
1

Robust Data-Optimized Stochastic
Analog-to-Digital Converters

Thinh Nguyen, Member, IEEE

Abstract— The majority of Analog-to-Digital converters (ADC)
are designed without taking into consideration the distribution of
input signal. In this paper, we present a novel ADC architecture
that is optimized for a given input signal’s statistics. The new
robust data-optimized stochastic flash (RDSF) ADC achieves
robustness and high accuracy by employing (a) a large number of
1-bit quantizers operating in parallel with an additive noise and
(b) a novel probability density transform (PDT). We demonstrate
the performance gain of the RDSF over the conventional flash
ADC using simulations and theoretical analysis.

Index Terms— Data converters, quantization

I. INTRODUCTION

Conventional flash A-D converters (ADC) are implemented
using a number of 1-bit comparators connecting together in
series [1]. When a particular comparator fails, a certain output
value will never be obtained, thus reducing the robustness of
an ADC. In addition, a conventional flash ADC does not take
into account the statistics of input signal, and therefore, its
performance is not optimal. Knowing the statistics of the input
signal is beneficial. For example, if the input signal is known to
concentrate around a certain value x, one can design an ADC
that has small quantization step sizes in the regions around x,
and larger quantization step sizes in other regions [2]. This
design effectively reduces the quantization errors for most
of the input values, resulting in small average quantization
error. However, this approach requires a non-uniform quantizer
which has higher circuit implementation complexity than that
of a simple uniform quantizer. In this paper, we extend the
works of McDonnell et al. [3] to design a simple, robust data-
optimized stochastic flash (RDSF) ADC that achieves high
accuracy using only 1-bit quantizers and an additive noise.
We now begin with a few related work.

II. RELATED WORK

The idea of adding random noise to the input signal to
reduce noise has been explored by many researchers over the
years. In the image processing community, researchers have
been employing dithering techniques in which random noise
is added to the image before quantization in order reduce
the quantization errors. For example, to improve the PCM
coding [4] of an image, Roberts proposed the pseudo noise
technique - a method that removes the signal dependence
of the quantization noise [5]. Similarly, research in sensor
networks employ multiple sensors to collaboratively estimate
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data under noisy environment, and thus, there is no need to
add an artificial noise [6].

The stochastic framework on which this paper is based on,
has its root in the stochastic resonance (SR) phenomenon in
physics. SR phenomenon occurs when the combination of a
small periodic signal and a large noise drives a nonlinear
system to switch between the two stable states. With the
appropriate value of noise, the period of the state switching
equals to the period of the small signal. Thus, weak informa-
tion signal can be amplified and optimized by the assistance
of noise [7]. Recently, Stocks et al. proposed Suprathresh-
old Stochastic Resonance (SSR) using multilevel thresholds
which can extend the dynamic range of an input signal [8].
Subsequently, Rousseau et al. presented a detail analysis on
the SNR performance of such SSR systems [9]. Most similar
to our work is that of McDonnell et al. [10][3]. In this work,
McDonnell et al. provided a framework for designing ADC
using SSR1. Incidentally, our basic stochastic ADC is a special
case of SSR. On the other hand, we propose a new RDSF ADC
based on a probability density transform (PDT) technique to
increase the converter’s accuracy. The PDT technique first
transforms an input signal into a high variance signal. Next,
a random independent noise is added to it, and the resulted
signal is quantized by a set of simple 1-bit uniform quantizers.
Finally, an digital output is estimated as the average of all the
1-bit values from the quantizers. The performance of the PDT
technique depends on the probability density distribution of
the input signals. While our proposed approach relies on prior
knowledge about the data distribution, this prior knowledge
can be imprecise. In particular, we assume to know only the
distribution type of the input signal, not its specific distribution
parameters. We now describe the architecture of a basic RSF
ADC.

III. RSF ADC

Figure 1 shows the architecture for the basic stochastic flash
ADC proposed by Stocks and McDonnell et al. in [8][3]. This
structure consists of a set of M coarse quantizers, e.g., 1-bit
comparators, operating in parallel. Independent and identically
distributed noise is then added to the input signal, and the
results are fed to the quantizers. The estimated signal is then
the average of all the M digital outputs from the M quantizers.
In [3], the thresholds of different comparators are different in
order to create a M different levels. We note that designing
circuits having a large number of different thresholds at fine

