a, we can compute r(s, a) as the expected
immediate reward by taking action a as

r(s, a) =
∑
j∈S

P (j|s, a)r(j, s). (10)

Example: We now present a simple example showing MDP
formulations for broadcast and unicast settings with two re-
ceivers and two packets. For the state space, there would be
a total of 16 states with each state s represented by

s =
[

b1
1 b2

1

b1
2 b2

2

]
.

As for the action space, at any time step, the AP can perform
one of four actions: 1) send l1; 2) send l2; 3) send l1 ⊕ l2; and
4) send nothing.

As for the transition probabilities, let us denote p1 and p2

as the packet loss probabilities at R1 and R2, respectively.
For each action, there is an associated transition probability
matrix. We show two transition probability matrices due to
taking actions “sending l1” and “sending l1 ⊕ l2,” respectively.
The transition probability matrix for taking actions “sending l2”
and “not sending anything” can be similarly computed.

First, let us consider the transition probability matrix for
taking action “sending l1.” This is shown in Fig. 2(a). An entry
in row i and column j denotes the transition probability from
state i to state j under action “sending l1.” For example, the
probability of transition from state 1 to state 4 when sending
packet l1 is (1 − p1)(1 − p2). The reason is given as follows:
Since state 1 denotes that neither receivers have packets l1 and
state 4 denotes that both receivers have packets l1, to transition
from state 1 to state 4 by sending packet l1, both receivers
must have correctly received l1, and the probability of this
event is equal to (1 − p1)(1 − p2). Similarly, other transition
probabilities for different states can be computed by using the
packet loss probabilities at each receiver.

Let us now consider the transition probability matrix for
taking action “sending l1 ⊕ l2.” This action is interesting as
one transmission by the AP can help two receivers to simulta-
neously recover two distinct lost packets. Consider a transition
from state 10 to state 16 in Fig. 2(b). In state 10, R1 has l2 but
not l1, whereas R2 has l1 but not l2. If the AP sends packet
l1 ⊕ l2 and the packet is successfully received at both receivers,
then both R1 and R2 will now obtain l1 = l2 ⊕ (l1 ⊕ l2) and
l2 = l1 ⊕ (l1 ⊕ l2), respectively. The probability of this event
is then equal to (1 − p1)(1 − p2). Other probability entries can
be calculated in a similar manner.

Now, for each action, there is an associated reward matrix.
Let us denote rij as the immediate reward of Ri upon receiving
packet lj . It can be seen that, for broadcast setting, r11 = r21

and r12 = r22 since both receivers want packets l1 and l2. For
unicast setting, we assume that R1 wants only l1, whereas R2

wants only l2; thus, r12 = 0, and r21 = 0. Given this definition,
we can express the reward matrix for both unicast and broadcast
settings when sending l1, as shown in Fig. 3(a). For example,
the immediate reward when transitioning from state 1 to state 4
under action “sending l1” is r11 + r21. The reason is that the
reward in state 1 is zero, and with a transition to state 4,
both receivers receive l1 and l2. Thus, the immediate reward
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Fig. 2. (a) Transition probability matrix associated with action “sending packet l1.” (b) Transition probability matrix associated with action “sending packet
l1 ⊕ l2.”

Fig. 3. (a) Reward matrix associated with action “sending packet l1.” (b) Reward matrix associated with action “sending packet l1 ⊕ l2.”

should be equal to the sum of the individual rewards. In the
broadcast and unicast settings, this sum is equal to 2r11 and r11,
respectively. Similarly, we can write down the reward matrix for
sending l1 ⊕ l2, as shown in Fig. 3(b).

Remarks on the Modeling Complexity and Computational
Complexity of BIA: For a small number of receivers, we can
use BIA to solve our abstract MDP that corresponds to the
scheduling problem. However, the number of states and actions
can be exponentially large. Specifically, the number of states

is |S| = 2M×K , and the number of actions is |A| = 2K ; both
exponentially increase as the number of receivers increases.
If M = 6 receivers and K = 3 packets, then the number of
states is |S| = 218, and the number of actions is |A| = 23. From
the modeling perspective, BIA requires us to define all state
transition probabilities and reward of all transitions. This is
infeasible with a large number of states and actions. From the
computational perspective, its time complexity of O(N |S|2|A|)
quickly becomes intractable, even for a broadcast session with
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a moderate number of receivers. To tackle those issues, we
propose an algorithm called simulation-based dynamic pro-
gramming (SDP).

