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Abstract—Recent approaches using network coding (NC) to mix4
data from different flows show significant throughput improve-5
ment in wireless networks. However, in this paper, we argue that6
exhaustively mixing packets from different flows may decrease7
network quality of service (QoS), particularly in the presence of8
flows with different service classes. We therefore propose a con-9
text-aware interflow network coding and scheduling (CARE) frame-10
work, which adaptively encodes data across the traffic to maximize11
the network QoS. First, we develop a perception-oriented QoS12
(PQoS) to measure the user satisfaction of different types of ser-13
vices. Next, based on the characteristics of the traffic, we optimally14
combine data across the flows and schedule the encoded packets in15
each time frame to maximize the PQoS at the receivers. Solving16
CARE is NP-hard; thus, we devise a computationally efficient17
approximation algorithm based on the Markov chain Monte Carlo18
method to approximate the optimal solution. We prove that the19
proposed approximation algorithm is guaranteed to converge to20
the optimal solution. The analytical and simulation results show21
that, under certain channel conditions, the proposed CARE-based22
schemes not only improve the network QoS but achieve high23
throughput across all receivers as well. Additionally, the results24
show that the approximation algorithm is efficient and robust to25
the number of data flows. In some transmission conditions, our26
CARE-based schemes can improve the network QoS up to 50%27
compared with the existing randomized NC techniques.28

Index Terms—Multiuser multiservice scheduling, quality of ser-29
vice (QoS), random network coding (RNC), wireless networks.30

I. INTRODUCTION31

W E consider the problem of downlink transmission in32

wireless networks, whereby multiple data flows share33

a single wireless channel. Traditionally, data transmission is34

performed via the store-and-forward routing protocols in which35

an intermediate node stores incoming data and forwards them36

to the neighboring nodes toward the destinations without al-37

tering contents of the data. Differently, in the new network38

coding (NC) approach [1], an intermediate node is allowed to39
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combine the incoming data packets before sending them out 40

to the receivers. It has been shown that NC-based approaches 41

significantly improve network performance, such as throughput 42

[2]–[6], transmission delay [3], [7], and energy [8], [9]. For 43

instance, Nguyen et al. [2], [6] showed that XOR-based NC 44

schemes used in conjunction with a scheduler at a WiFi access 45

point (AP) can significantly improve the network throughput 46

of a broadcast session. The authors showed that, under some 47

transmission conditions, bandwidth efficiency could be double 48

compared with the traditional Auto Repeat reQuest (ARQ) 49

approaches [10], [11]. Additionally, Eryilmaz et al. [3] have 50

shown that, in unreliable wireless networks, transmission delay 51

decreases substantially by using NC. Furthermore, Tran et al. 52

[12], [13] showed that significant bandwidth gain can also be 53

achieved by employing NC in conjunction with channel coding 54

techniques across different unicast sessions. In a different av- 55

enue, Wu et al. [8] showed that NC can also be used to minimize 56

the transmission energy in mobile ad-hoc networks as well. 57

In this paper, we focus on using NC-based approaches to 58

improve the quality of service (QoS) of wireless networks that 59

consist of multiple unicast flows. Generally speaking, providing 60

high QoS for multiuser wireless networks is challenging. First, 61

wireless links often suffer due to severe fading and interference. 62

Additionally, channel conditions that usually change over time 63

significantly affect the QoS at the receivers. Furthermore, the 64

heterogeneity of channel conditions makes the scheduling prob- 65

lem more challenging, as receivers usually experience different 66

data losses. Retransmitting lost data to a receiver in a bad chan- 67

nel condition may decrease the network bandwidth efficiency 68

because data could be duplicated at other receivers. On the other 69

hand, only serving receivers in good channel conditions could 70

leave many other receivers in worse channel conditions with un- 71

acceptable QoS. The problem usually becomes combinatorially 72

hard in nature. 73

In fact, there exists literature on using NC to improve network 74

QoS. Notably, Seferoglu et al. [14], [15] proposed video-aware 75

opportunistic XOR-based network encoding and scheduling 76

schemes for video streaming. The proposed schemes take into 77

account both video distortion and deadlines of the packets 78

for optimal data encoding and scheduling. The simulation re- 79

sults showed significant video quality improvement [i.e., peak- 80

signal-to-noise ratio (PSNR)] compared with the approaches 81

without video-aware encoding. Those works, however, con- 82

sidered only the case where all data flows are multimedia 83

streams (i.e., video). As a result, they may not work well when 84

applied directly to scenarios where traffic includes both delay- 85

sensitive (e.g., video streaming) and elastic applications (e.g., 86

web browsing). In such a setting, the performance metric of 87
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delay-sensitive applications (e.g., PSNR for video streaming)88

might not be a good metric to measure the QoS of the delay-89

tolerant applications. Generally, the heterogeneity of the traffic90

content makes the encoding and scheduling problem more91

challenging because the transmitter needs to consider not only92

the transmission deadline but the characteristics of the traffic93

as well.94

We consider the problem of multiuser downlink transmission95

of heterogeneous traffic in lossy wireless networks. A typical96

approach for such a system is to overprovision the QoS require-97

ments for various flows. Such a system will work well as long98

as the aggregate demand from all the flows does not exceed the99

network capacity [16]. However, in an overloaded transmission100

scenario, the system performance is likely to deteriorate rapidly101

due to a traffic surge [17]. Therefore, we propose a new102

NC-based framework called Context-awARE Interflow Net-103

work Coding and Scheduling (CARE) which utilizes the user104

perception-oriented QoS model (PQoS) [18] for optimal inter-105

flow data encoding and scheduling. Generally speaking, CARE106

optimally encodes and schedules data transmission based on107

both channel conditions and characteristics of the traffic to108

maximize the network QoS from the user’s perspective. Our109

results show that CARE significantly improves the network110

QoS and throughput, in comparison with the state-of-the-art111

NC-based approaches. The performance improvement basically112

comes from the optimal trade-off between the number of useful113

data packets transmitted by the deadline and the bandwidth114

allocation to different flows via its PQoS objective function.115

To the best of our knowledge, this is one of a few papers116

that consider PQoS as the objective function in formulating the117

multiuser downlink scheduling using NC in wireless networks.118

Extending from our preliminary results in [19], the main119

contributions of this paper are summarized as follows.120

• We first show that the approaches optimized for through-121

put might decrease the QoS at some receivers in the122

presence of traffic with different service classes. We then123

devise PQoS as the network metric to quantitatively mea-124

sure the performance of different transmission strategies.125

The CARE framework based on PQoS consolidates not126

only the traffic priorities but also the characteristics of the127

flows in its encoding and scheduling operation. Analyses128

on QoS performance for different transmission strategies129

are provided in detail.130

• We formulate CARE as a combinatoric optimization131

problem with constraints. We further show that CARE132

can be reduced to a set of weighted stochastic knapsack133

problems and, therefore, is NP-hard [20]. We then exploit134

the traffic characteristics to devise an efficient approxima-135

tion algorithm based on the Markov chain Monte Carlo136

(MCMC) method for finding a near-optimal solution. Our137

results show that, under certain channel conditions and138

QoS requirements, our proposed CARE-based schemes139

lead to significant network performance improvement140

for both delay-sensitive and delay-tolerant data flows.141

We further provide analytical results on the asymptotic142

behavior and upper bound on the convergence time of143

the approximation algorithm based on the canonical path144

technique [21]. We also describe context-aware partial 145

interflow NC (PCARE), an extension of CARE, which 146

allows for finer grained bandwidth allocation. 147

• We provided theoretical analysis and intensive simula- 148

tions to elaborate the system performance improvement of 149

our proposed schemes. Our results reveal that optimizing 150

the PQoS is equivalent to optimizing the network effective 151

throughput constrained on the fairness condition among 152

the users. The results also show that the approximation 153

algorithm is efficient and robust to the number of data 154

flows and quickly converges to the optimal solution. 155

The remainder of this paper is organized as follows. We first 156

discuss some background and related work in Section II. In 157

Section III, we describe the system model, the issues of the 158

existing approaches, and performance metric. In Section IV, 159

we analyze the system performance of different transmission 160

strategies, CARE formulation, and its hardness. In Section V, 161

we develop an approximation algorithm for CARE. Simula- 162

tions and discussions are provided in Section VI. Finally, we 163

conclude this paper in Section VII. 164

II. BACKGROUND AND RELATED WORK 165

Random Network Coding: The notion of NC, i.e., mixing 166

of data at intermediate nodes to increase the overall multicast 167

throughput of a network, was first proposed in the seminal paper 168

by Ahlswede et al. [1]. Its key idea is to prove the existence of 169

some network codes (method of mixing data at intermediate 170

nodes) that achieve multicast capacity. This spurted a number 171

of works on construction of practical network codes, including 172

algebraic, algorithmic, and randomized approaches [22]–[25]. 173

In particular, the work in [22] proposed a class of linear network 174

codes for multicast transmission. The author proved that linear 175

coding suffices to achieve the maximum throughput, which is 176

the max-flow min-cut from the source to each receiving node. 177

Inspired by this work, Koetter and Medard [23] proposed a 178

theoretical framework based on algebraic tools for deriving 179

the conditions to achieve capacity in networks using linear 180

codes. The proposed framework shows interesting connections 181

between certain systems of polynomial equations and the so- 182

lutions to network routing problems. Notably, the work in [4] 183

(and its extended version in [26]) proposed a random NC 184

(RNC) framework for efficient network code construction in 185

a distributed manner. In particular, it shows that intermediate 186

nodes in a network do not need to cooperate with each other to 187

generate coded packets. Instead, each node independently gen- 188

erates its coded packets by combining its incoming data with 189

the coding coefficients randomly selected from a large finite 190

field. The authors proved that, with probability approaching 1, 191

the encoded packets are independent. Based on this result, 192

Chou et al. [25] proposed a practical solution to implement 193

NC for an arbitrary network topology. In particular, it has been 194

shown that, by inserting the coding coefficients into the coded 195

packets’ headers, the sinks can reconstruct the original data 196

efficiently by solving a system of linear equations constructed 197

by the encoded data. 198
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Fig. 1. Example of UNI and RNC transmission schemes for two receiver sce-
narios. For the RNC scheme, coded packets ci = αia+ βib. Packet receipts
are denoted by “×,” “o,” and “-” for lost, successful, and “received but useless”
packets, respectively.

