
1

Localization In Wireless Sensor Networks based on
Support Vector Machines

Duc A. Tran, Member, IEEE, and Thinh Nguyen, Member, IEEE

Abstract— We consider the problem of estimating the geo-
graphic locations of nodes in a wireless sensor network where
most sensors are without an effective self-positioning function-
ality. We propose LSVM – a novel solution with the following
merits. First, LSVM localizes the network based on mere connec-
tivity information (i.e., hop counts only), and, therefore, is simple
and does not require specialized ranging hardware or assisting
mobile devices as in most existing techniques. Second, LSVM
is based on Support Vector Machine (SVM) learning. Although
SVM is a classification method, we show its applicability to the
localization problem and prove that the localization error can
be upper-bounded by any small threshold given an appropriate
training data size. Third, LSVM addresses the border and
coverage-hole problems effectively. Last but not least, LSVM
offers fast localization in a distributed manner with efficient use
of processing and communication resources. We also propose a
modified version of mass-spring optimization to further improve
the location estimation in LSVM. The promising performance of
LSVM is exhibited by our simulation study.

Index Terms— Sensor networks, position estimation, sensor
localization, SVM, mass spring optimization

I. INTRODUCTION

Wireless sensor networks are typically consisted of inex-
pensive sensing devices with limited resources. In most cases,
sensors are not equipped with any GPS-like receiver, or when
such an unit is installed it does not function due to environ-
mental difficulties. On the other hand, knowing the geographic
locations of the sensor nodes is critical to many tasks of a
sensor network such as network management, event detection,
geography-based query processing, and routing. Therefore, an
important problem is to devise an accurate, efficient, and fast-
converging technique for estimating the sensor locations given
that the true location information is minimally or un- known.

A straightforward localization approach is to gather the
information (e.g., connectivity, pair-wise distance measure)
about the entire network into one place, where the collected
information is processed centrally to estimate the sensors’
locations using mathematical algorithms such as Semidefinite
Programming [1] and Multidimensional Scaling [2]. Despite
its excellent approximation, this centralized approach is im-
practical for large-scale sensor networks due to high compu-
tation and communication costs.

Many techniques have been proposed that attempt local-
ization in a distributed manner. The relaxation-based tech-

This work is supported in part by the National Science Foundation under
Grant No. CNS-0615055.

D. A. Tran (duc.tran@udayton.edu) is with the Department of Computer
Science, University of Dayton, OH 45469.

T. Nguyen (thinhq@eecs.oregonstate.edu) is with the School of Electrical
Engineering and Computer Science, Oregon State University, OR 97331.

niques [3], [4] start with all the nodes in initial positions
and keep refining their positions using algorithms such as
local neighborhood multilateration and convex optimization.
The coordinate-system stitching techniques [5]–[8] divide the
network into overlapping regions, nodes in each region being
positioned relatively to the region’s local coordinate system (a
centralized algorithm may be used here). The local coordinate
systems are then merged, or “stitched”, together to form
a global coordinate system. Localization accuracy can be
improved by using beacon-based techniques ([8]–[16]) that
take advantage of nodes with known location, called beacons,
and extrapolate unknown node locations from the beacon
locations.

Most current techniques assume that the distance between
two neighbor nodes can be measured, typically via a ranging
process. For instance, pair-wise distance can be estimated
based on Received Signal Strength Indication (RSSI) [13],
Time Difference of Arrival (TDoA) [17], [18], or Angle
of Arrival (AoA) [14], [19]. The problem with distance
measurement is that the ranging process (or hardware) is
subject to noise and its complexity/cost increase with accuracy
requirement. For a large sensor network with low-end sensors,
it is often not affordable to equip them all with ranging
capability.

In this paper, we solve the localization problem with the
following modest requirements: (R1) beacon nodes exist, (R2)
a sensor may not hear directly from any beacon node, and
(R3) only connectivity information may be used for location
estimation (pairwise distance measurement not required). Re-
quirement (R1) is for improved localization accuracy. Require-
ment (R2) relaxes the strong requirement on communication
range of beacon nodes. Requirement (R3) avoids the expensive
ranging process. All these requirements are reasonable for
large networks where sensor nodes are of little resources.

Few range-free techniques have been proposed [6], [9], [16],
[20], [21]. APIT [16] assumes that a node can hear from a large
number of beacons, and thus does not satisfy requirement (R2).
Spotlight [20] offers good results, but requires an aerial vehicle
to generate light onto the sensor field. [21] uses a mobile node
to assist pair-wise distance measurements until converged to a
“global rigid” state where the sensor locations can be uniquely
determined. [20], [21] do not satisfy requirement (R3).

A popular approach that shares the same requirements {R1,
R2, R3} with our work is Diffusion [6], [9], where each
node is repeatedly positioned as the centroid of its neighbors
until convergence. Figure 1(a) illustrates two main problems of
this approach: the convergence problem (i.e., many averaging
loops result in long localization time and significant bandwidth

2

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x−coordinate (m)

y−
co

or
di

na
te

 (
m

)

(a) Diffusion: The border problem remains after 10,000 averaging
loops

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x−coordinate (m)

y−
co

or
di

na
te

 (
m

)

(b) LSVM: The border problem disappears

Fig. 1. 1000 sensors on a 100m x 100m field, with 50 random beacons. A line connects the true and estimated positions of each sensor node

consumption), and the border problem (i.e., nodes near the
edge of the sensor field are poorly positioned). The latter also
occurs in many existing techniques.

We propose LSVM – a novel solution that satisfies the
requirements above, offers fast localization, and alleviates
the border problem significantly (illustrated in Figure 1(b)).
LSVM is also effective in networks with the existence of
coverage holes or obstacles. LSVM localizes the network us-
ing the learning concept of Support Vector Machines (SVM).
SVM is a classification method with two main components:
a kernel function and a set of support vectors. The support
vectors are obtained via the training phase given the training
data. New data is classified using a simple computation
involving the kernel function and support vectors only. To
the localization problem, we define a set of geographical
regions in the sensor field and classify each sensor node into
these regions. Then its location can be estimated inside the
intersection of the containing regions. The training data is the
set of beacons, and the kernel function is defined based on
hop counts only.

The latest (perhaps, only) work we are aware of, that
explores the applicability of SVM to the localization problem
is [22]. This technique, however, assumes that every node can
measure direct signal strength from all the beacons, which
contradicts requirement (R2). In the case of a wide network, a
node may only receive signals from a small subset of beacons,
and so this technique would be significantly less accurate.

Our work is more suitable for networks of larger scale
because it is based on connectivity rather than direct signal
strength. Our contribution includes definitions of the kernel
function and classes to categorize the sensor nodes, a strategy
to apply the classifiers, and a theoretical bound analysis on the
localization error. We also propose a mass-spring optimization
based procedure to further improve the location accuracy.

The remainder of this paper is structured as follows. We
provide a brief background on SVM in the next section. We
describe the details of LSVM and analyze its localization error
in Section III. Evaluation results based on a simulation study
are presented in Section IV. Finally, we conclude this paper

with pointers to our future research in Section V.