IV. SIMULATION-BASED DYNAMIC

PROGRAMMING ALGORITHM

The time complexity of BIA is O(N |S|2|A|), which is
dominated by the number of states |S| = 2M×K . The number of
actions |A| = 2K is also large but much smaller than the num-
ber of states and is manageable for typical scenarios. Therefore,
our goal is to devise an algorithm that reduces the model-
ing complexity and computational complexity. We propose a
dynamic programming algorithm based on simulations. The
intuition for using such an approach is that, for many problems,
going through all the states to determine the optimal actions is
not efficient. Rather, through simulations, only the most likely
states will be explored for determining the optimal action [33],
[38]–[41]. In our paper, we propose a simulation-based method
that combines both the dynamic algorithm and the sampling
method to solve our large MDP. Our method addresses both
the complexity of large state space and modeling process.

A. SDP for Solving a Large MDP

Our proposed SDP algorithm is based on BIA. For a given
state s, the SDP algorithm samples each action a in the action
space A for a number of iterations Ni to compute the average
sampling reward of each tuple (s, a). From those average
sampling rewards, the action for a given state that results in the
largest reward is the best action. The SDP algorithm samples
each action in the action space to determine the next state and
the transition reward. The process runs backward from t = N
to t = 1 similarly as in BIA to find the near optimal policy π∗ =
{d∗(s1), d∗(s2), . . . , d∗(sN )} that produces the maximum final
cumulative reward

π∗ = arg max
a∈A

Eπ
st

{
N−1∑
n=t

rn(sn, an) + rN (sN )

}
. (11)

The SDP algorithm is shown as follows:

The SDP Algorithm
1) Set t = N and U ∗

N (sN ) = 0 for all sN ∈ S.
2) Substitute t − 1 for t, and compute U ∗

t (st) for each st ∈ S
as follows:

• Sample each action a ∈ A for Ni iterations, and
compute the average

Ût(st, a) =
1
Ni

∑
Ni

(
rt(st, a) + U ∗

t+1(j)
)
. (12)

• Find the highest reward

U ∗
t (st) = max

a∈A

{
Ût(st, a)

}
. (13)

• Set

a∗(st) = arg max
a∈A

{
Ût(st, a)

}
. (14)

3) If t = 1, stop. Otherwise, return to step 2.

Fig. 4. Graphical illustration of the SDP algorithm. For each state at stage
i, all actions in the action space are sampled for Ni iterations, and the
mean average reward is computed; the best action is that with the highest
mean average reward. The algorithm computes the reward, following the BIA,
starting from stage N to stage 1.

In Fig. 4, we provide a graphical illustration of the SDP
algorithm.

B. Evaluating the Properties of the SDP Algorithm

We first examine the SDP algorithm to solve our MDP
previously defined. Clearly, how close this policy resulted from
the SDP algorithm to the optimal policy found by BIA depends
on the number of samples per action Ni. If the Markov process
is stationary, then it can be shown that the larger the number
of samples used, the closer the solution to the optimal one.
As Ni goes to infinity, the solution obtained by the algorithm
approaches the optimal policy. As an example, we show the
empirical results of the convergence rate of the SDP algorithm
using a simple setting in which two packets l1 and l2 are broad-
cast to two receivers R1 and R2. Assume that, when a receiver
correctly receives packet l1 or l2, it gets an amount of reward 0.7
or 0.3, respectively. Assume further that l2 depends on l1, i.e.,
l2 is useful only when l1 has been received. The packet error
probabilities p1 = p2 = 0.1. As previously noted, there are 16

different states

[
0 0
0 0

]
,

[
1 0
0 0

]
, . . . , and

[
1 1
1 1

]
and four

different actions a0 = “sending nothing”, a1 = “sending l1”,
a2 = “sending l2”, and a3 = “sending l1 ⊕ l2”. We set the time
horizon to be three time steps.

Convergence: As shown in Fig. 5, we have the transmission
policies resulted by different numbers of samples per action Ni.
In Fig. 5(a1), Ni = 6, and the actions are quite different from
the actions in the optimal policy in Fig. 5(a3). As the number
of samples per action increases to Ni = 25, the resulting policy
becomes closer to the optimal one. Fig. 5(b) shows the conver-
gence rate to the optimal policy in terms of the amount of av-
erage reward per receiver. When increasing the number of sam-
ples per action, the reward value gets close to the optimal value.