RNC for Wireless Networks: It has been shown that applying199

NC in wireless ad-hoc networks can significantly improve the200

network bandwidth efficiency [27], transmission delay [28],201

[29], or transmission energy [7]. The key idea of these works202

is to exploit the nature of a broadcast signal, which can be203

intercepted by many neighboring nodes. Data of different flows204

are then combined (i.e., performing RNC) together to generate205

coded data packets before sending them to other nodes in206

the vicinity. Recently, Douik et al. [30], [31] have proposed207

techniques to reduce the decoding delay for different feedback208

constraints. These works, however, only focus on broadcasting209

transmission and do not consider the flows with heterogeneous210

content and services. A detailed list of wireless applications211

beneficial from using NC in these settings can be found in [29].212

Our network model is closest to the model used in [2] and213

[6], whereby the authors model a broadcast session in a last-214

mile network. Differently, we consider multiple unicast flows215

sharing a bandwidth-constrained channel. Our transmission216

model can be applied to many practical transmission scenarios217

in WLAN, WiMAX, and cellular networks. Before describing218

our system model, we first illustrate the benefit of using NC in219

such a setting.220

Example 1: An AP wishes to send two packets a and b to221

two receiversD1 andD2, respectively. In ARQ unicast protocol222

(UNI), the AP uses the first and second time slots to send a223

and b, respectively. As illustrated in Fig. 1, packet a is lost at224

D1 while successfully received at D2. However, D2 discards a225

because it wants packet b instead. Similarly, in the second time226

slot, packet b is successfully received by D1 (but it is discarded227

because D1 wants a instead) while lost at D2. Assuming that,228

in the next two time slots, the transmission links are in good229

conditions, then the AP can successfully retransmit the lost230

data packets to their intended receivers. As a result, it needs231

four time slots to deliver two packets a and b to D1 and D2,232

respectively.233

Next, we consider a transmission scheme using RNC, as234

proposed in [32]. In this approach, the AP generates coded235

packets by linearly combining a and b with random coefficients236

and sending them out to the receivers. For example, coded237

packets ci are generated as ci = αia+ βib, i = {1, 2, 3, . . .},238

where αi and βi are coefficients drawn randomly from a large239

finite field Fq (q is the field size). The AP then broadcasts240

two coded packets c1 and c2 in the first and second time241

slots, respectively, as shown in Fig. 1. As a result, D1 and242

D2 will successfully receive c2 and c1, respectively. In the243

third time slot, the AP broadcasts another coded packet c3,244

which is successfully received by both receivers. After three245

Fig. 2. System model. At the beginning of frame k, new arrived packets will
be scheduled for transmission in the next N time slots (period of a frame).

transmissions, each of the receivers now has two coded packets, 246

which can be used to recover their desired data by solving 247

a system of linear equations using the encoded packets. We 248

note that the coefficients are included in the packets’ headers, 249

enabling the receivers to solve the linear equation system. 250

It requires additional transmission overhead; however, with a 251

sufficiently large packet size, this overhead is negligible [25]. 252

Thus, the RNC approach needs only three transmissions to 253

deliver two packets to the receivers, saving 25% transmission 254

bandwidth compared with the UNI scheme. 255

III. SYSTEM MODEL, ISSUES, AND 256

PERFORMANCE METRIC 257

A. System Model 258

We consider the problem of time-slotted downlink transmis- 259

sion of M data flows to M receivers (users) in lossy wireless 260

networks, as illustrated in Fig. 2. We assume that the transmitter 261

uses M “virtual queues” to store randomly arrived packets of 262

different flows before sending them out to the corresponding 263

receivers. Transmissions are scheduled by frames (periods), 264

each consisting of N time slots. Generally, the value of N 265

can be determined by the hard deadline of buffered data or 266

by the number of backlogged data packets in the buffer [15], 267

[33]–[35]. When a new flow arrives at the transmitter in the 268

current transmission frame, it will be scheduled for transmis- 269

sion in the next frame. Without loss of generality, we assume 270

that there are ki, i = 1, 2, . . . ,M data packets being delivered 271

to receiver Di in each transmission frame. In this paper, we 272

focus on finding an optimal flow partition scheme for encoding 273

and scheduling data across different flows, given a set of data 274

packets for each transmission frame. 275

We assume that the scheduled packets of delay-sensitive 276

applications, which cannot be delivered to the corresponding 277

receivers by the deadline, will be discarded from the system. 278

The system QoS is computed based only on the number of data 279

packets that have been received successfully within that period. 280

On the other hand, for delay-tolerant reliable applications such 281

as file transfer, the lost packets will be retransmitted until they 282

are successfully delivered (possibly via multiple transmission 283

frames). Detail of the mathematical formula used to compute 284

the system QoS is defined in Section III-C3. In addition, we 285

assume that the transmission links between the transmitter and 286
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the receivers are heterogeneous and independent identically287

distributed binary erasure channels with erasure probability pi.288

A flow i implements a packet-level forward error-correcting289

(FEC) code (ni, ki) (e.g., [36]) to cope with data errors. Using290

such an FEC code, receiving ki out of ni transmitted packets is291

sufficient for receiver Di to recover the original information.292

The code rates ki/ni are prespecified based on the network293

conditions or/and priority of the users’ subscription. Finding294

the optimal coding rates is beyond the scope of this paper. Ad-295

ditionally, we assume that the transmitter has enough memory296

to store data for at least one transmission frame N =
∑M

i=1 ni.297

Furthermore, in our model, each receiver maintains a decod-298

ing buffer for storing coded packets received within a frame.299

By the end of each data frame, a receiver will decode the300

received packets and push them to the upper Open Systems301

Interconnection (OSI) layer above for further processing. It is302

important to note that the use of a decoding buffer at receivers303

is a standard assumption, which has been adopted for several304

years in NC-based techniques and literature (e.g., [5], [6], [15],305

[26], [30], [37], [38], and references therein).306

B. What Could Go Wrong With Interflow Network Coding?307

As observed in Example 1, mixing packets from different308

flows is clearly beneficial. However, should one advocate309

mixing at every opportunity? The answer should be “No.” In310

particular, Wu et al. were the first to consider this mixing311

problem in a different context [39]. Intuitively, exhaustively312

mixing the data of several flows may decrease the chance that a313

receiver can recover its information. To illustrate this point, we314

show a simple counterexample as follows.315

Counterexample: We consider the same setup, as shown in316

Fig. 1. In addition, we assume that packet losses at D1 and D2317

are independent and follow the Bernoulli trial with p1 = 1/3318

and p2 = 2/3, respectively. To transmit data reliably, it makes319

sense for the transmitter to employ stronger protection for the320

data intended to D2. Thus, suppose that two packet-level FEC321

codes (n1, k1) = (3, 2) and (n2, k2) = (3, 1) are used for the322

flows to D1 and D2, respectively.1 We recall that, by using323

a code (n, k), the transmitter uses n time slots to transmit k324

information packets (n ≥ k), whereby receiving any k packets325

out of the n transmitted packets is sufficient to recover the k326

original packets. Suppose that the transmitter has n1 + n2 = 6327

time slots for delivering three packets, i.e., two for D1 and one328

for D2. In a non-mixing technique, i.e., packets from different329

flows are sent separately, the probability that all the receivers330

recover their desired data is computed as331

PUNI =

2∏
i=1

ri∑
j=0

(
ni

j

)
pji (1 − pi)

ni−j (1)

where ri = ni − ki for i = {1, 2}. Substituting values of pi, ni,332

and ki into (1), we have PUNI = 0.5213, which is about 1/2333

packet per time slot.334

1We note that the packet-level FEC codes here can be viewed as the raptor
codes [40] with ni and ki, respectively, being the output and original symbols.

On the other hand, in an RNC-based technique, all packets 335

are mixed to produce coded packets. In such a transmission 336

strategy, each receiver needs to receive at least three coded 337

packets correctly, to recover its desired information [41]. The 338

transmitter has six time slots for delivering the coded packets 339

to both receivers. The probability that both receivers recover 340

their desired data is given by 341

PRNC =
2∏

i=1

r∑
j=0

(
N

j

)
pji (1 − pi)

N−j (2)

where r =
∑2

i=1(ni − ki) = 3 and N =
∑2

i=1 ni = 6. Sub- 342

stituting the values of pi for i = {1, 2} into (2), we obtain 343

PRNC = 0.2876. This is approximately equivalent to a through- 344

put of 1/5 packet per time slot, which is about 2.5 times less than 345

that of the non-NC technique earlier. Obviously, applying NC 346

in this case decreases the network throughput. 347

C. Perception-Oriented QoS 348

We next describe how the PQoS metric is constructed to 349

measure the performance of different transmission strategies. 350

Roughly speaking, PQoS function is used to estimate the ser- 351

vice satisfaction at each user. Thus, PQoS depends not only on 352

the number of received packets within a time period but also 353

on the type of service (ToS). For the sake of exposition, we AQ1354

categorize the network traffic into two types: delay-sensitive 355

traffic (e.g., video streaming, audio streaming, etc.) and elastic 356

traffic (e.g., file transfer, e-mail, etc.).2 We note, however, that 357

one can easily extend the framework to the cases of more than 358

two types of traffic, albeit a more sophisticated model. 359

1) PQoS for Delay-Sensitive Traffic: In our model, delay- 360

sensitive traffic (e.g., video streaming) is encoded into multiple 361

layers, e.g., a base layer and enhancement layers [42], [43]. 362

In such a model, the base layer must be presented to present 363

other enhancement layers. Thus, to maintain a minimal QoS, a 364

receiver needs to receive at least N0 packets of the base layer 365

per transmission frame. When the number of received packets is 366

fewer than N0, the QoS at the receiver decreases significantly. 367

The reason is that, in such an encoding scheme, the QoS at 368

the receiver is mainly contributed by the base layer. On the 369

other hand, when more packets of the enhancement layers 370

are received, the QoS at the receiver only increases slightly 371

due to only additional details of the information added into 372

the base frame. We extend the satisfaction function proposed 373

in [18] to model the PQoS for delay-sensitive applications. 374

Mathematically, we can represent it in (3), shown at the bottom 375

of the next page, where Si denotes the number of packets 376

received successfully, and N0 denotes the minimum number of 377

packets to maintain a satisfaction factor of γ0 ∈ [0, 1]. In this 378

formulation, the first case indicates that, when the number of 379

received packets is fewer than the threshold γ0N0, the value 380

of PQoS is equal to zero. The intuition can be reasoned in the 381

context of layered video transmission (e.g., MPEG-2) where the 382

base layer is unrecoverable. Thus, no information is displayed, 383

2We use the terms “elastic” and “delay-tolerant” interchangeably.
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Fig. 3. Satisfaction functions of different applications versus the number of
received packets.