1The idea of stochastic flash converter was proposed independently in 1992
by Ian Galton, however, the author did not publish the idea.
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quantization levels is a challenging task. Thus, our basic RSF
ADC is a special case of SSR where the thresholds of all
comparators are identical and equal to 0. Assuming that the
output from each quantizer is either 1 or -1, then the maximum
number of different output values is M+1. Hence, this design
still operates probabilistically as an M+1-level quantizer, and
the output’s accuracy is on the order of

√
M . The performance
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Fig. 1. Diagram of a stochastic flash ADC consisting of M 1-bit quantizers.
Uncorrelated noise is added to the input signal before quantization. The
accurate output is obtained by averaging the M digital outputs.

of this RSF ADC depends on the noise characteristics. Clearly,
the noise samples need to be independent and identically
distributed in order for this design to work. Furthermore, the
noise distribution plays a crucial role in the performance of the
RSF ADC. In this paper, we only consider the performance
of the RSF ADC under the addition of an uniform noise since
the circuits for generating uniformly distributed analog noise
have been implemented by many researchers [11]. We derived
the following result:

Theorem 1: If an input signal x and an additive noise ni
are uniformly distributed in the intervals [−α, α] and [−β, β],
respectively, with β ≥ α, then the quantization error power E
using the estimator x̂ = α

M

∑M
i=1

sign(x+ ni) is

E =
α2

3
− 2α3

3β
+

(M − 1)α4

3Mβ2
+
α2

M
. (1)

Proof: See the Appendix.
Theorem 1 states that the quantization error power is

inversely proportional to M . This agrees with our intuition
that a larger M leads to a smaller quantization error. Also,
when a few quantizers fail, the quantization error will increase
only slightly, resulting in high robustness.

Theorem 2: If an input signal x has a pdf p(x) with x
symmetrically distributed over [−α, α] and an additive noise
is independent and uniformly distributed over [−α, α], then
the quantization error power Eg is

Eg =
α2 − V ar(x)

M
. (2)

Proof: (outline): Using the same derivation as in the
proof of Theorem 1, setting β = α, and leaving the integration
intact, we obtain the desired result.
Theorem 2 indicates that an input signal with high variance
will result in a lower quantization error. This fact will be
used to design the probability density transformation (PDT)
technique in the RDSF ADC.

IV. RDSF ADC

In this section, we first discuss the framework of RDSF
ADC and the properties of a good probability density trans-
form. We then propose a good generic transform function and
provide the theoretical performance of the proposed RDSF
ADC for the input signals having Gaussian-like distributions.

Framework. Figure 2 shows the diagram for the proposed
RDSF ADC. The input signal is first transformed to result
in a large variance signal. Next, the transformed signal is
fed to the basic RSF ADC. Finally, the digital output signal
from the RSF ADC is inversely transformed to obtain the
correct digital output. Clearly, not every input signal needs to

PDT
Stochastic

Flash ADC

Inverse

PDT

x(t) x’(i)y(t) y’(i)

Fig. 2. Diagram of the RDSF ADC. The input signal is transformed before
feeding to the basic RSF ADC. The digital output of RSF ADC is transformed
back to the correct digital signal.

be transformed. If the distribution of an input signal already
has a high variance, no transformation is needed. Figure 3
shows three canonical shapes of typical distributions with zero
means and different variances. Ranking in the order from
lowest to highest variances are Gaussian-like, uniform, and
bimodal-like signals. Since the proposed RSF ADC performs
better for the input signals having large variances (bimodal-
like distributions), the goal of the PDT is to transform the
probability density function of a given input signal into a
bimodal-like distribution.
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Fig. 3. (a) A Gaussian-like distribution has small variance; (b) A uniform-
like distribution has medium variance; (c) A bimodal distribution has large
variance.

PDT. The transform function is critical for the effectiveness
of the PDT framework. As such, we advocate the following
requirements and properties for a good PDT.

1. The transform must be invertible. This requirement is
obvious as one must be able to get back the original signal.

2. The transform must preserve the range of an input signal.
This requirement enables a practical circuit implementation
with regard to power usage and reference voltage. Scaling up
the input signal results in power increase, and changing the
reference voltage within a circuit complicates the design.

3. The transform must be designed such that the total
quantization error of the reconstructed signal is smaller than
that obtained by the basic RSF ADC. We note that a transform
function may produce a very small quantization error power
for the transformed signal. However, when the transformed
signal is converted back to the original signal using its inverse



3

transform, this small quantization error power might be am-
plified significantly, making the PDT framework ineffective.
Our goal is to design a transform function such that (a) the
quantization error reduces after the forward transform, and
(b) does not amplify after the inverse transform. Given this
transform, the overall quantization error using the RDSF ADC
(x(t)− x′(i) in Figure 2) will equal to the quantization error
of the transformed input signal (y(t) − y′(i)), which will be
smaller than the quantization error produced by the basic RSF
ADC.