II. SUPPORT VECTOR MACHINE CLASSIFICATION

Consider the problem of classifying data in a data space X
into either one of two classes: G or ¬G (not G). Suppose that
each data point x has a feature vector ~x in some feature space
~X ⊆ <n. We are given k data points x1, x2, ..., xk, called the
“training points”, with labels y1, y2, ..., yk, respectively (where
yi = 1 if xi ∈ G and −1 otherwise). We need to predict
whether a new data point x is in G or not.

Support Vector Machines (SVM) [23] is an efficient method
to solve this problem. For the case of finite data space (e.g.,
location data of nodes in a sensor network), the steps typically
taken in SVM are as follows:
• Define a kernel function K: X×X → <. This function

must be symmetric and the k×k matrix [K(xi, xj)]ki,j=1

must be positive semi-definite (i.e., has non-negative
eigenvalues)

• Maximize

W (α) =
k∑

i=1

αi − 1
2

k∑

i,j=1

yiyjαiαjK(xi, xj) (1)

– subject to
k∑

i=1

yiαi = 0 (2)

0 ≤ αi ≤ C, i ∈ [1, k] (3)

Suppose that {α∗1, α∗2, ..., α∗k} is the solution to this
optimization problem. We choose b = b∗ such that yihK(xi) =
1 for all i with 0 < α∗i < C. The training points corresponding
to such (i, α∗i)’s are called the support vectors. The decision
rule to classify a data point x is: x ∈ G iff sign(hK(x)) =
1, where

hK(x) =
∑

i=1→k, xi is a support vector

α∗i yiK(x, xi)+b∗ (4)

According to Mercer’s theorem [23], there exists a feature
space ~X where the kernel K defined above is the inner product

3

of ~X (i.e., K(x, z) = <~x·~z> for every x, z ∈X). The function
hK(.) represents the hyperplane in ~X that maximally separates
the training points in X (G points in the positive side of the
plane, ¬G points in the negative side). It is provable that SVM
has bounded classification error when applied to test data. We
will discuss this error in the error analysis of our proposed
localization technique (LSVM). We present LSVM next.

III. LSVM: LOCALIZATION BASED ON SVM

A. Network model

We consider a large wireless sensor network of N nodes
{S1, S2, ..., SN} deployed in a 2-d geographic area [0, D] ×
[0, D] (D > 0)1. Each node Si has a communication range
r(Si) which we assume is the same (r > 0) for every node.
Two nodes can communicate with each other if no signal
blocking entity exists between them and their geographic
distance is less than their communication range. Two nodes are
said to be “reachable” from each other if there exists a path
of communication between them. We assume the existence
of k < N beacon nodes {Si} (i = 1 → k) that know
their own location and are reachable from each other. We
need to devise a distributed algorithm each remaining node
Sj (j = k + 1 → N) can use to estimate its location.

Many existing localization techniques require that each
node be within the one-hop communication range of some
(or all) beacon nodes (e.g., [20], [22]). Our assumption is
more flexible because we only assume that each node can
communicate to a beacon node by a multi-hop path. Therefore,
our proposed technique, LSVM, is applicable to more types
of sensor networks.

B. SVM model

Let (x(Si), y(Si)) denote the true (to be found) coordinates
of node Si’s location, and h(Si, Sj) the hop-count length of
the shortest path between nodes Si and Sj . Each node Si

is represented by a vector si = <h(Si, S1), h(Si, S2), ...,
h(Si, Sk)>. The training data for SVM is the set of beacons
{Si} (i = 1 → k). We define the kernel function as a Radial
Basis Function because of its empirical effectiveness [24]:

K(Si, Sj) = e−γ‖si−sj‖22 (5)

where ‖ . ‖2 is the l2 norm, and γ > 0 a constant to be
computed during the cross-validation phase of the training
process.

We considers 2 sets of M−1 = 2m − 1 classes to classify
non-beacon nodes:
• M−1 classes for the x dimension {cx1, cx2, ..., cxM−1}:

Each class cxi contains nodes with x ≥ iD/M .
• M−1 classes for the y dimension {cy1, cy2, ..., cyM−1}:

Each class cyi contains nodes with y ≥ iD/M .
Intuitively, each x-class cxi contains nodes that lie to the right
of the vertical line x = iD/M , while y-class cxi contains
nodes that lie above the horizontal line y = iD/M . Therefore,
if the SVM learning predicts that a node S is in class cxi

1We assume 2 dimensions for simplicity, even though LSVM can work
with any dimensionality.

cx8

cx4

cx5cx3cx1 cx7

cx12

cx6cx2

cx13cx11cx9 cx15

cx14cx10

0

0

0 0 0 0

1

1

1

1

1 11

0

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

D/2 D0 D/2
2

D/2
3

D/M

Fig. 2. Decision tree: m = 4.

but not class cxi+1, and in class cyj but not class cyj+1,
we conclude that S is inside the square cell [iD/M, (i +
1)D/M] × [jD/M, (j + 1)D/M]. We then simply use the
cell’s center point as the estimated position of node S. If the
above prediction is indeed correct, the localization error for
node S is at most D/(M

√
2). However, every SVM is subject

to some classification error, and so we should maximize the
probability that S is classified into its true cell, and, in case
of misclassification, minimize the localization error.

C. Algorithms and Protocols

Let us focus on the classification along the x-dimension. We
organize the x-classes into a binary decision tree, illustrated
in Figure 2. Each tree node is an x-class and the two outgoing
links represent the outcomes (0: “not belong”, 1: “belong”) of
classification on this class. The classes are assigned to the tree
nodes such that if we traverse the tree in the order {leftchild
→ parrent → rightchild}, the result is the ordered list cx1 →
cx2 → ...→ cxM−1. Given this decision tree, each sensor S
can estimate its x-coordinate using the following algorithm:

Algorithm 3.1 (X-dimension Localization): Estimate the x-
coordinate of sensor S:

1) i = M/2 (start at root of the tree cxM/2)
2) IF (SVM predicts S not in class cxi)

a) IF (cxi is a leaf node) RETURN x′(S) =
(i−1/2)D/M

b) ELSE Move to leftchild cxj and set i = j

3) ELSE
a) IF (cxi is a leaf node) RETURN x′(S) =

(i+1/2)D/M
b) ELSE Move to rightchild cxt and set i = t

4) GOTO Step 2)
Similarly, a decision tree is built for the y-dimension classes

and each sensor S estimates its y-coordinate y′(S) based on
the y-dimension localization algorithm (like Algorithm 3.1).
The estimated location for node S, consequently, is (x′(S),
y′(S)). Using these algorithms, localization of a node requires
visiting log2M nodes of each decision tree, after each visit
the geographic range that contains node S downsizing by a
half. The parameter M (or m) controls how close we want to
localize a sensor.

4

According to Formula 4, the information that a node S uses
to localize itself is consisted of the following (called the SVM
model information):

• The support vectors {Si:(i, yi, α∗i)} and b∗ for each class
• The hop-count distance from each beacon node to S, so

that the kernel function (see Formula 5) can be computed

Who computes those values and how are they communi-
cated to node S? We divide the entire process into 3 phases:
training phase, advertisement phase, and localization phase.