Complexity: Our simulation-based algorithm, to some ex-
tent, avoids the well-known modeling complexity in MDP prob-
lems. Specifically, when K and M are large, it is intractable to
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Fig. 5. Convergence property of the SDP algorithm. (a) Transmission policies resulting from different numbers of samples per action Ni (a1: transmission policy
resulting by running six samples per action; a2: transmission policy resulting by running 25 samples per action; a3: optimal policy by BIA). (b) Policy convergence
rate of the SDP algorithm as a function of the samples per action.

explicitly construct the transition probability matrix and transi-
tion reward function. Using the proposed SDP method, these
are implicitly captured. Second, the SDP algorithm reduces
the computational complexity (“the curse of dimensionality”
problem). It can be readily seen that the time complexity for
this algorithm is O(NNi|S‖A|). Because Ni is normally much
smaller than |S|, this time complexity is significantly less than
O(N |S|2|A|) of BIA.

V. SCHEDULING WITH ERRONEOUS FEEDBACK

So far, we assume that the feedbacks from the receivers are
error free. We now examine the case of erroneous feedback.

POMDPs: With error-free feedback, the AP correctly ob-
tains the states of the receivers and views the state transitions
of receivers as a Markov process. With error-prone feedback,
however, the AP views those states as hidden states, i.e.,
partially observable states. The AP gets the observations that
are not the actual states of the receivers. It then has to select
which packet to send, based on these observations to maximize
the sum reward returned at the receivers. This decision-making
problem is called partially observable MDPs (POMDPs)
[41]–[43].

Example: Consider the example in which two packets l1
and l2 are sent to two receivers R1 and R2. Assume that the

beginning actual state is s1 =
[

0 0
0 0

]
and that the AP, at

the beginning, also observes the state as o1 =
[

0 0
0 0

]
. Now,

the AP takes action “sending l1,” and two receivers correctly
receive l1. However, the feedback of the first receiver is er-

roneous, and the AP will get the observation o2 =
[

0 0
1 0

]
.

Similarly, in the next time step, the AP takes action “sending

l2,” which may result in the actual state s3 =
[

1 1
1 1

]
and the

observation o3 =
[

0 0
1 1

]
. As a result, the actual state transi-

tion is s1 → s2 → s3, which is different from the observation
transition o1 → o2 → o3.

Solving POMDP: The formulation and modeling for
POMDP are identical with MDP, except that the state obser-
vations are not the actual states. Specifically, the observations
are defined as

o =

⎡
⎢⎣

ob1
1 ob2

1 · · · obK
1

ob1
2 ob2

2 · · · obK
2

· · ·
ob1

M ob2
M · · · obK

M

⎤
⎥⎦

where entry obi
j = {0, 1} indicates the observation from the AP

on whether the receiver Rj has received packet li or not: obi
j =

1 indicates that the AP observes that Rj has been correctly
received li, and obi

j = 0 indicates otherwise. We note again that,
if the feedback is error free, then the observation completely
describes the state of the receivers, i.e., the observation and the
state are the same (o = s). Because of the erroneous feedback,
however, it partially describes the receivers’ state. The solution
to the POMDP is a policy from time step t = 1 to t = N :
π∗ = {d∗(s1), d∗(s2), . . . , d∗(sN )}, where d∗(st) is a set of
actions at time step t that maximizes the sum reward

π∗ = arg max
a∈A

Eπ
st

{
N−1∑
n=t

rn(on, an) + rN (oN )

}
. (15)

We note that this equation is different from (11) by the
observation on in the equation. This means that the AP relies
on observation o rather than the exact state s as in the MDP
to select the action at each time step. Fortunately, to solve our
POMDP, we can again use the SDP algorithm.
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VI. SIMULATION RESULTS

We present simulation results that demonstrate the advan-
tages of our scheduling algorithm using NC with SDP. Since a
one-hop network is fairly simple, as no routing is necessary, we
implement our own network simulator in C/C++. This gives us
the flexibility to set network parameters and the new scheduling
algorithms, which is harder to do in a sophisticated network
simulator such as NS.