resulting in a zero PQoS. The second case accounts for the384

scenario when the number of received packets is greater than385

the minimum threshold γ0N0 but less than N0. In this case,386

the PQoS steeply decreases due to only a part of the base387

layer recovered. The third case indicates that the value of PQoS388

increases significantly when the number of received packets is389

greater than N0. In this case, more detail of the video frame is390

added to achieve high-definition display. Finally, the last case391

accounts for a scenario wherein the missing data add negligible392

QoS to the data flow, resulting in a high value of PQoS close393

to one. An example of the PQoS function for delay-sensitive394

application, with respect to the number of received packets, is395

illustrated by the blue solid curve in Fig. 3.396

2) PQoS for Delay-Tolerant Traffic: We use different func-397

tions to model elastic traffic, as illustrated by the red dashed398

curve in Fig. 3. For such a flow, the parameter N0, i.e., the399

minimum data received per frame, is viewed as the minimum400

bandwidth allocated to that flow. When the number of received401

packets is fewer or greater than N0, respectively, the satis-402

faction function decreases or increases slightly. We note that,403

in delay-tolerant traffic, if a transmitted packet is lost during404

transmission, a negative acknowledgement (NACK) will be sent405

from the receiver to the transmitter for retransmission (possibly406

in other frames). Thus, for reliable data flows (e.g., data file407

downloading), every byte of the information will be reliably408

delivered to the receiver. Mathematically, the PQoS for elastic409

traffic is given as410

γi = F(Si) =

⎧⎨
⎩
γ0.

(
Si

N0

)2

, Si < N0

1 − (1 − γ0)
(

N0

Si

)2

, Si ≥ N0.
(4)

In the first case, when the number of received packets is fewer 411

than N0, the value of PQoS decreases slightly by a factor of 412

the ratio of Si and N0. It is worth noting that this ratio is less 413

than one; thus, its square would result in a smaller value. On 414

the other hand, when Si ≥ N0, PQoS increases slightly. The 415

intuition of the proposed PQoS functions is to reflect the fact 416

that a slightly longer or shorter delay in receiving a delay- 417

tolerant data packet, e.g., e-mail, does not affect much to the 418

user’s perception of the QoS. 419

3) Performance Metric: We use the average network PQoS 420

as our metric to compare the performance of different trans- 421

mission strategies. The average network PQoS is computed by 422

averaging the expected PQoS across all the users for each trans- 423

mission frame over infinite system runtime. Mathematically, we 424

have that 425

γ = lim
τ→∞

1
τM

∑
τ

M∑
i=1

ciE[γi] (5)

where τ is the operation time of the network divided into 426

several transmission frames, M is the number of data flows, 427

ci is the flow priority, and E[γi] denotes the expected PQoS of 428

user i in one transmission frame. The limτ→∞ indicates that 429

the expectation of the system performance is computed over a 430

long time interval. Given the satisfaction functions, we call a 431

transmission technique the best, if it has the largest expected 432

PQoS across all users. 433

IV. PERFORMANCE ANALYSIS 434

In this paper, we analyze different transmission strategies, 435

depending on how the transmitter exploits the characteristics 436

of the traffic. In particular, we analyze the performance of the 437

traditional UNI, systematic RNC (SRNC), and CARE. 438

A. Unicast 439

In this technique, data packets of different information flows 440

are transmitted separately in a round-robin fashion [44]. In 441

each period (frame), the transmitter allocates ni time slots to 442

transmit ki data packets to receiver Di [i.e., packet-level FEC 443

code (ni, ki)]. If there is a packet loss, the transmitter uses the 444

ni − ki redundant time slots to retransmit the lost packets. The 445

transmitter switches to transmit data packets for other users, 446

when it receives an acknowledgment (ACK) message from Di 447

indicating that all data have been received successfully, or all 448

time slots allocated for it have been used. Considering flow i 449

destined to receiver Di and letting pi denote the packet erasure 450

γi = F(Si) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, Si < γ0N0

γ0

(
1 −

√
(N0−Si)(N0+Si−2γ0N0)

(1−γ0)N0

)
, γ0N0 ≤ Si < N0

γ0 + (1 − γ0)

√
(Si−N0)[N0−Si+2N0(1−γ0)]

(1−γ0)N0
, N0 ≤ Si < (2 − γ0)N0

1, Si ≥ (2 − γ0)N0

(3)
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probability of the transmission link, the probability that receiver451

Di recovers all its data can be written as452

P s
i =

ni∑
j=ki

(
ni

j

)
pni−j
i (1 − pi)

j (6)

where
(
ni

j

)
denotes the number of combinations of size j out453

of ni elements. We further note that, by using UNI, i.e., data454

transmitted separately, receiver Di could recover a fraction of455

the original data, if the number of received packets is fewer456

than ki. Let the random variables X and Y , respectively, be457

the number of original packets and the total number of received458

packets. The probability thatDi obtains onlym original packets459

and the total received packets is fewer than ki is given as460

Pi(m) = P (X = m,Y < ki)

(a)
=

ki−1∑
l=m

Pr(Y = l|X = m) Pr(X = m). (7)

In this case, Y is equal to X plus the number of coded461

packets received during the second stage transmission while462

the sum runs over all the possible values of Y . We note that463

step (a) consists of two parts: 1) the conditional probability464

of receiving l = m, . . . , ki − 1 data packets in total, given m465

original data packets received; 2) the probability that m of ki466

original data packets are received. In the extreme case, i.e.,467

l = m, it implies that none of the coded packets is received.468

On the other hand, the maximum number of coded packets is469

ki − 1 −m, corresponding to the case of ki − 1 data packets470

received in total. Furthermore, the probability that only m of ki471

original data packets are received is written as472

Pr(X = m) =

(
ki
m

)
(1 − pi)

mpki−m
i . (8)

Given that only m original data packets are received, the473

probability that only l < ki data packets are received over ni474

transmissions is given by475

Pr(Y = l|X=m)=

(
ni−ki
l−m

)
(1−pi)

l−mp
ni−ki−(l−m)
i . (9)

Combining (8) and (9), we have that476

P (Y = l|X = m)P (X = m)

=

(
ki
m

)
(1 − pi)

mpki−m
i

(
ni − ki
l −m

)

× (1 − pi)
l−mp

ni−ki−(l−m)
i

=

(
ki
m

)(
ni − ki
l−m

)
(1 − pi)

lpni−l
i . (10)

Therefore, the probability that the m original data packets and477

the total l < ki data packets are received can be computed as478

Pi(m) =

ki−1∑
l=m

(
ni − ki
l −m

)(
ki
m

)
pni−l
i (1 − pi)

l. (11)

Let γi denote the PQoS value of receiver Di; therefore, from 479

(6) and (7), the expected PQoS across all the users can be 480

written as 481

γ =
1
M

E

[
M∑
i=1

ciγi

]
=

1
M

M∑
i=1

ciE[γi]

=
1
M

M∑
i=1

ci

(
F(ki)P

s
i +

ki−1∑
m=0

F(m)Pi(m)

)
(12)

where ci ∈ (0, 1] denotes the weighted factor (priority) for the 482

ith flow (this factor can be justified via the cost that the user 483

Di pays to the service provider); E[.] denotes the expected 484

function; and F(·) is defined in (3) and (4), depending on the 485

type of the data flow. 486

B. Systematic Random Network Coding 487

Transmission in SRNC is classified into base and augmen- 488

tation phases. In the base phase, all
∑M

i=1 ki original packets 489

will be transmitted. The receivers cache all the received packets, 490

including packets that are not intended to them. By keeping data 491

packets intended to others, a receiver can use them to decode 492

its desired data in the second phase. Next, in the augmentation 493

phase, the transmitter combines the data packets of all flows 494

to generate coded packets and broadcasts them to the receivers 495

over N −
∑M

i=1 ki redundant time slots. The intuition of using 496

systematic coding that transmits data in two phases is that 497

the receivers that lose some original packets can receive more 498

coded packets to decode their own data using the RNC method 499

[41]. On the contrary, receivers that are unable to obtain a full 500

set of data packets can still recover partial data from the original 501

packets transmitted in the base phase. Such a transmission has 502

been discussed in [45], and generally, it will result in higher 503

performance compared to the RNC. 504

In SRNC, a receiver Di can recover ki desired packets, if 505

it correctly receives either all ki original packets or a full set 506

of K =
∑M

i=1 ki packets (either original or coded packets). Let 507

P s
i denote the probability that Di can recover all its data, and 508

let the random variables U and V denote the original and total 509

received packets at receiver Di, respectively. We have that 510

P s
i =P (U = ki, V < K) + P (U ≤ ki, V ≥ K)

= (1 − pi)
ki

[
K−ki−1∑

l=0

(
N − ki

l

)
pN−ki−l
i (1 − pi)

l

]

+

ki∑
j=0

(
ki
j

)
pki−j
i (1 − pi)

j

×
N−ki∑
t=K−j

(
N − ki

t

)
pN−ki−t
i (1 − pi)

t. (13)

In (13), the first term accounts for the case when all the ki 511

original data packets are received successfully during the base 512

phase transmission. The second term expresses the probability 513

that j original packets are received during the base phase and 514
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t coded packets are received during the augmentation phase,515

where t = K − j, . . . , N − ki. In this case, at least K data516

packets (both original and coded packets) are received by Di;517

thus, it can recover its data by solving the system of linear518

equations formed by the received data packets.519

We further note that Di may receive only partial of the520

original data during the base phase. We denote Pi(m) being521

the probability that Di receives m original packets (m < ki),522

and its total number of packets received correctly is less than523

K . Similar to (7), the probability of partial data recovery of Di524

is written by525

Pi(m) = P (U = m,V < K)