1) Training Phase: We assume that a beacon is selected
as the head beacon. The head beacon will later run the SVM
training algorithm and therefore should be the most resourceful
node. This is a feasible assumption because the head node can
be a base station or sink node of the sensor network.

The training phase is conducted among the beacon nodes,
where message exchanges use the underlying unicast routing
protocol. Firstly, each beacon node sends a HELLO message to
every other beacon node. After this round, a beacon knows its
hop-count distance from each other beacon node. Each beacon
then sends an INFO message to the head beacon, containing
the location of the sending node and its pairwise hop-count
distances from the other beacon nodes. Therefore, the head
beacon knows the location of every beacon and hop-count
distance between every two beacons. Next, the head beacon
runs the SVM training procedure on all 2M − 2 classes cx1,
cx2, ..., cxM−1, cy1, cy2, ..., cyM−1 and, for each class,
computes the corresponding b∗ and the information (i, yi, α∗i)
for each support vector Si.

The communication cost is due to the unicast delivery of
k2 − 1 HELLO and INFO messages. The computation cost is
due to the SVM training procedure at the head beacon. SVM is
known to be computationally efficient, and has the the worst-
case runtime O(k2

svk), where ksv is the number of support
vectors (usually much smaller than k). Since we apply SVM
to 2M − 2 classes, the total runtime is O(M(k2

svk)).

2) Advertisement Phase: In this phase, the head beacon
advertises the SVM model information by broadcasting it to all
the sensors in the network. Therefore, each node S possesses
all the information needed to compute hK(S) in Formula 4,
except for the hop-count distance h(S, Si) to each beacon node
Si. For this purpose, each beacon node, except for the head
beacon, broadcasts a HELLO message to the entire network,
so that upon receipt of this HELLO message, each node can
obtain the hop-count distance to the beacon. The number of
messages forwarded in the advertisement phase is kN . The
amount of traffic generated also depends on the size of the
SVM model information, which in turn depends on the number
of support vectors for each class.

3) Localization Phase: Each non-beacon node starts this
phase after receiving the SVM model information from the
advertisement phase. It then follows the x-dimension localiza-
tion and y-dimension localization algorithms (see Algorithm
3.1) to estimate its location (x′(S), y′(S)). These algorithms
each require computation of hK(S) in Formula 4 for log2(M)
classes. The runtime should therefore be short.

D. Error Analysis
SVM is subject to error and so is LSVM. A misclassification

with respect to a class C occurs when SVM predicts that a
sensor is in C but in fact it is not or predicts that the sensor
is not in C but it actually is. In this section, we formulate the
LSVM error under the effect of the SVM error.

Consider a sensor S and localization along the x-dimension.
Without loss of generality, suppose that x(S) ≥ D/2. Let x
= x1x2...xm be the path on the decision tree that leads to the
correct interval containing S, and x′ = x′1x

′
2...x

′
m the decision

path taken under the x-dimension localization algorithm. Since
we estimate the x-coordinate of a sensor as the middle position
in the estimated interval, the x-dimension location error is at
most eX(x) = | x′−x | ×D/M + D/(2M) = D/M (1/2+ |
x′ − x |).

Figure 3(a) illustrates a case where the correct path x =
1100 and the decision path x′ = 0011 for are sensor S with
true x(S) ∈ (12D/16, 13D/16]. There are 2 misclassifications
in the decision path: the decision S /∈ cx8 (i.e., x(S) < D/2)
and the decision S /∈ cx4 (i.e., x(S) < D/4). These decisions
are wrong because x(S) > 12D/16 > D/2 > D/4. Decisions
S ∈ cx2 (i.e., x(S) ≥ D/8) and S ∈ cx3 (i.e., x(S) ≥ 3D/16)
are correct.

In general, let i > 0 be the number of misclassifications
and p(i) the probability of their occurrence. Let ε be the
worst error probability of SVM classification over all classes
cx1, cx2, ..., cxM−1, cy1, cy2, ..., cyM−1. Since there are m
independent classification steps in the localization algorithm,
p(i) = Ci

mεi(1−ε)m−i. We will analyze the worst case where
ei(x) = |x′ − x| is maximized. There are two cases:

1) If x(S) ∈ [3D/4, D] (i.e., x1 = x2 = 1): The worst
case occurs when all the first i classifications give wrong
results and the remaining classifications correct. That is,
x′ = 0i1m−i, and therefore ei(x) = x − 0i1m−i = x
− 2m−i + 1. (See Figure 3(a).)

2) If x(S) ∈ [D/2, 3D/4) (i.e., x1 = 1, x2 = 0): The worst
case must be one of the following scenarios: (see Figure
3(b))

a) All the first i classifications give wrong results and
the remaining classifications correct: x′ = 0i1m−i

= 2m−i − 1 (e.g., the decision path 0011 in Figure
3(b).)

b) The first classification is correct, the next i classi-
fications wrong, and the remaining classifications
correct: x′ = 1i+10m−i−1 = (2i+1 − 1)2m−i−1

= 2m − 2m−i−1 (e.g., the decision path 1110 in
Figure 3(b).)

Therefore, ei(x) = max(x − 2m−i + 1, 2m − 2m−i−1

− x).
Consequently, the x-dimension location error expected for

any node is bounded by

Ef
X =

M−1∑

x=M/2

eX(x)f(x) (6)

=
D

M

1

2
+

M−1∑

x=M/2

m∑

i=1

p(i)ei(x)f(x)

 (7)

5

cx8

cx4

cx5cx3cx1 cx7

cx12

cx6cx2

cx13cx11cx9 cx15

cx14cx10

0

0

0 0 0 0

1

1

1

1

1 11

0

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

true xestimated x’

i misclassifications

(case 1)

|x - x’| = x-2
m-i

+10 D

(a) 3D/4 ≤ x(S) ≤ D: For correct path 1100, the worst-case
decision path is 0011

cx8

cx4

cx5cx3cx1 cx7

cx12

cx6cx2

cx13cx11cx9 cx15

cx14cx10

0

0

0 0 0 0

1

1

1

1

1 11

0

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

true xestimated x’

i misclassifications

(case 2a)

|x - x’| = x-2
m-i

+1 |x - x’| = 2
m
-2

m-i-1
-x

estimated x’

i misclassifications

(case 2b)

(b) D/2 ≤ x(S) < 3D/4: For correct path 1001, the worst-case
decision path is 0011 (case 2a) or 1110 (case 2b). In this example,
the worst-case decision path is 0011

Fig. 3. Worst-case possibilities for classification along the x-dimension (m = 4): Assume that there are i = 2 misclassifications

where f(x) is the probability that a sensor node S has x as the
correct path given the fact that x(S) ≥ D/2. For a uniformly
distributed sensor field, f(x) = 1/(M/2) = 1/2m−1, and
therefore Ef

X becomes

Eu
X =

D

M

1

2
+

M−1∑

x=M/2

m∑

i=1

p(i)ei(x)/2m−1

 (8)

The following lemma provides a closed form for this error
expectation bound.