We select K to present the number of video layers in each
frame and N to present the number of time slots available to
transmit these K packets. If the channel is error free, then N <
K indicates the shortage of bandwidth, and N > K indicates
the redundancy of bandwidth to transmit K packets. In our
simulations, we use video frames consisting of three to four
layers, i.e., K = 3 or K = 4, depending on the scenarios. These
values of N and K are chosen based on the coding rates of
certain video sequences in simulations.

The AP has the scalable video sequence Foreman to be sent
to the receivers. Each frame is encoded into four layers l1, l2, l3,
and l4. Each layer is packetized into a packet, resulting to four
packets denoted as packets lF1 , lF2 , lF3 , and lF4 , which correspond
to four layers l1, l2, l3, and l4, respectively. To use NC, packets
must have the same size; therefore, additional padding bits are
inserted into some packets. Associated with each packet is a
reward or a distortion reduction amount in terms of MSE. In
particular, we use the distortion reduction rF

1 = 14.67, rF
2 =

10.60, rF
3 = 6.85, and rF

4 = 5.83, as provided in [5] and [15].
In addition, since each multimedia packet has an associated
playback deadline, our problem is modeled as a finite-horizon
MDP. The objective of the proposed SDP is to maximize the
total distortion reduction over a given time horizon N .

A. Packet Loss Model as Bernoulli Trials

We assume that the packet losses at all the receivers are
independent and follow Bernoulli trials. First, we want to see
how close a solution obtained by SDP is to that with a small
number of receivers. Specifically, we measure the performances
of those algorithms for a broadcast setting in which a Foreman
sequence is broadcast to two receivers R1 and R2. For SDP,
we use 20 and 30 samples per action, K = 3, and N = 5. As
shown in Fig. 6, the NC scheme using BIA gives the optimal
scheduling policy, leading to the largest distortion reduction.
The performance of the NC scheme with SDP gets closer to that
of the NC scheme with BIA as the number of samples increases
from 20 to 30. This is in agreement with the fast convergence
property of SDP discussed earlier.

Now, we consider the scenario with a higher number of
receivers such that it is no longer trivial to write down the
analytical expression of the transition probabilities that enables
us to run the optimal NC-based BIA algorithm. Fortunately,
the simulation-based MDP (SDP) does not need the explicit
representation of the transition probabilities. We show the per-
formance of SDP with two other algorithms: 1) the retransmis-
sion algorithm (ARQ) without NC and 2) the greedy algorithm
with NC.

Retransmission Scheme: The AP sends packets starting from
the packet with the largest distortion reduction to that with

Fig. 6. Average PSNR of video sequences at each receiver versus the packet
loss probabilities for the broadcast setting.

the smallest distortion reduction, i.e., following the order lF1 ,
lF2 , lF3 , and lF4 . Each packet is sent until either it is correctly
received at the intended receiver(s) or the number of transmis-
sions exceeds N . After N time slots, regardless of whether the
AP successfully sends all four packets, it moves to the next four
packets (layers) of the next frame.

Greedy Algorithm With NC Scheme: The scheme selects a
packet or a coded packet to send so that the distortion reduction
is maximized after every immediate transmission. The AP
also maintains the set of actions as in the NC with MDP
scheme. However, at each transmission step, the AP observes
the feedback to determine the receivers’ state and computes the
action that provides the largest reward. Essentially, the greedy
algorithm optimizes the transmission for one time step.

Fig. 7 shows the average distortion reduction as a function
of packet loss probabilities in the broadcast setting for three
schemes. In Fig. 7(a), the packet loss probabilities of all re-
ceivers vary from 5% to 25%, whereas the total number of
transmission opportunities N is kept constant at 5. As seen, the
SDP algorithm performs the best, followed by the greedy algo-
rithm with NC and then the non-NC retransmission algorithm.
For a fixed N = 5, an increase in loss rate results in a decrease
in throughput. With a small delay requirement (N = 5), it is
critical to schedule the packets to maximize the video qualities
at the receivers. When the loss rate is 5% and N = 5, the AP
has many opportunities to successfully transmit all the packets
to receivers, resulting in minimal distortion.