=

K−1∑
l=m

(
N − ki
l −m

)(
ki
m

)
pN−l
i (1 − pi)

l. (14)

In such cases, Di cannot recover all its data, and only data526

received during the base phase contribute to the QoS of flow527

i. From (13) and (14), we express the expected PQoS across all528

receivers as follows:529

γ =
1
M

E

[
M∑
i=1

ciγi

]
=

1
M

M∑
i=1

ciE[γi]

=
1
M

M∑
i=1

ci

(
F(ki)P

s
i +

ki−1∑
m=0

F(m)Pi(m)

)
. (15)

C. Proposed Context-Aware Interflow530

Network Coding and Scheduling531

1) Main Idea: Instead of combining all flows together, the532

transmitter now selectively chooses the flows to be mixed based533

on the channel conditions, ToS, and priorities of the flows. We534

assume that the M incoming data flows are partitioned into535

G groups; then, for each group, the transmitter uses SRNC to536

transmit data to the receivers within that group. The objective of537

the transmitter is to determine the optimal partition (i.e., which538

flows are combined together) to maximize the PQoS across all539

users. It is clear that mixing packets from all incoming flows540

could decrease the system performance due to mismatch in ToS,541

priorities, and channel conditions. On the other hand, mixing542

packets of flows with similar characteristics could increase the543

network performance. A precise mathematical formulation of544

CARE will be described as follows.545

2) CARE Formulation: Let G denote a partition of the546

incoming information flows and |G| denote the number of547

groups in G. Let Mi denote the number of data flows in group548

i, i = 1, . . . , |G|. Per each group, we use the SRNC technique549

described earlier to transmit the data. Consider the ith group,550

and let Ni =
∑Mi

j=0 nij and Ki =
∑Mi

j=0 kij , respectively, de-551

note the total number of available time slots and information552

packets being transmitted for group i. Here, (nij , kij) denotes553

the packet-level FEC of flow delivered to receiver j of group i.554

We note that flow j of group i, i.e., fij , is nothing but just some555

original data flow ft, where the index has been relabeled. Thus,556

the FEC code (nij , kij) is also just a relabeled version of the557

original FEC code (nt, kt). Similarly, as computed in SRNC558

technique, the probability that receiver j of group i, i.e., Dij , 559

can recover its desired data is given as 560

P s
ij =(1 − pij)

kij

⎡
⎣Ki−kij−1∑

l=0

(
Ni−kij

l

)
p
Ni−kij−l
ij (1 − pij)

l

⎤
⎦

+

kij∑
s=0

(
kij
s

)
p
kij−s
ij (1 − pij)

s

×
Ni−kij∑
t=Ki−s

(
Ni − kij

t

)
p
Ni−kij−t
ij (1 − pij)

t. (16)

In this equation, the first term accounts for the case where 561

original packets are successfully received during the basis trans- 562

mission phase of group i, whereas the second term expresses the 563

probability that at least Ki data packets (including both original 564

and coded packets) are received successfully after both phases 565

of transmission. 566

Similarly, it is straightforward to calculate the probability 567

that receiver Dij recovers m out of kij original packets (m < 568

kij). That is 569

Pij(m) =

Ki−1∑
l=m

(
Ni − kij
l −m

)(
kij
m

)
pNi−l
ij (1 − pij)

l. (17)

Let a random variable γij denote the PQoS of receiver Dij . 570

Then, the expected PQoS over all users is given by 571

γ(G) = 1
M

E

⎡
⎣ |G|∑

i=1

Mi∑
j=1

cijγij

⎤
⎦ . (18)

Therefore, a partition scheme is optimal, if it maximizes the ex- 572

pected PQoS across all users. The CARE optimization problem 573

can be formulated as 574

CARE : max
G∈Ω

⎧⎨
⎩ 1

M

|G|∑
i=1

Mi∑
j=1

cijE[γij ]

⎫⎬
⎭

s.t. :
|G|∑
i=1

Mi∑
j=1

nij = N (19)

|G|∑
i=1

Mi∑
j=1

kij = K (20)

0 ≤ cij ≤ 1 for i = 1, 2, . . . , |G|
j = 1, 2, . . . ,Mi (21)

E[γij ] = F(kij)P
s
ij +

kij−1∑
m=0

F(m)Pij(m) (22)

where Ω denotes the collection of all nonempty-subset parti- 575

tions of M flows. The objective is to maximize the average 576

expected PQoS across all the receivers. The first constraint 577

represents the maximum number of time slots available for 578

transmission in a data frame. The quantity
∑Mi

j=1 nij gives the 579

number of time slots allocated for group i, i = 1, . . . , |G|. The 580

second constraint accounts for the total number of original data 581

packets that need to be transmitted, i.e.,
∑Mi

j=1 kij . Finally, the 582
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last two constraints, respectively, express the weight factor and583

the equation to compute the expected PQoS based on the type584

of applications and the number of received packets for receiver585

j in group i.586

3) CARE Hardness: We next show that finding the optimal587

solution to the CARE problem is NP-hard. In particular, we will588

show 1) an existing algorithm that reduces an instance of CARE589

to an instance of the stochastic reward knapsack problem (SKP)590

[20] in polynomial time, and show that, 2) given the solution of591

CARE, the solution of the SKP can be found in polynomial time.AQ2 592

SKP Description: The SKP problem is described as593

follows. Given a set of n items, where item i has a fixed594

weight wi and a random value vi, the distribution of vi could595

be unknown. The objective is to select a subset of items such596

that it maximizes the sum values while not exceeding the limit597

capacity of the knapsack.598

Instance Reduction: We assume that there are M in-599

formation flows, represented by their FEC codes (ni, ki), i =600

1, . . . ,M , that we want to deliver to M receivers within N time601

slots. Without loss of generality, we assume that
∑M

i=1 ni > N ,602

i.e., only a subset of the M flows is selected. The expected603

PQoS of each subgroup of the M flows is considered as reward604

vi of an item of the SKP problem. It is clear that vi ∈ V605

is a random variable, where its value depends on the erasure606

probability pi and the flow partition. For simplicity, we let the607

priority factor ci = 1 ∀ i = 1, . . . ,M . Therefore, we have an608

instance of the SKP corresponding to a partition of the M flows609

into subgroups.610

Solution Reduction: Finding the solution of SKP, given611

the solution of CARE, is straightforward. Let us assume that G∗612

is a partition that maximizes the expected PQoS across all the613

users. We have that614

|G∗|∑
i=1

Mi∑
j=1

E[γij ]
(a)

≥
|G|∑
i=1

Mi∑
j=1

E[γij ] ∀G ∈ Ω

(b)

≥
M∑
i=1

xivi ∀ vi ∈ V

xi = {0, 1},
M∑
i=1

xiwi ≤ N. (23)

The inequality (a) follows from the assumption that G∗ is the615

solution to CARE, i.e., the optimal one that maximizes the ex-616

pected PQoS. The inequality (b) immediately holds because the617

right-hand side of (b) is equivalent to that of (a), representing618

in the context of SKP, i.e., the value distribution of the items.619

Thus, the union of the subsets of G∗ forms the subsets of items620

selected for the SKP, where the total value that is maximized621

with the weight is less than the knapsack capacity.622

D. Context-Aware Partial Interflow Network Coding623

We next discuss PCARE, an extension of CARE, to further624

improve the system PQoS. We want to emphasize that PCARE625

has different formulation in comparison with CARE. On one626

hand, CARE seeks for optimal mixing and scheduling of in-627

coming data flows, whereby a flow (as a whole) can be either628

Fig. 4. Example of subflow partitioning and mixing of PCARE.

combined with other flows or transmitted separately. On the 629

other hand, PCARE allows incoming data flows to be further 630

divided into subflows, which consequentially are combined 631

with other subflows (of other flows) for transmission. By doing 632

so, PCARE can achieve a finer grained bandwidth allocation 633

compared with CARE, albeit a more sophisticated computation. 634

Fig. 4 illustrates an example of subflow partitioning and mixing 635

of PCARE. In this example, we consider three incoming data 636

flows with their corresponding FEC codes being (n1, k1) = 637

(3, 2), (n2, k2) = (1, 1), and (n3, k3) = (4, 3), respectively. 638

We recall that an FEC code (n, k) implies that n time slots 639

are used to deliver k data packets, where receiving any k out 640

of n transmitted packets is sufficient to recover the data. The 641

PCARE scheme is performed via the following steps. 642

• Subflow Partitioning: PCARE first divides incoming data 643

flows into subflows. We emphasize that there are many 644

ways to divide a flow fi : (ni, ki) into subflows. Let f 645

be the set representing all subflows of fi. Consider a 646

configuration where fi is divided into J subflows f j
i , j = 647

1, . . . , J . We have the following constraints: 648

f ⊃ f j
i :

(
nj
i , k

j
i

)
, j = 1, . . . , J

ni =

J∑
j=1

nj
i , ki =

J∑
j=1

kji .