4. Both forward and inverse transforms should be simple in
order to be realized in analog and digital circuits.

We now present a generic transform function called Split
and Shift (SAS) to be used for Gaussian-like input signals.
SAS meets all the above requirements/properties.

Split and Shift (SAS). The idea for SAS is simple. First,
we note that a non-zero mean distribution can be easily trans-
formed into a zero-mean distribution by simply subtracting the
mean from the random variable. Hence, our description of SAS
will be referred to a random variable x having zero mean and
bounded between ±α. Taking advantage of the symmetry and
the concentration of values around the mean of a Gaussian-like
distribution, we perform the following operations to change
a Gaussian-like distribution into a bimodal-like distribution.
First, we split the pdf(x) of the Gaussian-like distribution into
left and right halves (x < 0 and x ≥ 0). Second, we move
the left half to the right and the right half to the left by α.
Pictorially, the SAS operations change the pdf’s shape of a
signal in Figure 3(a) to Figure 3(c).

Mathematically, the SAS transform is described by

y = T (x) =

{

x+ α if x < 0
x− α if x ≥ 0

}

, (3)

and the corresponding inverse transform is

x = T−1(y) =

{

y − α if y > 0
y + α if y ≤ 0

}

. (4)

Theorem 3: SAS transform has following properties:
1. It is invertible.
2. It preserves the range of the input signals.
3. It results in the quantization error of the transformed
signal equals to the overall quantization error.

Proof: Properties 1 and 2 are obviously true from the
definitions of the forward and inverse transforms. For property
3, let us denote 4 and 4′ as the quantization error of the
transformed signal and the original signal, respectively. We
want to show that 4 = 4′. Denote the transformed value
as y = T (x) and the quantized transformed value as y′, then
4 = y′−y. Similarly, denote the original input signal as x and
the reconstructed input signal x′ = T−1(y′), then 4′ = x′−x.
Consider the case y′ ≤ 0, we have x′ = T−1(y′) = y′ + α =
y+4+α. Now, 4′ = x′−x = (y+4+α)− (y+α) = 4.
A similar argument can be made for the case y′ > 0. Hence
4 = 4′ for y ∈ [−α, α].

Property 3 is important as the SAS inverse transform
guarantees no error amplification. In other words, the forward
SAS transform helps reduce the quantization errors of the input

signals in the transformed domain, and these errors remain
the same after the inverse SAS transform. Hence, using PDT
technique results in smaller overall quantization errors.

Based on Theorem 4, the SAS transform is a good PDT
function since it satisfies the first three requirements above.
We also note that the analog circuit for the forward SAS
transform is simple (property 4) since it only involves adding
and subtracting α from the signal. Similarly, the inverse
transform in the digital domain is also extremely simple.
Hence, we believe that a practical realization of the RDSF
ADC is possible. We now present the theoretical performance
of the proposed RDSF ADC using SAS PDT.

Theorem 4: Using the RDSF with a SAS transform, the
quantization error power E of an input signal having Gaus-
sian distribution with zero mean and variance δ2 with δ << α
is approximately

E =

2
√

2αδ√
π

(1− e−
α2

2δ2 )− δ2

M
, (5)

where M is the number of 1-bit quantizers and [−α, α] is the
cut-off range of the input signal.

Proof: See the Appendix.

V. RESULTS AND DISCUSSIONS

In this section, we present the simulation and theoretical
results on quantization noise power for the proposed RDSF
converters under a variety of settings. In addition, we show
visually the robustness of our proposed RDSF over the con-
ventional flash ADC by using the RDSF converter to quantize
the image data.

In our simulations, we use the Gaussian input signals with
zero means, each having different standard deviations. The
input signals are limited to the range [−1, 1] by thresholding
all values outside of [−1, 1] to 1 or -1. Figure 4 shows the
quantization error power of the RSF and the RDSF ADCs as
a function of the standard deviations of the input signal. As
expected, the quantization error power of the RDSF ADC is
much smaller than that of an RSF ADC. The performance
gap, however, decreases with the increase of the input signal’s
standard deviation. This phenomenon is plausible since, as
the standard deviation increases, the shape of the probability
density distribution of the input signal widens, whence, the
SAS operations no longer produce two distinct lumps. There-
fore, the PDT technique is less effective. At one extremity, the
SAS operations on an uniform distribution will not reduce the
quantization error.