Lemma 3.1 (X-dimension Localization Error): The follow-
ing equality is valid:

Eu
X = D

(
1

2m
+

7
8
− (1− ε)m

2m+1
− (2− ε)m

2m
+

(4− 3ε)m

22m+3

)

(9)

Proof: Consider a sensor S. For the case x(S) ∈
[3D/4, D], the error expectation is D

M (1
2+E1), where

E1 =
1

2m−2

2m−1∑

x=2m−1+2m−2

(
m∑

i=1

p(i)ei(x)

)

︸ ︷︷ ︸
A

(10)

The inner summation A is computed as

A =
m∑

i=1

Ci
mεi(1− ε)m−i(x− 2m−i + 1)

= (x + 1)(1− (1− ε)m)− (2− ε)m + (2− 2ε)m

Therefore, it is easily derivable that

E1 = (
1
2
+9×2m−3)(1−(1−ε)m)+(2−2ε)m−(2−ε)m (11)

If x(S) ∈ [D/2, 3D/4), we can rewrite the error expectation
for this case as D

M (1
2+E2), where

E2 =
m∑

i=1

p(i)
2m−2

2m−1+2m−2−1∑

x=2m−1

ei(x)

︸ ︷︷ ︸
B

(12)

The inner summation B is computed as

B =
2m−1+2m−2−1∑

x=2m−1

max(x− 2m−i + 1, 2m − 2m−i−1 − x)

=
2m−1+2m−i−2−1∑

x=2m−1

(2m − 2m−i−1 − x)

+
2m−1+2m−2−1∑

x=2m−1+2m−i−2

(x− 2m−i + 1)

= 2m−2

(
1
2

+ 2m(
5
8

+
1

4i+1
− 1

2i
)
)

Therefore,

E2 =
m∑

i=1

p(i)
(

1
2

+ 2m(
5
8

+
1

4i+1
− 1

2i
)
)

=
m∑

i=1

Ci
mεi(1− ε)m−i

(
1
2

+ 2m(
5
8

+
1

4i+1
− 1

2i
)
)

=
1
2

+ 5× 2m−3 + (2m−3 − 1
2
)(1− ε)m

+2m−2(1− 3ε/4)m − 2m(1− ε/2)m

Consequently, for an arbitrary sensor S where x(S) can be
anywhere in [D/2, D] with the same probability, the location
error expectation is bounded by Eu

X = D
M

(
1
2 + E1+E2

2

)
which

is equal to

D

(
1

2m
+

7
8
− (1− ε)m

2m+1
− (2− ε)m

2m
+

(4− 3ε)m

22m+3

)
(13)

The lemma is proved.
Since the case x(S) ∈ (0, D/2) is symmetric to the case x(S)
∈ [D/2, D), for a uniformly distributed sensor field, we obtain
the same Eu

X shown in Lemma 3.1 for every sensor node.
Similarly, Eu

Y = Eu
X for the y-dimension. Therefore, the total

location error in both dimensions is bounded by Eu =
√

2Eu
X

=
√

2Eu
Y . The theorem below is trivial to prove.

Theorem 3.2 (Localization Error): For a uniformly dis-
tributed sensor field, LSVM’s location error expected for any

6

0 20 40 60 80 100
0

20

40

60

80

100

120

140

Parameter m

B
ou

nd
 o

n
ex

pe
ct

at
io

n
of

 w
or

st
−

ca
se

 lo
ca

tio
n

er
ro

r

epsilon 0.01
epsilon 0.05
epsilon 0.1
epsilon 0.2
epsilon 0.3
epsilon 0.4
epsilon 0.5

Fig. 4. Bound on the expectation of worse-case location error under various
values of SVM classification error ε. A lower value of ε corresponds to a
lower-appearing curve. Note the value m that minimizes the bound.

node is bounded by

Eu =
√

2D

(
1

2m
+

7
8
− (1− ε)m

2m+1
− (2− ε)m

2m
+

(4− 3ε)m

22m+3

)

(14)

The error bound Eu depends on two factors: the worst-case
SVM classification error ε and the parameter m. Consider the
linear function hK(x) (see Equality 4) found by the SVM
algorithm presented in Section II. The following theorem
exhibits a nice property of SVM that ε of the classification
based on hK(x) is bounded and the bound can approach zero
if the training size is large enough.

Theorem 3.3 (SVM Error Bound): There exists a constant
c, such that for any probability distribution D on X × {-1,
1} with support in a ball of radius R around the origin, with
probability 1− δ the SVM has error

ε ≤ c

k

(
R2+ ‖ ξ ‖21 log(1/Γ)

Γ2
log2k + log

1
δ

)
(15)

where the values of Γ and vector ξ are as follows:

Γ =

 ∑

i,j∈support vector

yiyjα
∗
i α
∗
jK(xi, xj)

−1/2

ξ = 〈max(0, Γ− y1hK(x1)), ..., max(0,Γ− ykhK(xk)〉

Proof: This theorem is a direct consequence of com-
bining Theorem 4.24 and Proposition 6.12 presented in [25].
Details are omitted due to the space limit.
Theorem 3.3 implies that almost sure ε → 0 when k → ∞.
Therefore, if the number of beacon sensors k is large, we
can have highly accurate SVM classification, and therefore a
small localization error since Eu is a monotonically increasing
function of ε. Having fixed k, we can improve the location
error by controlling m. A natural question is what should be
the best value for m? Our safe choice is to choose m∗ such that
the bound Eu in Theorem 3.2 is minimized. Mathematically,
it can be shown that such m∗ exists and can be estimated
(proof and algorithm are skipped due to limited space). Figure

4 illustrates the error bounds corresponding to seven different
values of ε. Note that each bound has a minimizing point m∗

which gets larger as ε decreases. It also implies that we should
always use a value less than 8 for parameter m. The process
of finding m∗ is in the Training Phase presented earlier in
Section III-C.1. It is detailed as follows:

1) Conduct the Training Phase as usual but with the value
m = mmax where mmax is the best estimated m∗ for
the case ε = 0.01 (based on minimizing Formula 14).

2) Compute the maximum εmax of ε among all classifica-
tions based on the value of m selected in Step (1).

3) Set m to the corresponding m∗ of εmax (based on
minimizing Formula 14). This value of m will be used
for the entire process.

E. Improving LSVM: Modified Mass-Spring Optimization

Mass-spring optimization (MSO) has been used successfully
by localization techniques to improve their accuracy (e.g., [4]).
This optimization is not directly applicable to LSVM because
MSO requires that the distance between adjacent nodes be
measurable while LSVM does not so assume. In this section,
we propose a modified version of MSO so it can work with
LSVM. But, first, we briefly present MSO.

1) Mass-Spring Optimization (MSO): Each sensor node is
considered a “mass” and repeatedly adjusts its location based
a “spring force” computed from the locations of the neighbors.
The ultimate goal of MSO is that, after sufficient repetitions,
the distance distest(Si, Sj) between every pair of adjacent
nodes Si and Sj , computed based on their estimated locations,
converges to the their true distance disttrue(Si, Sj). In other
words, we need to minimize E =

∑N
i=1 E(Si), where

E(Si) =
∑

neighbor Sj

(distest(Si, Sj)− disttrue(Si, Sj))2

(16)
E is called the total energy of the system and E(Si) the local
energy of each node Si.