In Fig. 4, flow f1 is divided into J = 2 subflows f1
1 : 649

(n1
1, k

1
1) = (2, 1) and f2

1 : (n2
1, k

2
1) = (1, 1), while we 650

keep flows f2 and f3 intact (a flow is a subflow of 651

itself). As shown, even with this simple example, there are 652

many ways to divide the incoming flows into subflows. 653

Our example in Fig. 4 shows only one specific subflow 654

configuration. 655

• Subflow Optimal Mixing: Next, given a set of subflows, 656

they are then optimally mixed together for transmission. 657

In our example in Fig. 4, subflow f1
1 is combined with 658

flow f2, whereas subflow f2
1 is combined with flow f3. 659

Data packets of each subgroup are then combined together 660

within that subgroup for transmission. The key idea of 661

PCARE is to divide the incoming flows into subflows, 662

enabling finer grained bandwidth allocation for each sub- 663

group. To illustrate this point, we next show a simple 664

numerical example to illustrate the benefit of subflow 665

partitioning of the PCARE scheme. 666

Numerical Example: Assume that p1 = 0.06, p2 = 0.2, and 667

p3 = 0.05 are the packet loss rates of the channels to receivers 668
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D1, D2, and D3, respectively. Supposing that we use RNC669

for combining data within each subgroup, we then have the670

probability that all receivers can recover their desired data using671

the PCARE scheme in Fig. 4, which is computed as follows.672

• Receiver D1: The probability that receiver D1 can re-673

cover its desired data is computed by the product of the674

probabilities that data in each subgroup can be recovered675

successfully. In our example in Fig. 4, there are two676

subgroups, which have two and four data packets being677

transmitted in three and five time slots, respectively. The678

probability that D1 can recover its data is computed as679

P1=

3∑
i=2

(
3
i

)
(1−p1)

ip3−i
1 ×

5∑
i=4

(
5
i

)
(1−p1)

ip5−i
1 . (24)

The first and second terms represent the probability that680

D1 successfully receives data packets a1 and a2 in the681

first and second subgroups, respectively.682

• Receivers D2 and D3: Similarly, we can compute the683

probabilities that receivers D2 and D3 can recover their684

desired data as685

P2 =

3∑
i=2

(
3
i

)
(1 − p2)

ip3−i
2 (25)

P3 =

5∑
i=4

(
5
i

)
(1 − p3)

ip5−i
3 . (26)

Substituting the values of p1 = 0.06, p2 = 0.2, and p3 =686

0.05 to (24)–(26), we obtain P1 = 0.9581, P2 = 0.8960, and687

P3 = 0.9974. As a result, the probability that all receivers can688

recover their desired data is P = P1 × P2 × P3 = 0.8391.689

On the other hand, the best solution CARE can be achieved690

by combining flows 1 and 3 together, while transmitting flow 2691

separately. Using this scheme, all receivers can recover their692

desired data with a probability P = 0.792, which is much693

lower than that of the PCARE scheme earlier. Therefore, we694

can see that, by dividing traffic flows into subflows, PCARE695

achieves better bandwidth allocation, resulting in higher system696

performance. However, one can also see that finding the optimal697

solution to the PCARE scheme is extremely computationally698

expensive. Its detailed theoretical analysis is considered as our699

future investigation.700

V. APPROXIMATION ALGORITHM TO CONTEXT-AWARE701

INTERFLOW NETWORK CODING AND SCHEDULING702

Here, we describe a simple but efficient heuristic algorithm703

based on the well-known MCMC method [46] to find a near-704

optimal solution. Although MCMC-based techniques have been705

extensively used to solve hard optimization problems, it is706

very challenging to devise an efficient algorithm to approx-707

imate the solution of a given specific problem. Typically, a708

system designer needs to 1) design the target distribution that709

reflects the solution and 2) effectively generate samples from710

this target distribution. Unfortunately, achieving such design711

goals is challenging because it is very difficult to know the712

stochastic properties of the system. Additionally, it is not trivial713

to generate samples from an arbitrary distribution and design 714

mechanism to transition among the states. Furthermore, the 715

convergence time of the proposed algorithm needs to be upper 716

bounded to ensure the performance guarantee. Here, we will 717

describe how to obtain such objectives. We start with the 718

description of the MCMC-based approximation algorithm and 719

then prove its upper bounded convergence time. 720

A. MCMC-Based Algorithm (CARE-SAB) 721

Here, we show how to appropriately construct a target 722

distribution and use MCMC to obtain the solution. Consider a 723

scenario with M concurrent flows traversing through the base 724

station. Let Ω be the set of all possible partition policies and 725

S(π) be the average satisfaction factor of a partition policy 726

π ∈ Ω. We represent each partition policy by an M -tuple group 727

index as π = (i, j, . . . , k), where i indicates that the first flow 728

belongs to group i, the second flow belongs to group j, and 729

so on. The objective is to maximize the average PQoS over all 730

users. That is 731

max
π∈Ω

S(π) = max
π∈Ω

⎧⎨
⎩

|π|∑
i=1

Mi∑
j=1

cijγij

⎫⎬
⎭ . (27)

We should note that the size of Ω, i.e., the number of ways that 732

M flows can be partitioned into subgroups, is very large. Based 733

on the result of [47], we have that 734

|Ω| =
M∑
j=1

1
j!

j∑
i=0

(−1)i
(
j

i

)
(j − i)M . (28)

Hence, using exhaustive search, even for a reasonably small 735

number of flows, is infeasible for time-sensitive applications. 736

Moreover, every time a flow joins, terminates, or its channel 737

condition changes, the AP needs to repartition again. Instead, 738

by using the MCMC method, we will show that the time to 739

achieve the near-optimal solution will be substantially reduced. 740

We first define the target distribution as follows: 741

f(π) = Ce
S(π)
TB (29)

whereC is a normalization factor, and TB is a “cooling” param- 742

eter that controls the process convergence. In particular, when 743

TB reaches to a sufficient small value, the algorithm terminates, 744

and the best accepted configuration is returned as the solution. 745

As shown in (29), when S(π) increases, f(π) also increases. 746

Therefore, with high probability, we will draw samples 747

corresponding to S(π), which, by design, will maximize the 748

average user PQoS. Next, we design a mechanism for moving 749

from one state to another in the chain. To do so, we define a 750

neighbor of a partition in the sample space Ω as follows. 751

Definition 5.1: A Partition Policy πj is Called a Neighbor of 752

a Partition Policy πi iff πi and πj Differ in Only One Element: 753

From the aforementioned definition, πj can be generated from 754

πi by replacing an element of πi with an element drawn 755

randomly from the index set I = {1, 2, . . . ,M}. For exam- 756

ple, when M = 5, partition πi = (1, 1, 3, 2, 3) has a neighbor 757

πj = (1, 1, 1, 2, 3) (because πi and πj differ only in the third 758

element). 759
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One should note that, in the context of the MCMC, each760

partition policy corresponds to a state. We now propose a761

simulated-annealing-based algorithm to generate samples ac-762

cording to the designed target distribution. We propose a tran-763

sition function q(πi, πj) that specifies the probability to move764

from state πi to one of its neighboring states πj . Specifically,765

an element of πi is selected uniformly at random, and then it is766

replaced by one of the possible indexes uniformly. Therefore,767

we have that768

q(πi, πj) = q(πj , πi) =
1

2M(M − 1)
. (30)

Consequently, the acceptance probability, i.e., the probability769

that the chain moves from the current state πi to a neighboring770

state πj , is given by771

α(πi, πj) = min

{
1,

f(πj)q(πj , πi)

f(πi)q(πi, πj)

}

=

{
1, if S(πj) ≥ S(πi)

e
S(πj)−S(πi)

TB , if S(πj) < S(πi).
(31)

As defined, the chain will move from the current state πi to a772

new state πj with probability of one, if πj is a better state (state773

has higher user satisfaction value). Otherwise, the chain will774

move to a new state πj with probability of e(S(πj)−S(πi))/TB .775

With this design, the whole state space will be explored,776

if we run the algorithm sufficiently long. Furthermore, the777

Boltzmann distribution will become increasingly more concen-778

trated around the global maximizer, by gradually decreasing the779

temperature TB . Pseudocode of the simulated-annealing-based780

algorithm is described in Algorithm 1.781

Algorithm 1: CARE-SAB Algorithm.

Input: M , ci, FEC code (ni, ki).782

Output: Optimal Flow Partition.783

1: STEP 1: Initialize the starting state π0 and temperature784

T0. Set n = 0.785

2: STEP 2: With probability 1/2, generate a new state πj786

from the proposal q(πn, πj).787

3: STEP 3:788

4: if S(πj) ≥ S(πn) then789

5: πn+1 = πj790

6: else791

7: U ∼ U(0, 1) {Generate a uniform random variable.}792

8: if U < α(πn, πj) = e
S(πj)−S(πn)

Tn then793

9: πn+1 = πj794

10: else795

11: πn+1 = πn796

12: end if797

13: end if798

14: STEP 4: Decrease the temperature Tn+1 = β.Tn where799

β < 1, increase n by 1 and repeat from STEP 2 until800

stopping condition satisfied (∗).801

15: STEP 5: Return a scheme π that produces the802

maximum weighted-average satisfaction factor.803

Remark (∗): The stopping condition can be set by the number 804

of iterations or the difference between the two consecutive 805

states is less than a prespecified value. 806

B. Upper Bound of Convergence Time 807

1) Convergence Correctness: The guarantee of convergence 808

to the target distribution using the CARE-SAB algorithm is 809

shown via the following theorem. 810

Theorem 5.2: Samples drawn from the CARE-SAB algo- 811

rithm form a Markov chain (MC) whose states satisfy the AQ3812

detailed balance equation 813

θ(πi)P (πi, πj) = θ(πj)P (πj , πi) ∀πi, πj ∈ Ω (32)

where θ(πi) and θ(πj) are the stationary distributions of states 814

πi and πj ; P (πi, πj) and P (πj , πi) are, respectively, the transi- 815

tion probabilities from state πi to state πj and vice versa. 816

Proof: The proof is provided in the Appendix. � 817

The result of Theorem 5.2 shows that samples drawn from 818

the designed algorithm form an ergodic MC, i.e., every state can 819

go to every state; thus, it is possible to find an optimal solution 820

as long as the algorithm runs sufficiently long. 821

2) Convergence Time: Here, we will derive an upper bound 822

of convergence time to the target distribution. We first define 823

the variation distance at time step k with respect to an initial 824

state π0 of the MC as 825

�π0
(k) � max

π∈Ω

∣∣P k(π0, π)− θ(π)
∣∣ . (33)