Next, we investigate the performances of these algorithms
when the receivers have different packet loss rates. The packet
loss rates for R2, R3, and R4 are now set to p2 = 0.1, p3 =
0.2, and p4 = 0.3, and the loss rate for R1 is varied from
0.05 to 0.25. N is set to 5. As shown in Fig. 7(b), the SDP
algorithm provides the highest media quality. It is interesting
that the performance gap between the SDP scheme and the
other two schemes becomes larger, compared with the case
where receivers have identical packet loss rates. This perhaps
suggests that SDP is more beneficial when the packet loss rates
greatly vary among receivers.

We now consider the concurrent unicast setting in which two
receivers R1 and R2 receive two different video sequences,
i.e., Foreman and Coastguard, respectively. We assume that the



NGUYEN et al.: JOINT NC AND SCHEDULING FOR MEDIA STREAMING OVER MULTIUSER WIRELESS NETWORKS 1095

Fig. 7. Average PSNR of video sequences at each receiver in the broadcast scenario with a fixed number of transmission opportunities. (a) Average PSNR versus
packet loss probabilities at R1, R2, R3, and R4. (b) Average PSNR versus packet loss probability at R1.

Fig. 8. Average PSNR of video sequences at each receiver in the concurrent unicast scenario. (a) Average PSNR versus packet loss probabilities at R1 and
R2 (p1 = p2). (b) Average PSNR versus packet loss probability at R1.

Foreman video sequence has three packets lF1 , lF2 , and lF3 with
their corresponding distortion reduction in MSE rF

1 = 14.67,
rF
2 = 10.60, and rF

3 = 6.85, and Coastguard has three packets
lC1 , lC2 , and lC3 with their corresponding distortion reduction in
MSE rC

1 = 20.84, rC
2 = 15.34, and rC

3 = 9.54. Fig. 8(a) shows
the distortion reduction as a function of the loss rates for fixed
N = 7, and the packet loss probabilities at two receivers p1 and
p2 identically vary from 0.05 to 0.25. Similarly, Fig. 8(b) shows
the distortion reduction when the packet loss rate of R1 is kept
constant at p1 = 0.2 and when the packet loss rate of R2 is
varied from p2 = 0.05 to 0.25. As predicted, the smaller packet
loss probabilities provides better performance, as shown in both
Fig. 8(a) and (b). Again, the SDP algorithm leads to the largest
reward or best video qualities. For the same broadcast and
unicast settings, we now examine the scenarios where the loss
rates are kept constant and where the number of transmission
opportunities N is varied. Fig. 9(a) and (b) shows the rewards as
a function of N for three algorithms in the broadcast and unicast
settings, respectively. As N increases, there are more oppor-
tunities to retransmit the lost packets; thus, the performances

of all three algorithms also increase. Again, the SDP performs
the best, followed by other algorithms. When N increases to
some value, the performances of all three schemes converge to
the same maximum value. This implies that there are enough
transmission opportunities to correctly send all packets to the
receivers, and thus, optimization does not matter much in this
case. Still, the SDP converges to the maximum value faster than
two other schemes.

We now present the simulation results for the case of er-
roneous feedback. For the broadcast scenario, the AP broad-
casts the Foreman sequence to four receivers R1, R2, R3,
and R4 with their corresponding packet loss probabilities
p1 = 0.05, p2 = 0.1, p3 = 0.2, and p4 = 0.3. For the unicast
scenario, the AP concurrently unicasts the Coastguard and
Foreman sequences to two receivers R1 and R2 with packet loss
probabilities p1 = 0.1 and p2 = 0.25, respectively. In both
settings, we vary the feedback error probabilities from all
receivers to the AP from 0% to 20% and keep N = 5. As
shown in Fig. 10, when the feedback error probability increases,
the performance of the retransmission algorithm significantly
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Fig. 9. Average PSNR of video sequences at each receiver versus the number of transmission opportunities. (a) Broadcast to four receivers. (b) Concurrent
unicast to two receivers.

Fig. 10. Average PSNR of video sequences at each receiver versus the number of transmission opportunities for the case of erroneous feedback. (a) Broadcast to
four receivers. (b) Concurrent unicast to two receivers.

reduces, whereas the NC framework with POMDP is able to
maintain relatively high video quality.