In a mass-spring system, the force on sensor Si in the
direction toward Sj is defined as
−−−−−−→
f(Si, Sj) = (distest(Si, Sj)− disttrue(Si, Sj))×−−−−−→u(Si, Sj)

(17)
where

−−−−−→
u(Si, Sj) denotes the unit vector from point Si to point

Sj in the 2D space. The resultant force on node Si pulled by
all its neighbors, therefore, is

−−−→
F (Si) =

∑

neighbor Sj

−−−−−−→
f(Si, Sj) (18)

To minimize the total energy E in a distributed manner,
each sensor node Si concurrently minimizes its local energy
E(Si). For this purpose, each node Si translates its position
by a vector αi

−−−→
F (Si) where αi ∈ (0, 1) is chosen such

that the new energy E(Si) is smaller than the old energy.
This position-translation process is repeated until the energy
cannot be improve significantly further or the number of
repetitions exceeds some threshold. An example choice for
αi, as recommended and evaluated by [4], is αi = 1

2mi
where

mi is the number of neighbor nodes of Si.

7

TABLE I
NETWORK CONNECTIVITY SUMMARY

Radius Min degree Max degree Avg degree Netw. Diameter
r=7m 2 27 14 25 (hops)
r=10m 8 48 28 16 (hops)

2) Modified Mass-Spring Optimization (MMSO): Since
LSVM assumes no knowledge on the true distance
disttrue(Si, Sj), we use the communication range r of each
sensor in lieu of disttrue(Si, Sj). The energy of a sensor Si

is now defined as

E(Si) =
∑

neighbor Sj

(distest(Si, Sj)− r)2 (19)

The force on Si pulled by Sj is redefined as

−−−−−−→
f(Si, Sj) = (distest(Si, Sj)− r)×−−−−−→u(Si, Sj) (20)

Since we do not know the true distance, we only want to fix
those adjacent sensors whose estimated distance exceeds r.
We therefore redefine the resultant force as follows:

−−−→
F (Si) =

∑

neighbor Sj : distest(Si,Sj) > r

−−−−−−→
f(Si, Sj) (21)

The MMSO algorithm conducted at node Si is summarized
below (for the case of stopping when the number of transla-
tions exceeds some threshold):

Algorithm 3.2 (Modified Mass-Spring Optimization):
Improve the location estimation of sensor Si:

1) Let thresholdcount be the system-defined maximal
number of iterations

2) Let (xnew(Si), ynew(Si)) be the location of Si estimated
using the LSVM localization algorithms presented in
previous sections (see Algorithm 3.1)

3) Compute mi the number of neighbors of Si, the current
energy E(Si) according to Formula 19, and the current
force

−−−→
F (Si) according to Formula 21. Let fX and fY

be the x-dimension and y-dimension magnitudes of this
force, respectively.

4) Compute possible new location

xnew(Si) = xcurrent(Si) +
fX

2mi

ynew(Si) = ycurrent(Si) +
fY

2mi

5) Compute possible new energy Enew(Si) according to
Formula 19 using the new location (xnew(Si), ynew(Si))

6) IF (E(Si) > Enew(Si)), update the current position

xcurrent(Si) = xnew(Si)
ycurrent(Si) = ynew(Si)

7) IF (number of iterations exceeds thresholdcount) QUIT
8) ELSE GOTO Step 3

TABLE II
SVM CLASSIFICATION ACCURACY (MIN/AVG) PER CLASS FOR DIFFERENT

RANGES AND BEACON POPULATIONS

Axis 5% 10% 15% 20% 25%
Range 10m x .89/.95 .92/.96 .95/.98 .95/.98 .96/.98

y .90/.96 .91/.97 .93/.98 .95/.98 .95/.98
Range 7m x .91/.96 .92/.97 .94/.98 .95/.98 .95/.98

y .90/.96 .91/.97 .93/.98 .95/.98 .96/.98

TABLE III
AVERAGE NUMBER OF SUPPORT VECTORS PER CLASS FOR DIFFERENT

RANGES AND BEACON POPULATIONS

Axis 5% 10% 15% 20% 25%
Range 10m x 14.29 20.48 22.55 33.31 42.62

y 13.85 23.16 27.08 25.30 29.08
Range 7m x 12.40 17.57 23.44 34.70 29.55

y 16.55 24.92 30.96 27.34 26.37

IV. SIMULATION STUDY

We conducted a simulation study on a network of 1000
sensors located in a 100m × 100m 2-D area. We assumed
uniform random distribution for the sensor locations and the
selection of the beacon sensors. We considered two levels
of network density (7m and 10m communication ranges),
summarized in Table I. We also considered five different
beacon populations: 5% of the network size (k = 50 beacons),
10% (k = 100 beacons), 15% (k = 150 beacons), 20% (k =
200 beacons), and 25% (k = 250 beacons). The computational
cost of LSVM is theoretically analyzed in Section III-C. The
communication cost is mainly due to k broadcasts where k is
the number of beacons. We, therefore, focused more on the
localization accuracy.

We used the algorithms in the libsvm [24] software for
SVM classification. The γ parameter in Equation 5 and C
parameter in Inequality 3 were automatically determined by
the mechanisms of libsvm. We set m = 7 (i.e., M = 128) by
default, the rationale for which will be explained in Section
IV-A.

Many networking protocols such as routing and localization
suffer from the existence of coverage holes or obstacles in the
sensor field. We considered three sensor networks: a network
with no coverage hole and two following networks with hole
existence: (1) a network with one hole centered at position
(50,50) of radius 25m (Figure 5(a)), and (2) a network with
5 holes, one at (50,50) of radius 100

6 m and the other four of
radius 100

12 m at the four corners of the field (Figure 5(b)).
In the following sections, we discuss the results (in present

tense for ease of presentation) of the following studies: quality
and efficiency of SVM classification, comparisons between
LSVM and two existing techniques (Diffusion [6], [9] and
AFL [4]), and, finally, the performance of LSVM under the
effects of beacon population, network density, the border
problem, and coverage holes.

A. Quality and efficiency of SVM classification

As analyzed in Section III-D, the SVM classification error is
an important factor to the accuracy of LSVM. The quality of
SVM is demonstrated in Figure 6, in which the accuracies

8

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x−coordinate (m)

y−
co

or
di

na
te

 (
m

)

(a) One coverage hole in the middle

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x−coordinate (m)

y−
co

or
di

na
te

 (
m

)

(b) Five coverage holes: one in the middle, four in the four corners

Fig. 5. Two settings for a sensor network with coverage holes

X Dimension

90

91

92

93

94

95

96

97

98

99

100

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127

Classes

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

5%

10%

15%
20%

25%

(a) X-dimension classes cx1, cx2, ..., cx127

Y Dimension

88

90

92

94

96

98

100

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127

Classes

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

5%

10%
15%
20%

25%

(b) Y-dimension classes cy1, cy2, ..., cy127

Fig. 6. The accuracy of SVM for 127 classes per dimension under different beacon populations (5%, 10%, 15%, 20%, and 25%). Curves for higher beacon
populations appear above that for smaller populations

for the 127 x-classifications and 127 y-classifications are
sorted in the non-decreasing order. It is understandable that
SVM’s accuracy increases with the beacon population, but the
accuracy is remarkably high in all scenarios (more than 89%,
mostly more than 95%). This nice result strongly supports
our approach of using SVM classification for the sensor
localization problem. The worst-case and average per-class
SVM accuracy are summarized in Table II. Based on the
worst-case error values, we can find the best parameter m
for each case of beacon population, that minimizes the error
bound in Theorem 3.2 (see Figure 4). In the present paper,
however, we report the results for the choice m = 7 and note
that better results for LSVM can be obtained if we use the
right value for m for each beacon population.