Then, the convergence time of the MC to the target distribution 826

is measured by 827

τπ0
(ε) � min {k : �π0

(k′) ≤ ε ∀ k′ ≥ k} (34)

where 0 < ε is an arbitrary infinitesimal value specifying 828

how close the desired solution to an optimal solution. To 829

bound the convergence time at which the chain approaches its 830

stationary distribution (optimal solution), we use the canon- 831

ical path technique [21]. Letting e = (πx, πy) ∈ Ω2, we de- 832

fine Q(e) � Q(πx, πy) = θ(πx)P (πx, πy), and a graph G = 833

(Ω, E), where (πx, πy) ∈ E iff Q(πx, πy) > 0. For every or- 834

dered pair (πx, πy) ∈ Ω2, a canonical path ςxy through G from 835

πx to πy is specified by a sequence of legal transitions in G 836

that leads from initial state πx to final state πy . Let Γ � {ςxy : 837

πx, πy ∈ Ω} denote the set of all canonical paths. We now 838

define the edge congestion for the set Γ as follows: 839

ρ(Γ) � max
e∈E

1
Q(e)

∑
ςxy�e

θ(πx)θ(πy)|ςxy| (35)

where γxy � e implies that ςxy uses the directed edge e, and 840

|ςxy| denotes the length of the path. The convergence time is 841

bounded by the following proposition. 842

Proposition 5.1: Let M be a finite, time-reversible, and 843

ergodic MC over Ω with self-loop probabilities P (x, x) ≥ 1/2 844

for all x ∈ Ω and stationary distribution π. If the congestion 845

of M is ρ, then the mixing time of M satisfies τx(ε) ≤ 846

ρ(lnπ(x)−1 + ln ε−1), for any choice of initial state x. 847
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We are now ready to bound the mixing time of the proposed848

approximation algorithm CARE-SAB. We choose canonical849

paths ςxy from any state πx to any state πy , which takes T steps,850

changing πxi
to πyi

on the ith step. Thus, when πxi
= πyi

for851

some i, the ith step is just a self-loop. We derive a bound for the852

mixing time of the chain. Considering any edge e = (πu, πv)853

for u �= v, we have854

Q(e) = θ(πu)P (πu, πv)
(a)
= Ce

S(πu)
TB

min
{

1, e
S(πv)−S(πu)

TB

}
2M(M − 1)

=
C

2M(M − 1)
min

{
e

S(πu)
TB , e

S(πv)
TB

} (b)

≥ C

2M(M − 1)
(36)

where (a) follows from (29)–(31), and (b) follows by using the855

fact that a partition policy could have a zero-PQoS value. In856

addition, we have857

θ(πu)θ(πv) = C2e
S(πu)+S(πv)

TB ≤ C2e
2

TB (37)

where the last inequality follows from the fact that S(π) ≤ 1858

for any partition scheme π. We now compute the number of859

canonical paths ςxy that use edge e. Note that a canonical path860

ςxy uses edge e = (πu, πv), where πu and πv differ only in the861

ith element iff πxj
= πuj

for j = i, . . . , T and yj = vj for j =862

0, . . . , i. Thus, the number of canonical paths that use edge e is863

KT−1
m . We now bound the edge congestion as864

ρ = max
e∈Ω

1
Q(e)

∑
ςxy�e

π(x)π(y)|ςxy |

≤ 2CT 2(Km − 1)(Km)T−1e
2NKm

TB . (38)

In addition, we have C = 1/
∑

x∈Ω e(S(x))/TB ≤ 1/|Ω| =865

1/KT
m. Therefore866

ρ ≤ 2T 2e
2NKm

TB . (39)

Using the result from Proposition 5.1 and noting that π(x) ≥867

1/|Ω|=1/KT
m, we then have the convergence time bounded by868

τx(ε) ≤ 2T 2e
2NKm

TB

(
lnKT

m + ln ε−1
)
. (40)

As expected, when the value of ε decreases (i.e., closer to the869

optimal solution), it requires longer runtime. However, as we will870

show in the simulation, on the order of hundred iterations, the871

approximation algorithm can obtain a close-optimal solution.872

VI. SIMULATIONS AND DISCUSSIONS873

A. Basic Setup874

Network Parameters: We consider a realistic wireless875

access network having different types of applications with time-876

varying channel conditions. We first consider a network consist-877

ing of five data flows of different applications and compare the878

performance of different transmission strategies. We then in-879

crease the number of data flows to evaluate the robustness of the880

approximation algorithm. We assume that there are two classes881

of services: delay-sensitive and elastic traffic. The transmitter882

TABLE I
PARAMETERS OF THE INCOMING FLOWS

decides a coding scheme for a flow, based on the cost at which 883

the user had paid to the service provider, i.e., the higher cost, the 884

higher priority. Note that the service class and priority of a data 885

flow can be easily elaborated in the header of the transmitted 886

packets. In the UNI technique, the transmitter uses the priorities 887

of the incoming flows to assign their redundancies, and they 888

will be used in all the techniques for a fair comparison. We 889

consider a wireless channel with a bandwidth of 2 Mb/s, which 890

is equivalent to N = 133 time slots or 133 1.5-kB packets. In 891

addition, an elastic traffic requires 18 data packets per second, 892

corresponding to a rate of 27 kb/s, while a delay-sensitive traffic 893

requires 25 and 30 data packets, corresponding to rates of 37.5 894

and 45 kb/s, for medium and high QoS, to achieve a PQoS 895

value of one. Our parameters are set based on the number of 896

frames per second in video streaming and the standard service 897

specifications [48]. For example, our delay-sensitive flow can 898

be used to model a Voice over IP (VOIP) call (e.g., using G.728 899

standard with a codec interval of 5 (ms) requires a transmission 900

rate of 31.5 kb/s [48]). 901

If the number of data packets received at each receiver is 902

less than the required packets, its satisfaction will decrease in 903

accordance to the PQoS functions, as described in Section III-C. 904

The transmission parameters of the incoming flows are given 905

in Table I. These parameters are set based on the types of ap- 906

plications, priorities of the incoming flows, and the bandwidth 907

availability. In addition, the redundancy used for each incoming 908

flow depends on its priority; for example, in our experiments, 909

we set priorities 1, 2, 3, and 4, corresponding to redundancies 910

of 15%, 20%, 25%, and 30%, respectively. Note that these 911

parameters will be applied to all techniques. 912

Transmission Strategies: We evaluate the performance of the 913

following transmission strategies for comparison. 914

• Unicast (UNI): The UNI scheme transmits data of the 915

incoming flows separately, without using NC. 916

• Random Network Coding (RNC): RNC scheme imple- 917

ments a standard interflow NC technique, where data 918

packets of all flows are combined together using RNC 919

[41]. The coded packets are then broadcasted to all the 920

receivers. 921

• Systematic Random Network Coding (SRNC): SRNC im- 922

plements a simple systematic NC, where original data 923

packets are transmitted in the first phase and coded data 924

packets (generated by using RNC across all data flows) 925

are transmitted in the second phase. 926

• Type of Flow (ToF): The first naïve ToF scheme mixes 927

all data of flows with the same application types. Such a 928

transmission strategy does not have to perform intensive 929

optimization computation; however, it might limit the 930

effect of mismatched mixing of the NC-based schemes, 931

by combining data of flows with the same types. 932
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• Priority of Flow (PoF) Scheme: Differently, the PoF933

scheme selects flows that have the same priority as sub-934

groups to perform NC. The idea of using the PoF scheme935

is to utilize the priority factors of the incoming data flows936

to quickly classify them into different subgroups for NC.937

Intuitively, encoding data of the same priority flows could938

enhance the QoS of the network.939

• Network Coding for Throughput (NCT): The NCT scheme940

is simulated based on the work in [5], which is proposed941

for maximizing the network throughput. In NCT, the942

sender considers the packet at the head of its queue as943

a primary packet and selects side packets to construct944

coded packets so that it maximizes the number of possible945

receivers at the current time slot.946

• CARE/CARE-EXH: This scheme uses the optimal mixing947

solution via exhaustive search for data transmission.948

• CARE-SAB: CARE-SAB uses an approximation algo-949

rithm based on the proposed CARE-SAB algorithm for950

data encoding and scheduling.951

• 2-PCARE: Based on the PCARE scheme described in952

Section IV-D, we simulate 2-PCARE for comparison.953

In this scheme, each incoming flow is divided into two954

equal subflows, and then, these subflows are optimally955

combined for transmission.956

B. Data Recovery957

We first show the benefit of informed mixing and the draw-958

back of blind mixing by examining the probability that all the959

receivers can decode their packets using strategies derived in960

Section IV. Fig. 5(a) shows the probability of data recovery961

versus partition policies, i.e., the way of mixing data when962

packet losses of receivers from D2 to D5 are set to 5% while963

that of receiver D1 is 13%. We map each partition policy to964

an integer on the x-axis. The number of possible partition965

policies is an exponential function of M , and this is equal to966

the sum of the Stirling numbers of the second kind, as shown in967

(28). We also plot the recoverability probabilities for UNI and968

SRNC techniques on the same graph for comparison. They are969

indicated by straight lines since these techniques do not depend970

on the partition policies. Recall that UNI does not mix packets971

from different flows. SRNC sends the original packets and then972

the mixed redundant packets; hence, the amount of mixing here973

is rather minimal. As observed, SRNC is clearly better than974

UNI. It is interesting to note that, at least in this scenario, blind975

mixing is generally better than UNI. As expected, CARE-SAB976

results in different recoverability probabilities, depending on977

which flows are combined with each other. In our program, we978

let the CARE-SAB algorithm run until converged. Based on our979

deeper data analysis generated by the program, the proposed980

CARE-SAB finds the best partition by mixing flows f1 and f4981

into one group and flows f2, f3, and f5 into another group.982

Next, we evaluate the data recovery probability by all re-983

ceivers versus the packet loss probability in Fig. 5(b). In this984

scenario, the packet loss probabilities of receivers Di, i =985

{2, . . . , 5} are shown in Table I, while the packet loss rate of986

receiver D1 is varied from 1% to 22%. As expected, CARE-987

SAB outperforms the other schemes, with considerable gaps,988

Fig. 5. Recoverability probability versus (a) partition scheme and (b) packet
loss rate p1.

due to its selective mixing of the flows. In addition, we ob- 989

serve that, when p1 is less than 18%, SRNC achieves better 990

performance than UNI. In other words, in this erasure regime, 991

mixing data packets across all flows would be more beneficial 992

than transmitting them separately. However, this is not the case 993

when the packet loss p1 is greater than 18%. In such a setting, 994

the UNI scheme outperforms SRNC. The intuition is that SRNC 995

combines the data of all the flows; as a result, each receiver 996

needs to obtain at least a full set of coded packets to recover its 997

data. However, this may not be possible to receiver D1 because 998

it experiences a deep fading, leading to substantial reduction 999

on the overall network recoverability. In such a case, separately 1000

transmitting data to different users will be a better option. 1001

C. User’s PQoS Versus Erasure Probability 1002

We first evaluate the individual PQoS versus the transmission 1003

channel conditions. In particular, we set p3 = p4 = 5%, p2 = 1004

p1 + 0.01, and p5 = p1 + 0.02. The other parameters of the 1005

network are set the same as before in Table I. The base values 1006

of the PQoS, i.e., γ0, of the delay-sensitive and elastic traffic 1007

are set at 0.5 and 0.6, when the number of useful packets 1008

received equals 50% of the intended packets. This setting is to 1009

reflect that delay-sensitive applications are more vulnerable to AQ41010
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Fig. 6. PQoS values of users in different packet error regimes (order of the receivers is the same, as illustrated in the legend).