B. Bursty Loss Channel With Two-State Markov Error Model

We present the simulation results for packet loss patterns
generated by the Gilbert model, showing that the relative per-
formance gains of the SDP algorithm over other algorithms
remain approximately the same. The Gilbert model aims to
describe bursty packet losses. The state of a channel is classified
into “good” and “bad” states with probabilities pgood and pbad,
respectively. When the channel is in the good state, the packet
loss probability pgood is small, and when it is in the bad
state, the packet loss probability pbad is much larger. The
channel state changes at each transmission slot with transition
probabilities α = pgood−>bad, β = pbad−>good. The stationary
probabilities for the channel in good and bad states are πgood =
(β/β + α) and πbad = (α/β + α), respectively. We evaluate
the performances of different schemes for a four-receiver sce-
nario in broadcast setting and for a two-receiver scenario in

unicast setting, with each receiver having identical channel
conditions. We use Foreman sequence for broadcast setting and
Foreman and Coastguard for unicast setting. For simplicity, we
set β to a constant value while varying α. Fig. 11 shows the
video quality of different transmission schemes. As α increases
from 0.05 to 0.25 while β is unchanged, the portion of time
that the channel is in “bad” state is larger, leading to the lower
average video quality. Overall, the performance gaps among the
considered algorithms remain approximately the same.

C. Remarks on the Performance of MDP Algorithms

The simulation results in the previous section show that
an improvement in peak signal to noise ratio (PSNR) result-
ing from using the MDP-based algorithm over the greedy
retransmission-based algorithm ranges from 0.1 to 0.5 dB,
depending on the scenarios. However, it is important to em-
phasize several points regarding such modest performances.
First, we note that the proposed MDP framework is optimal
in the sense that it minimizes the expected distortion subject
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Fig. 11. Average PSNR of video sequences at each receiver versus the state transition probabilities α. (a) Broadcast to four receivers. (b) Concurrent unicast to
two receivers.

to the constraint on the number of transmission opportunities.
Therefore, ignoring the computational aspect, there cannot be
a better algorithm than that proposed in the same setup, at
least for the case where the number of receivers is small such
that one can analytically compute the transition probabilities.
Furthermore, the SDP algorithm will converge to the optimal
solution, given a sufficiently large number of samples used.
Now, the performance gain of BIA (optimal) over the greedy
retransmission-based algorithm is not that much. This indicates
that the greedy retransmission-based algorithm is already very
good for such scenarios. Second, it is not necessarily the case
that the MDP framework always produces modest gain over
the greedy algorithm. In fact, there are many factors that make
the greedy retransmission-based algorithm perform arbitrarily
bad in the broadcast scenario. One such factor is the number
of receivers. Specifically, it can be theoretically shown that, as
the number of receivers increases, the performance gap between
NC- and retransmission-based algorithms becomes larger [44].
One other factor that affects the performance gap between the
NC-based and the greedy algorithm is the characteristic of
video sequences in consideration. Therefore, our contributions
lie mainly in the framework for obtaining the optimal solution
and that the actual numerical performance gain is rather depen-
dent on the scenarios, which is hard to characterize.

D. Remarks on the Practicality of the Proposed
MDP Algorithms

One of the main drawbacks with the proposed algorithms
(BIA and SDP) is the explosion of feedback when there is
a large number of receivers in a session. Certainly, a more
thorough effort is needed to address this issue. One short-term
remedy as done in our simulations and can be extended to real-
world scenarios is to artificially limit the number of receivers
in a session. Suppose that the number of receivers in a session
is limited to M and that if there are N > M receivers wanting
to receive the same stream, we can always logically divide a
large session into N/M sessions, each containing M receivers.

The performance of such a scheme will be suboptimal, but
it is an engineering tradeoff for scalability. In fact, we have
implemented a protocol with a similar ACK scheme, showing
its feasibility on actual 802.11 devices [45].

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an NC-based scheduling
policy at an AP that optimizes the multimedia transmission in
both broadcast and concurrent unicast settings in WLAN-like or
WiMAX-like networks. In particular, our contributions include
the following: 1) an optimized scheduling algorithm based on
the MDP to maximize the quality of multimedia applications
and 2) simulation-based algorithms to solve large MDP and
POMDP problems. Our sampling-based dynamic programming
algorithm has two advantages: 1) simplifying the modeling
complexity in transforming the scheduling problem to an ab-
stract MDP and 2) reducing the computational complexity.
Under typical packet loss rates, the transmission policy found
by our MDP framework provides higher media quality than the
retransmission and the NC-based greedy methods.
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