We also compute the number of support vectors (ksv) for
each class. Since SVM prediction is based only on the support
vectors, but not all the beacons, a small ksv per class is
desirable because it helps reduce (1) the amount of SVM
model information which is transmitted during the Advertising
Phase (see Section III-C.2), and (2) the computational cost
during the Localization Phase at each non-beacon sensor (see
Section III-C.3). Table III shows that SVM training for most
classes results in a small number of support vectors (between

TABLE IV
LOCATION-ERROR IMPROVEMENT OF LSVM OVER DIFFUSION FOR

NETWORKS WITH COVERAGE HOLES

% Improve 5% 10% 15% 20% 25%
1 hole Avg 30.97% 31.30% 34.88% 33.91% 26.50%

Worse 27.35% 21.40% 34.35% 33.42% 23.83%
StdDev 35.74% 36.29% 37.66% 37.40% 28.34%

5 holes Avg 32.30% 38.82% 38.46% 31.84% 24.51%
Worst 22.11% 0.18% 55.38% 48.63% 37.62%

StdDev 31.01% 48.04% 50.84% 47.87% 35.13%

12 and 42 for all scenarios on average).

B. LSVM vs. Diffusion [6], [9]

Because Diffusion is an existing technique that shares the
same assumptions and requirements with LSVM, we com-
pare them together. For this comparison, we consider LSVM
without using our mass-spring optimization algorithm. We
consider 3 versions of Diffusion: Diffusion with 100 averaging
iterations (Diff100), with 1000 averaging iterations (Diff1000),
and with 10000 averaging iterations (Diff10000). We note that
each iteration in Diffusion generates the same traffic as a
broadcast over the entire network. Using LSVM, the number

9

LSVM vs. Diffusion

0

1

2

3

4

5

6

7

8

9

10

Diff100 Diff1000 Diff10000 Lsvm

Techniques in comparison

A
vg

. L
o

ca
ti

o
n

 E
rr

o
r

(m
)

5% 10% 15% 20% 25%

(a) Average location error

LSVM vs. Diffusion

0

5

10

15

20

25

30

35

1 2 3 4

Techniques in comparison

M
ax

. L
o

ca
ti

o
n

 E
rr

o
r

(m
)

5% 10% 15% 20% 25%

(b) Max location error

LSVM vs. Diffusion

0

1

2

3

4

5

6

7

Diff100 Diff1000 Diff10000 Lsvm

Techniques in comparison

L
o

ca
ti

o
n

 E
rr

o
r

S
td

. D
ev

. (
m

)

5% 10% 15% 20% 25%

(c) Standard deviation

Fig. 7. LSVM vs. Diffusion (range 10m): Statistics on location error of each technique under different beacon populations

of broadcasts incurred is the number of beacon sensors, which
is much smaller than in the case of Diffusion.

Figure 7 shows the difference in localization accuracy
between LSVM and Diffusion. LSVM is more accurate than
Diffusion in both the average case (Figure 7(a)) and worst
case (Figure 7(b)). The improvement of LSVM over Diffusion
is more significant when the beacon population is small. For
instance, when 5% of the network size serve as beacons,
LSVM results in an average error of 6m while Diff1000 results
in 9m. The localization error of LSVM is better distributed
across all the sensors than is Diffusion (Figure 7(c)). This is
consistent with the fact that in Diffusion the border sensors
are localized much worse than the inner sensors (Figure 1(a)).
This problem is alleviated in LSVM (Figure 1(b)). Diffusion
seems to stall at 10,000 rounds, in which its error is still higher
than that of LSVM.

We further compare how LSVM and Diffusion would
perform in networks with coverage holes. Table IV shows a
significant improvement in location error that LSVM offers
over Diff10000. A consistent 20%-50% reduction in error
is achieved for all statistics (average, max, and standard
deviation).

C. LSVM vs. AFL [4]

Anchor-Free Localization (AFL) [4] is a popular existing
technique that uses only hop-count information as does LSVM.
However, AFL does not use beacon nodes; instead, it assumes
that pairwise geographic distances among adjacent nodes can

TABLE V
GLOBAL ENERGY RATIO OF LSVM UNDER DIFFERENT NETWORK

DENSITIES AND BEACON POPULATIONS:

Range 5% 10% 15% 20% 25%
10m 0.000365 0.000287 0.000199 0.000179 0.000157
7m 0.000378 0.000266 0.000202 0.000184 0.000164

Mass Spring Optimization: 1000 iterations

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

1 94 187 280 373 466 559 652 745 838 931

Iteration ID Number

G
lo

ba
l E

rr
or

 R
at

io

AFL

LSVM

Fig. 8. GER comparison of LSVM (using MMSO) vs. AFL (using MSO)
under 1000 iterations of mass-spring optimization

be measured. On the contrary, LSVM uses beacon nodes but
not pairwise distances. The purpose of our comparison is to
show that LSVM, even with a small beacon population, can
still provide better localization accuracy than AFL albeit true
geographic distances being used by the latter.

The authors of AFL, Priyantha et al. [4], proposed that the

10

Global Energy Ratio (GER) be used to assess the localization
accuracy. Therefore, we use GER to compare AFL and LSVM:

GER =

√∑
i<j

(
distest(Si,Sj)−disttrue(Si,Sj)

disttrue(Si,Sj)

)2

N(N − 1)/2
(22)

GER captures the distance error; that is, to how close the
estimated geographic distance distest(Si, Sj) between a pair
of sensors is to their true geographic distance disttrue(Si, Sj).
GER also captures the structural error of the graph induced
by the estimated locations.

As reported in [4], the GER of AFL varies between 0.0001
and 0.0012 depending on the error of edge-length measure-
ment and increases with the network density, but only slightly
when average nodal degree exceeds 9. Table V provides the
GER results of LSVM, which shows that the GER of LSVM
is in the top accuracy range of AFL.

AFL must rely on an iterative process of mass-spring
optimization (MSO) to refine its location estimation. LSVM
has an option of using the modified mass-spring optimiza-
tion (MMSO) algorithm (i.e., Algorithm 3.2) to refine its
localization. Figure 8 plots the GER values for AFL and
50-beacon LSVM during the optimization process of 1000
iterations. Although we use the true geographic distances for
the measurement of pairwise distances in AFL, it remains
far less accurate than LSVM even though only 50 beacon
nodes are used with LSVM. Additionally, LSVM improves
significantly faster than AFL as we continue the MSO process.
AFL does not seem to ever approach the accuracy of LSVM
even when LSVM does not use MMSO. This study suggests
that (1) our proposed MMSO algorithm is effective, and
(2) when beacon nodes are available, LSVM is much more
accurate and faster to converge than AFL. AFL has been
effective to initialize the sensor locations in small networks
[21]. For large-scale networks, however, LSVM is a more
suitable choice.