Figure 4 also shows that, for the input signals with small
variances, the simulated quantization error powers agree very
well with the theoretical predictions from Theorem 4. How-
ever, as the variance of the input signal increases, the theo-
retical approximation in Theorem 4 fails since the condition
δ << α no longer holds.

To quantify the performance of the proposed ADC for real
data, we chose to quantize the Haar wavelet coefficients of
natural images since they typically follow a Gaussian-like
distribution. We first decompose the standard Camera and
Lena images into wavelet coefficients. Next, the diagonal
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Fig. 4. Simulation and theoretical results on quantization error vs. std for
RDSF ADC with Gaussian input signals.

wavelet coefficients at level 1 are first normalized to the range
[−1, 1] and then quantized using RDSF ADC. Figure 5 shows
the quantization error power as a function of the number of
quantizers for the wavelet coefficients of the Camera and Lena
images. As predicted, the quantization error decreases as the
number of quantizers increases as observed with Gaussian-
like input signals. The plots in Figure 5 also show that using
PDT technique results in much smaller quantization errors than
those obtained with the basic RSF ADC. To visually compare
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Fig. 5. Quantization error power for the quantized wavelet coefficients as a
function of the number of 1-bit quantizers M for (a) the Camera and (b) the
Lena images.

the robustness of the RDSF ADC and the conventional flash
ADC, we quantize the wavelet coefficients of the Camera and
Lena images using the conventional flash ADC and the RDSF
ADC. The conventional flash ADC has 9 levels which requires
9 op-amps. From Theorem 2, in order to have the same
quantization error, the number of quantizers for the stochastic
flash needs to be 81

√
2 ≈ 114. However, using the PDT, we

observe empirically that only 40 quantizers are needed in the

RDSF ADC to obtain the same average quantization error.
Both RDSF and conventional flash ADCs are then subject
to a 10% failure rate. In other words, there are 1 and 4
quantizer failures in the conventional flash and the RDSF
ADC, respectively. Figure 6(a) shows the original Camera
image, Figure 6(b) shows the original wavelet coefficients
of the Camera image while Figures 6(c) and 6(d) show the
quantized wavelet coefficients resulted from conventional flash
and the RDSF ADCs under failure conditions, respectively.
The average quantization error powers for the RDSF and
the conventional flash ADCs are 0.18 and 0.19, respectively.
Although the average quantization error power of the RDSF
ADC is slightly smaller than that of conventional flash, the
main advantage of RDSF over conventional flash is its ability
to diffuse the errors. This advantage is seen in the visual
differences between Figures 6(c) and 6(d).

Compared to the original wavelet image in Figure 6(b), all
the high intensity values are missing in Figure 6(c), noticeably
along the tripod’s leg and handle. This result is not surprising
since, when a quantizer in the conventional flash fails, certain
input signals can never be converted correctly. On the other
hand, due to the stochastic nature of the RDSF ADC, its
quantization error is distributed among different quantization
levels, thus enabling a graceful degradation in the output
quality.

Comparisons with other ADCs. The biggest disadvantage
of the RDSF ADC is that the number of comparators is larger
than that of the conventional flash, pipelined, and sigma-
delta ADCs. The sigma-delta ADC has the smallest number
of comparators, but it requires high oversampling rate. The
pipelined ADC has the second smallest number of compara-
tors, however, it is slow due to successive approximations.
On the other hand, the RDSF is potentially the fastest one
since the large resistor loads (in front of the op-amp) are
not required due to identical reference voltages. This also
makes the design of the RDSF very simple. Due to the large
number of comparators, the RDSF probably makes sense only
for ADCs with accuracy of 6-bit or less with the current
technology. Despite of this disadvantage, the RDSF is most
robust in harsh conditions, e.g. radiation exposure which can
cause op-amp (comparator) failures.
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VII. CONCLUSIONS

In this work, we have extended the existing stochastic
framework for designing ADCs which incorporates the data
statistics in order to (1) reduce the quantization errors and (2)
to increase the robustness. We have presented simulation re-
sults and derived the theoretical performance for our proposed
RDSF ADC. We have shown that the proposed RDSF ADC
using the PDT technique can outperform the basic RSF ADC
substantially.
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Fig. 6. (a) The original Camera image; (b) Original wavelet coefficients;
(c) Quantized wavelet coefficients using the conventional flash ADC, and (d)
Quantized wavelet coefficients using the RDSF ADC.
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APPENDIX I
PROOF OF THEOREM 1