packet losses than the elastic traffic. The CARE-SAB algorithm1011

runs for 30 iterations, using the normalization factor C = 1,1012

initial temperature T0 = 1, and cooling scale factor β = 0.9.1013

We use the simplest partition policy k = 2 for the PCARE1014

scheme, where each flow is evenly divided into two subflows.1015

We perform many trials and compute the average of the results.1016

Fig. 6 represents the PQoS values across all users in two1017

different regimes of the packet erasure probabilities. In the low-1018

packet-loss regime (upper part in Fig. 6), i.e., p1 = 0.01, all1019

the strategies satisfy the QoS of the first four flows. This is1020

intuitively plausible since, in this case, transmission bandwidth1021

is plenty for these flows, no optimization is needed, and all1022

these users get what they want. However, the RNC scheme1023

significantly decreases the PQoS of D5. This is because, when1024

combining all the data packets together, it cannot recover the1025

transmitted data, resulting in a degraded PQoS. On the other1026

hand, the CARE-based schemes that balance data types and1027

priorities for different groups achieve the best performance.1028

Furthermore, the 2-PCARE scheme with a finer grained data1029

partition policy achieves the best performance.1030

On the other hand, in the high-packet-loss regime (lower1031

part in Fig. 6), i.e., p1 = 0.19, all the receivers with low1032

packet loss rates, i.e., D3 and D4, can still maintain a high1033

PQoS in all transmission strategies. However, the PQoS of the1034

receivers with higher packet loss rates, i.e., D1, D2, and D5,1035

significantly decreases in all strategies. In particular, receiver1036

D2 has its PQoS decreased substantially in the SRNC scheme.1037

The intuition is that mixing up data of all flows makes it1038

difficult for D2 to receive a full set of the coded packets in1039

the high-erasure-probability regime. As a result, D2 is not1040

able to recover its data. As expected, CARE (i.e., exhaustive1041

search) that searches all the possibilities of partition policies1042

always achieves the best performance. However, an interesting1043

observation is that the CARE-SAB algorithm can approximate1044

the optimal solution with only 30 iterations. This significantly1045

reduces the search time compared with the exhaustive search 1046

in larger size problems. Indeed, the PQoS achieved by CARE- 1047

SAB is very close to that of the exhaustive search CARE, with 1048

a marginal gap. 1049

D. Network PQoS and Effective Throughput 1050

Versus Erasure Probability 1051

Next, we compare the network PQoS and effective through- 1052

put of different transmission strategies versus the packet loss 1053

p1. The effective throughput is computed based only on the 1054

received data, contributing to the QoS of the users, without con- 1055

sidering application types. Fig. 7(a) shows the average PQoS 1056

across all receivers. As expected, the average PQoS decreases 1057

with the increase of p1. We observe that RNC has the worst 1058

PQoS out of all strategies. This is because of the degraded PQoS 1059

of receivers that cannot recover the transmitted data due to bad 1060

channel conditions. Interestingly, UNI outperforms RNC with a 1061

significant performance gap, due to its partially recovered data. 1062

On the other hand, in RNC, the receivers need to receive a full 1063

set of coded packets for data decoding; however, this may not 1064

be possible due to poor transmission channel conditions. The 1065

NCT outperforms the other schemes but less than that of the 1066

CARE-based schemes, as shown in Fig. 7(a). This is because 1067

greedily optimizing the throughput without considering the 1068

characteristics of the traffic could significantly decrease the 1069

network QoS. Again, 2-PCARE achieves the best performance, 1070

which is followed by CARE-based schemes. We further ob- 1071

serve that CARE-SAB achieves an identical performance of 1072

CARE (i.e., exhaustive search) with much less runtime. This 1073

confirms the efficiency and robustness of the proposed CARE- 1074

SAB algorithm. 1075

Next, we investigate the network effective throughput versus 1076

the packet error rate in Fig. 7(b). As expected, NCT achieves 1077

the best performance because its objective is to maximize the 1078
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Fig. 7. Network performance of different schemes versus p1 with M = 5: (a) average PQoS and (b) effective network throughput.

Fig. 8. Network performance of different schemes versus M for (a) average PQoS and (b) effective network throughput.

network throughput. Interestingly, CARE-based schemes not1079

only outperform the other techniques but also approximate to1080

NCT, despite that the objective of CARE is to maximize the1081

average PQoS. The explanation is as follows. First, CARE1082

uses PQoS in its formulation, whereby the value of PQoS is1083

computed based on both the effective throughput (i.e., num-1084

ber of useful packets) and characteristics of the information1085

flows. Second, and more importantly, PQoS functions are well1086

designed, so that a small change in effective throughput is1087

transformed into the users’ PQoS. Thus, optimizing the PQoS1088

results in a near-optimum network effective throughput. We1089

additionally observe that the RNC scheme suffers from com-1090

bining the data of all flows, resulting in the worst performance,1091

particularly in the presence of deep channel fading.1092

E. PQoS and Throughput Versus Number of Flows1093

We next examine the overall network PQoS and effective1094

throughput versus the number of data flows in Fig. 8(a) and (b).1095

As expected, the CARE-based schemes outperform the others1096

with considerable gaps. The RNC scheme achieves the worst1097

performance and significantly decreases as M increases. This1098

is because all-flow encoding suffers from the curse of “all or 1099

nothing” of the RNC decoding constraint, i.e., it requires a full 1100

set of encoded packets for data recovery. SRNC outperforms 1101

UNI in the regime of lower packet error rate, while significantly 1102

decreasing with the increase of p1. This is because encoded 1103

packets cannot be recovered due to high lost packets. Interest- 1104

ingly, the two heuristic ToF and PoF schemes achieve better 1105

performance compared with the traditional NC-based and UNI 1106

schemes. However, when M increases, their performance starts 1107

decreasing considerably. As expected, the 2-PCARE scheme 1108

achieves the best performance, due to its finer grained subflow 1109

partition and encoding. We also observe that the CARE-SAB 1110

obtains a competitive performance by using only 30 iterations. 1111

Additionally, Fig. 8(b) illustrates the network effective 1112

throughput versus M . As expected, the NCT that is optimized 1113

for the throughput achieves the best performance. CARE-based 1114

schemes outperform the other techniques, despite that the ob- 1115

jective of CARE is to maximize PQoS. This is because PQoS 1116

is constructed from both the effective throughput (i.e., number 1117

of useful packets) and characteristics of the information flows. 1118

Thus, optimizing the PQoS will result in high network effective 1119

throughput. The RNC achieves the worst network throughput, 1120
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Fig. 9. Average PSNR of video sequences at receivers versus packet lost rate p1.