D. LSVM: Effect of network density and beacon population,
the coverage-hole problem, and the border problem

In the remainder of this section, we evaluate LSVM under
the effect of network density and beacon population, the
coverage-hole problem, and the border problem. We also
include the results for Diff1000 (Diffusion with 1000 loops)
as a reference. The results are presented below.

1) Network density: We investigate LSVM under two levels
of network density. In one network, the communication range
of each sensor is set to r = 7m; in the other, set to r = 10m.
The connectivity summary of these two networks is shown
in Table I. The latter network is two times more connected
than the former (i.e., doubling the node degree and edges).
Figure 9 suggests that reducing the network density only
slightly increase location error of LSVM. In contrary, it is
observed that its counterpart Diffusion is more accurate in
less network density. In comparison, LSVM in a less dense
network (i.e., Lsvm-r7) still performs no worse than the best
of its counterpart Diffusion (i.e., Diff1000-r7) in all statistics:

average error (Figure 9(a)), worst-case error (Figure 9(b)), and
error distribution (Figure 9(c)). In terms of standard deviation,
Lsvm-r7 is remarkably better than Diff1000-r7.

2) Number of beacon sensors: Figure 9 also illustrates an
obvious feature of LSVM that the localization accuracy gets
better as more beacon sensors are used. Using only 5% (k =
50), we can locate a sensor within a mean error of 5.5m in
a 10,000m2 square field. When k = 100 beacons, the error
is reduced to 3.6m. The reduction is less significant when
we continue to increase k. This study suggests that for cost
effectiveness between 5% and 15% of the network size be
used as beacon sensors.

3) The border problem: The border problem, where sensors
close to the edge of the sensor field are poorly positioned
compared to those deep inside the field, is a challenge for
many techniques. We investigate this problem for two types
of network (communication range 7m and 10m) and two sizes
of beacon population (5% and 25% network size). Figures 10
and 11 show the location error for every sensor node, sorted
in the increasing order of sensor distance to the field’s origin,
for two different network densities (r = 10m and r = 7m). In
other words, those sensors closer to the origin appear before
those closer to the edge. In all scenarios, Diff10000 suffers
from the border problem severely (i.e., significantly larger
error for border-close sensors). On the other hand, LSVM
addresses this problem much better, as illustrated in Figures
10(a), 10(c), 11(a), 11(c). The differences between the location
errors of sensors closer to the edge and that of sensors inside
are much less significant. This property can be explained. In
Diffusion, the localization of a sensor is based on its neighbors,
whose estimated location in turn depends on other neighbors.
Sensors near the border have less neighbor information than
those inside the field. Therefore, the former’s location estimate
should be less accurate. LSVM does not suffer from this
problem because the localization of a sensor is only based
on the beacon nodes directly, which is independent of other
sensors. Therefore, whether a sensor is near the border or the
field’s center should not have a big impact on its location
estimation.

4) Existence of network holes: We consider the two net-
works demonstrated in Figure 5: a network with 1 hole (Figure
5(a)) and a network with 5 holes (Figure 5(b)). Figure 12
shows the localization error of LSVM in these networks. We
also use the error of Diff10000 in the hole-less network as the
reference line. It is understandable that LSVM may be less
accurate in the networks with holes; however, the existence of
coverage holes does not seem to have an impact on LSVM.
The reduction in error, if there exists, is very minor. Moreover,
LSVM in the networks with holes provides even much better
accuracy and error deviation than Diff10000 in the hole-less
networks. For example, with 50 beacons, while Diff10000 in
the case of no coverage hole has an average error of 8.5m
and standard deviation of 6m, the average error and standard
deviation of LSVM in the case of networks with holes are
less than 6.5m and 5m, respectively. Therefore, LSVM can
handle not only the border problem, but also the coverage-hole
problem. Similar to the border issue, the coverage-hole issue
can be explained as well. Although there are network holes, the

11

LSVM: Effect of network density

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

5% 10% 15% 20% 25%

Beacon population (% network size)

A
vg

. L
o

ca
ti

o
n

 E
rr

o
r

(m
)

Lsvm-r10

Lsvm-r7

Diff10000-r10

Diff10000-r7

(a) Average location error

LSVM: Effect of network density

5

10

15

20

25

30

5% 10% 15% 20% 25%

Beacon population (% network size)

M
ax

. L
o

ca
ti

o
n

 E
rr

o
r

(m
)

Lsvm-r10

Lsvm-r7

Diff10000-r10

Diff10000-r7

(b) Max location error

LSVM: Effect of network density

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

5% 10% 15% 20% 25%

Beacon population (% network size)

L
o

ca
ti

o
n

 E
rr

o
r

S
td

. D
ev

. (
m

) Lsvm-r10

Lsvm-r7

Diff10000-r10

Diff10000-r7

(c) Standard deviation

Fig. 9. LSVM under the effect of network density (r = 7m and r = 10m): Statistics on location error per each beacon population

LSVM: Border Effect

0

5

10

15

20

25

30

1 73 145 217 289 361 433 505 577 649 721 793 865 937

Sensor ID

L
o

ca
ti

o
n

 E
rr

o
r

(m
)

(a) LSVM: 50 beacons

Diffusion: Border Effect

0

5

10

15

20

25

30

1 73 145 217 289 361 433 505 577 649 721 793 865 937

Sensor ID

L
o

ca
ti

o
n

 E
rr

o
r

(m
)

(b) Diff10000: 50 beacons

LSVM: Border Effect

0

2

4

6

8

10

12

14

1 73 145 217 289 361 433 505 577 649 721 793 865 937

Sensor ID

L
o

ca
ti

o
n

 E
rr

o
r

(m
)

(c) LSVM: 250 beacons

Diffusion: Border Effect

0

2

4

6

8

10

12

14

1 73 145 217 289 361 433 505 577 649 721 793 865 937

Sensor ID

L
o

ca
ti

o
n

 E
rr

o
r

(m
)

(d) Diff10000: 250 beacons

Fig. 10. The border problem (LSVM vs. Diffusion, 10m range): Location error for every sensor, sorted in the order of nodes close to the origin of the field
first and nodes close to the edge of the field last. The border problem is resolved well with LSVM; it is severe in Diffusion because the error is significantly
increased toward the edge

hop-count distances between a sensor and only a small number of beacons become less representative of their true geographic

12

LSVM: Border Effect

0

5

10

15

20

25

30

1 73 145 217 289 361 433 505 577 649 721 793 865 937

Sensor ID

L
o

ca
ti

o
n

 E
rr

o
r

(m
)

(a) LSVM: 50 beacons

Diffusion: Border Effect

0

5

10

15

20

25

30

1 73 145 217 289 361 433 505 577 649 721 793 865 937

Sensor ID

L
o

ca
ti

o
n

 E
rr

o
r

(m
)

(b) Diff10000: 50 beacons

LSVM: Border Effect

0

2

4

6

8

10

12

14

1 73 145 217 289 361 433 505 577 649 721 793 865 937

Sensor ID

L
o

ca
ti

o
n

 E
rr

o
r

(m
)