Let us denote the probability density function of the input
signal x as p(x), the quantization error as e, the additive noise
as n, and the number of 1-bit quantizers as M . We assume

that x ∈ [−α, α] and n ∈ [−β, β] with β ≥ α. Then, the
quantization error is computed as

e = x− α

M

M
∑

i=1

sign(x+ ni), (6)

where ni is the noise random sample for each of the M
quantizers. Note that sign(x + ni) is either 1 or -1, whence
we must scale the estimate by a factor of α to match the input
signal. By letting k =

∑M
i=1

sign(x+ ni), the quantization
error power E is

E =

∫ α

−α

k=M
∑

k=−M

(

x− αk

M

)2

p(x, k)dx, (7)

where p(x, k) is the joint distribution of x and k. Furthermore,
we note that k can only take on the values −M,−M +
2,−M+4, ...,M . Using Bayes rule and expanding the square
term, we have

E =

∫ α

−α

k=M
∑

k=−M

{

(x2 − 2αxk

M
+
α2k2

M2
)p(k|x)

}

p(x)dx (8)

where p(k|x) denotes the conditional probability of k given x.
k depends on the number of 1’s, i.e., the number of instances
in which x+n > 0 for a given x. Let i be the number of 1’s,
hence j = M − i is the number of -1’s. Since i+ j = M and
i− j = k, we have k = 2i−M .

Now, the variable i follows a Bernoulli distribution, whence

p(i|x) =

(

M
i

)

p(1|x)i(1− p(1|x)M−i),

where p(1|x) denotes the probability that sign(x + n) = 1
with x ∈ [−α, α]. Since the noise is uniformly distributed
over [−β, β], it can easily be shown that p(1|x) = x+β

2β
. By

substituting k = 2i−M in Equation (8), we have

E =

∫ α

−α

(

M
∑

i=0

x2p(i|x)

)

p(x)dx

−
∫ α

−α

(

M
∑

i=0

2αx(2i−M)

M
p(i|x)

)

p(x)dx

+

∫ α

−α

(

M
∑

i=0

α2(2i−M)2

M2
p(i|x)

)

p(x)dx. (9)

The sum in the first term in the above equation is
M
∑

i=0

x2p(i|x) = x2 (10)

since
∑M

i=0
p(i|x) = 1. The sum in the second term of

Equation (9) is
M
∑

i=0

4αxi

M
p(i|x)−

M
∑

i=0

2αxp(i|x)

= 4αxp(1|x)− 2αx. (11)

The reduction is based on the observation that the first term
in the Equation (11) is simply the scaled mean of a Bernoulli
random variable which has the form of np. By replacing n =



6

M and p = p(1|x), we arrive at the above results. Similarly,
using the variance and mean of a Bernoulli variable [12], the
sum in the third term of Equation (9) can be reduced to

4α2

M2

(

Mp(1|x)(1− p(1|x)) + (Mp(1|x))2
)

− 4α2p(1|x) + 1.

(12)
Now, by combining Equations (10), (11), (12), setting
p(1|x) = x+β

2β
, p(x) = 1/2α (uniform distribution), and

performing explicit integration, we obtain the quantization
error power

E =
α2

3
− 2α3

3β
+

(M − 1)α4

3Mβ2
+
α2

M
(13)

APPENDIX II
PROOF OF THEOREM 4

We first calculate the variance of the transformed signal,
then use Theorem 3 to obtain the desired result. The resulting
bimodal-like pdf is symmetric; therefore, to determine the
variance, we only need to compute one side of the integral, and
multiply the result by 2. In particular, we compute the right

half of the integral 1√
2πδ

∫ α

0
x2e−

(x−α)2

2δ2 dx. By substituting
y = x− α, we have

1√
2πδ

∫ α

0

x2e−
(x−α)2

2δ2 dx =
1√
2πδ

∫ 0

−α
(y + α)2e−

y2

2δ2 dy

=
1√
2πδ

∫ 0

−α
(y2 + 2αy + α2)e−

y2

2δ2 dy

≈ δ2

2
−
√

2αδ√
π

(1− e−
α2

2δ2 ) +
α2

2
, (14)

where
1√
2πδ

∫ 0

−α y
2e−

y2

δ2 dy ≈ σ2

2
and 1√

2πδ

∫ 0

−α α
2e−

y2

δ2 dy ≈ α2

2
,

due to the fact that, for δ << α, the pdf is negligible
outside the interval [−α, α]. Multiplying the right-hand side
of Equation (14) by 2 to obtain the variance, and combining
it with Equation (2), we obtain the desired quantization error
power for the transformed signal. Since the error does not
change through the SAS inverse transform, Theorem 4 is
proved.
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