and its performance decreases significantly with the increase of1121

M . This is consistent with the intuition that when M increases1122

it is more difficult for the receivers to receive a full set of1123

encoded data for decoding.1124

F. PSNR Versus Erasure Probability1125

In addition, we also evaluate the average PSNR based on the1126

luminance (Y) component of Foreman and Coastguard video1127

sequences. We assume that each frame of the video sequences1128

is packetized into an independent network abstraction layer of1129

1500 bytes. Furthermore, in our simulation, we use short video1130

sequences, with the Foreman and Coastguard having 30 and1131

25 packets, respectively. The longer video sequences can be1132

constructed by concatenating multiple frames. Additionally, we1133

assume that the PSNR of the encoded sequences Foreman and1134

Coastguard are 29.95 dB [15] and 45.72 dB [6], respectively,1135

corresponding to no-error transmission of those streams.1136

Fig. 9 illustrates the average PSNR of the two video se-1137

quences using different transmission strategies. In our simu-1138

lation, the transmitter transmits five data flows, consisting of1139

three elastic and two delay-sensitive flows, to five receivers.1140

To compute PSNR, we extract only the received packets of1141

the two video sequences. As expected, when the packet lost1142

rate is small, all schemes perform well with high PSNR. This1143

is because only some of the transmitted data packets were1144

lost. However, when the packet lost rate increases, the video1145

quality at the receivers rapidly degrades. As expected, the1146

proposed CARE-based strategies achieve the highest video1147

qualities, due to their content-aware encoding and scheduling.1148

We also simulated the MU-FEC scheme proposed in [49] for1149

comparison. The MU-FEC scheme exploits intra- and interflow1150

NC for mixing data of different flows at the transmitter to1151

improve bandwidth efficiency. In spite of optimizing its coding1152

for maximizing the network throughput, it does not consider the1153

content of the traffic, resulting in low PSRN. This is the sameAQ5 1154

observation for the NCT scheme, which focuses on through-1155

put maximization instead of network QoS. Interestingly, we1156

observe that the heuristic PoF scheme achieves very good1157

performance in terms of PSNR by combining data of only1158

higher priority flows associated with the video sequences. In 1159

the regime of high erasure rate, with a smaller encoding data 1160

batch, it can successfully transmit data to the receivers with 1161

higher probability. On the other hand, RNC combining all 1162

data together for transmission suffers because most of the data 1163

cannot be recovered at the receivers. 1164

G. CARE-SAB Convergence Rate 1165

We now evaluate the effectiveness and robustness of the 1166

CARE-SAB algorithm. In these experiments, we consider data 1167

traffic consisting of eight data flows, where the first five flows 1168

are the same as before (in Table I), and the additional flows 1169

include one elastic and two delay-sensitive flows that are a 1170

copy of D2 and D4, respectively. We have a total of more 1171

than 4 × 103 possible flow partition policies. To illustrate the 1172

convergence of the proposed CARE-SAB, we vary the channel 1173

conditions randomly with the packet loss rates in the range 1174

between 1% and 20%. In the CARE-SAB algorithm, the initial 1175

state is set by grouping all flows together. Fig. 10(a) and (b) il- 1176

lustrates a snapshot of the PQoS values changing with respect to 1177

the iteration and actual runtime, respectively. The CARE-EXH 1178

achieves the best performance by using exhaustive search for 1179

all possible partition policies and selects the best partition. On 1180

the other hand, CARE-SAB schemes implement the proposed 1181

approximation method to find the optimal partition policy. The 1182

CARE-SAB-Iter represents state by state the chain visits in AQ61183

each iteration, whereas the CARE-SAB records the maximum 1184

PQoS values, which have been obtained up to that iteration. 1185

The CARE-SAB schemes first aggressively “explore” states, 1186

even the ones with low value of PQoS, and gradually “cool” 1187

down to the optimal solution. As illustrated in Fig. 10(a), it 1188

takes about 200 iterations (about 5% of the search space) for the 1189

CARE-SAB schemes to “hit” the optimal solution, indicated 1190

by the PQoS merged to that of the CARE-EXH. The simu- 1191

lation result is consistent with the theoretical analysis of the 1192

Theorem 5.2, i.e., setting the number of iterations sufficiently 1193

large, an arbitrarily near-optimal solution can be obtained via 1194

the proposed CARE-SAB algorithm. 1195

We further measure the actual runtime of the algorithm based 1196

on the elapsed time of the algorithm implemented on our 1197

laptop (OS Window 7, Intel Core i5 with 4-GB RAM). As illus- 1198

trated in Fig. 10(b), it takes about 0.46 s for the CARE-SAB 1199

schemes to find the optimal solution for the case of M=8 1200

flows. We note that this is only one snapshot of a trial. In prac- 1201

tice, the runtime could be much less than that, if we eliminate 1202

the effect of other concurrent processes in the machine. 1203

We further evaluate the convergence robustness of the pro- 1204

posed CARE-SAB by using different values of β. We recall 1205

that β is the parameter controlling the “cooling” process of 1206

the search algorithm. Fig. 11(a) illustrates the convergence of 1207

CARE-SAB-Iter for different values of β in [0.9, 0.99]. As 1208

observed, it requires more time for the system with smaller 1209

values of β to converge to the optimal solution. This is because 1210

the system with smaller values of β (i.e., β × Tn decreases 1211

faster) “jumps” with larger steps at the beginning of the process 1212

that may visit several “bad” states before converging to the 1213

optimal solution. On the other hand, with greater values of 1214
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Fig. 10. CARE-SAB convergence versus (a) iteration and (b) time (in seconds): M = 8, T0 = 100, and β = 0.9.

Fig. 11. CARE-SAB convergence for different values of β, M = 8, T0 = 100.

β, the system is more conservative in giving high probability1215

for exploring “good” states. This setting could reduce the1216

“burning” time of the process before convergence, but it may1217

result in a local optimal solution. Our experiments illustrated1218

in Fig. 11(a) shows that the system quickly converges to the1219

optimal solution within 300 iterations, for all implemented1220

values of β. Fig. 11(b) illustrates the maximal value of PQoS1221

that has been found up to the current iteration. Additionally, the1222

result shows that, for some case, e.g., β = 0.99, the algorithm1223

quickly obtains the optimal solution in only 100 iterations1224

(about 2.5% of the search space).1225

Similar performance is obtained for the case of M = 10,1226

as illustrated in Fig. 12. As we can observe, the proposed1227

algorithm CARE-SAB quickly converges to the optimal solu-1228

tion and is robust with respect to the values of β. For some1229

cases, e.g., β = 0.9, the CARE-SAB needs more iterations1230

to find the optimal solution (about 450 iterations). However,1231

we should note that, when M = 10, there could have 115 9751232

possible partition policies. Therefore, the increase is justifiable1233

compared with the exponential increase of the search space.1234

Additionally, we further evaluate the convergence rate of 1235

the proposed CARE-SAB with different values of the initial 1236

temperature T0. Fig. 13(a) and (b) illustrates the convergence 1237

of CARE-SAB-Iter and CARE-SAB for M = 8 and β = 0.9, 1238

respectively. As illustrated, the proposed algorithm is robust 1239

with respect to different initial values of T0. We further observe 1240

that initializing T0 with different values only slightly affects 1241

the system convergence rate. This is an expected result and 1242

consistent with the theoretical analysis because the temperature 1243

controls how the algorithm explores the search space. In partic- 1244

ular, greater value of T0 provides more freedom to the algorithm 1245

to explore more states, resulting in longer convergence time. 1246

However, such a setting will ensure that the global optimal so- 1247

lution will be “hit” with high probability. Similar results are also 1248

obtained for the case of M = 10 flows, as illustrated in Fig. 14. 1249

With larger search space, in the worst case (T0=100), the algo- 1250

rithm requires about 400 iterations to find the optimal solution. 1251

Finally, we evaluate the scalability and efficiency of the 1252

proposed CARE-SAB in Fig. 15. In particular, Fig. 15(a) AQ71253

compares the performance of the CARE-SAB using different 1254
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Fig. 12. CARE-SAB convergence for different values of β, M = 10, T0 = 100.

Fig. 13. CARE-SAB convergence for different values of T0, M = 8, β = 0.9.

Fig. 14. CARE-SAB convergence for different values of T0, M = 10, β = 0.9.

values of iterations with the exhaustive search CARE-EXH1255

versus M , where CARE-10 and CARE-50 represent CARE-1256

SAB that uses 10 and 50 iterations, respectively. As expected,1257

when M increases and given a fixed number of iterations,1258

the performance of CARE-SAB schemes decreases due to the1259

larger search space. However, it is interesting to observe that 1260

CARE-SAB schemes can achieve about 90% performance of 1261

the exhaustive search despite using a fixed number of iterations. 1262

The results illustrate that the designed algorithm is scaled well 1263

with the problem size. 1264
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Fig. 15. Evaluating the scalability and robustness of CARE-SAB with T0 = 1 and β = 0.9: (a) average PQoS for different numbers of iterations and (b) number
of iterations for CARE-SAB to obtain optimal partition policy and percentage compared with CARE-EXH.

We further evaluate the scalability of CARE-SAB algorithm1265

by changing M in Fig. 15(b). In particular, we compute the1266

average number of iterations that the CARE-SAB algorithm1267

consumes to find an optimal solution. In our experiment, for1268

each M , we run the algorithm many times and compute the1269

average of the results. Fig. 15 illustrates the average number1270

of iterations of CARE-SAB and the corresponding percentage1271

compared with CARE-EXH for M = 2, . . . , 10. As expected,1272

the number of iterations of CARE-SAB (i.e., the red line)1273

increases with M , due to the exponential increase of the search1274

space. However, compared with the exhaustive search CARE-1275

EXH, the number of states that CARE-SAB explores to find1276

the optimal solution decreases significantly (i.e., the dash blue1277

curve), i.e., from 50% for M = 2 to 3.03% for M = 8 and to1278

0.15% for M = 10. The simulation results also confirm that the1279

proposed CARE-SAB algorithm is also scaled well with M .1280

VII. CONCLUSION1281

We have investigated the problem of mixing data of traffic1282

with different service classes to improve the network QoS.1283

We first showed that exhaustively mixing data across different1284

data flows at every opportunity may substantially decrease1285

the network QoS. We then proposed CARE, a context-aware1286

interflow network coding and scheduling, to maximize the QoS1287

across all the receivers based on the user satisfaction PQoS. The1288

objective function of CARE is formulated by considering not1289

only the characteristics of traffic but also the service classes and1290

channel conditions. We then showed the hardness of finding an1291

optimal solution to CARE and proposed an efficient approxima-1292

tion algorithm, i.e., CARE-SAB, to obtain a guaranteed near-1293

optimal solution. We further proved the correctness and derived1294

an upper bound on the convergence time of the CARE-SAB1295

algorithm. In addition, we described the PCARE scheme that1296

partially combines data of different flows to further improve1297

the network performance. Simulation results showed that up to1298

a 50% performance gain of the proposed CARE-based schemes1299

can be achieved compared with the existing approaches (e.g.,1300

RNC). The results also showed that the approximation algo- 1301

rithm is robust with respect to the heuristic parameters and 1302

well scaled with the number of data flows. To the best of 1303

our knowledge, this work is one of a few works studying NC 1304

from the QoS point of view. One of our future extensions 1305

is to investigate an efficient algorithm for optimal subflow 1306

partitioning and encoding of the PCARE scheme. 1307

APPENDIX 1308

PROOF OF THEOREM 5.2 1309

Let us consider any two states πi, πj ∈ Ω. According to the 1310

proposed target distribution, we have θ(πi)=Ce(S(πi))/TB and 1311

θ(πj) = Ce(S(πj))/TB . Therefore, we have two possibilities. 1312

Case 1: If S(πi) ≤ S(πj), we first consider the direction 1313

moving from state πi to state πj . From (31), we 1314

have α(πi, πj) = 1. Thus 1315

θ(πi)P (πi, πj) = Ce
S(πi)

TB q(πi, πj). (A.1)

For the direction from state πj to state πj , we have 1316

α(πj , πi) = e
S(πi)−S(πj)

TB . (A.2)

Hence 1317

θ(πj)P (πj , πi) = Ce
S(πj)

TB q(πj , πi)α(πj , πi)

= Ce
S(πj)

TB q(πj , πi)e
S(πi)−S(πj)

TB

= Ce
S(πi)

TB q(πj , πi). (A.3)

Since q(πi, πj) = q(πj , πi), therefore, from (A.1) 1318

and (A.3), we obtain the detailed balance 1319

equation. 1320

Case 2: Now consider the scenario where S(πi) > S(πj). 1321

Similarly, from (31), we have 1322

α(πi, πj) = e
S(πj)−S(πi)

TB

α(πj , πi) = 1.
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Thus1323

θ(πi)P (πi, πj) = Ce
S(πi)

TB q(πi, πj)

= Ce
S(πi)

TB q(πj , πi)e
S(πj)−S(πi)

TB

= Ce
S(πj)

TB q(πj , πi) (A.4)

θ(πj)P (πj , πi) = Ce
S(πj)

TB q(πj , πi)α(πj , πi)

= Ce
S(πj)

TB q(πj , πi). (A.5)

From (A.4) and (A.5), we have the detailed bal-1324

ance equation; therefore, the theorem follows. �1325
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