(c) LSVM: 250 beacons

Diffusion: Border Effect

0

2

4

6

8

10

12

14

1 73 145 217 289 361 433 505 577 649 721 793 865 937

Sensor ID

L
o

ca
ti

o
n

 E
rr

o
r

(m
)

(d) Diff10000: 250 beacons

Fig. 11. The border problem (LSVM vs. Diffusion, 7m range): In the less-dense network, the border problem is also well-resolved with LSVM; it remains
severe in Diffusion

LSVM: Effect of coverage holes

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

5% 10% 15% 20% 25%

Beacon population (% network size)

A
vg

. L
o

ca
ti

o
n

 E
rr

o
r

(m
)

Diff10000

Lsvm

Lsvm-1 hole

Lsvm-5 holes

(a) Average location error

LSVM: Effect of coverage holes

5

10

15

20

25

30

35

40

5% 10% 15% 20% 25%

Beacon population (% network size)

M
ax

 L
o

ca
ti

o
n

 E
rr

o
r

(m
)

Diff10000

Lsvm

Lsvm-1 hole

Lsvm-5 holes

(b) Max location error

LSVM: Effect of coverage holes

1

2

3

4

5

6

5% 10% 15% 20% 25%

Beacon population (% network size)

L
o

ca
ti

o
n

 E
rr

o
r

S
td

. D
ev

. (
m

) Diff10000

Lsvm

Lsvm-1 hole

Lsvm-5 holes

(c) Standard deviation

Fig. 12. LSVM’s accuracy in networks with coverage holes. These networks are illustrated in Figure 5

distances. The majority of beacons should have their hop-count
distance to the sensor same as if no network hole existed. SVM

classification should remain highly accurate, and, so should the
accuracy of LSVM.

13

V. CONCLUSION

We have presented LSVM – a distributed localization tech-
nique for sensor networks based on the concept of Support
Vector Machines. LSVM assumes the existence of a number of
beacons and uses them as training data to the learning process.

Only mere connectivity information is used in LSVM,
making it suitable for networks that do not require pairwise
distance measurement and specialized (and/or mobile) assist-
ing devices. LSVM yet provides encouraging results. Our sim-
ulation study have shown that LSVM outperforms Diffusion,
a popular approach that shares the same assumptions with
LSVM. With a small beacon population, LSVM has been
shown to also be faster converging and more accurate than
AFL, a popular technique that requires pairwise distance mea-
surement. LSVM alleviates the border problem and remains
effective in networks with coverage holes/obstacles, which
many other techniques currently suffer from. The communi-
cation and processing overheads are kept small. We have also
evaluated LSVM analytically and provided theoretical bounds
on its localization accuracy.

In network scenarios that can afford ranging and assisting
devices to measure geographic pair-wise distances, because
of its simplicity and fast convergence, LSVM can be used to
provide good starting locations for the sensors. The location
estimation of LSVM can, optionally, be refined using our
modified mass-spring optimization algorithm.

The next step in our research is to evaluate LSVM in other
network scenarios, including various distribution models for
the sensor locations, coverage holes, and network density. We
would also like to implement LSVM as a real prototype system
and investigate its applicability in fading environments as well
as networks of moving sensors with different communication
ranges.

REFERENCES

[1] L. Doherty, L. E. Ghaoui, and K. S. J. Pister, “Convex position
estimation in wireless sensor networks,” in IEEE Infocom, April 2001.

[2] Shang, Juml, Zhang, and Fromherz, “Localization from mere connec-
tivity,” in ACM Mobihoc, 2003.

[3] C. Savarese, J. Rabaey, and J. Beutel, “Locationing in distributed ad-
hoc wireless sensor networks,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, Salt Lake city, UT, 2001.

[4] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Anchor-
free distributed localization in sensor networks,” in ACM Sensys, 2003.

[5] S. Capkun, M. Hamdi, and J.-P. Hubauz, “Gps-free positioning in
mobile ad hoc networks,” in Hawai International Conference on System
Sciences, 2001.

[6] L. Meertens and S. Fitzpatrick, “The distributed construction of a global
coordinate system in a network of static computational nodes from inter-
node didstances,” Kestrel Institute, Tech. Rep., 2004.

[7] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed network
localization with noisy range measurements,” in ACM Sensys, Baltimore,
MA, November 2004.

[8] D. Niculescu and B. Nath, “Ad hoc positioning system (aps),” in IEEE
Globecom, 2001.

[9] N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann, “Scalable ad
hoc deployable rf-based localization,” in Grace Hopper Celebration of
Women in Computing Conference, Vancouver, Canada, October 2002.

[10] A. Savvides, H. Park, and M. Srivastava, “The bits and flops of the n-hop
multilateration primitive for node localization problems,” in Workshop
on Wireless Networks and Applications (in conjunction with Mobicom
2002), Atlanta, GA, September 2002.

[11] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic fine-grained
localization in ad hoc networks of sensors,” in ACM International
Conference on Mobile Computing and Networking (Mobicom), Rome,
Italy, July 2001, pp. 166–179.

[12] S. Simic and S. S. Sastry, “Distributed localization in wireless ad hoc
networks,” University of California at Berkeley, Tech. Rep., 2002.

[13] C. Whitehouse, “The design of calamari: an ad hoc localization sys-
tem for sensor networks,” Master’s thesis, University of California at
Berkeley, 2002.

[14] D. Niculescu and B. Nath, “Ad hoc positioning system (aps) using aoa,”
in IEEE Infocom, 2003.

[15] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a global coordinate
system from local information on an ad hoc sensor network,” in
International Symposium on Information Processing in Sensor Networks,
2003.

[16] T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher, “Range-free
localization schemes in large scale sensor networks,” in ACM Conference
on Mobile Computing and Networking, 2003.

[17] N. B. Priyantha, “The cricket indoor location system,” Ph.D. dissertation,
Massachussette Institute of Technology, 2005.

[18] Y. Kwon, K. Mechitov, S. Sundresh, W. Kim, and G. Agha, “Resilient
localization for sensor networks in outdoor environments,” University of
Illinois at Urbana-Champaign, Tech. Rep., June 2004.

[19] N. Priyantha, A. Miu, H. Balakrishnan, and S. Teller, “The cricket
compass for context-aware mobile applications,” in ACM conference on
mobile computing and networking (MOBICOM), 2001.

[20] R. Stoleru, J. A. Stankovic, and D. Luebke, “A high-accuracy, low-cost
localization system for wireless sensor networks,” in ACM Sensys, San
Diego, CA, November 2005.

[21] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Mobile-
Assisted Localization in Wireless Sensor Networks,” in IEEE INFO-
COM, Miami, FL, March 2005.

[22] X. Nguyen, M. Jordan, and B. Sinopoli, “A kernel-based learning
approach to ad hoc sensor network localization,” IEEE Transactions
on Sensor Networks, vol. 1, pp. 134–152, 2005.

[23] V. N. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.
[24] C.-C. Chang and C.-J. Lin, LIBSVM – A library for Support

Vector Machines, National Taiwan University. [Online]. Available:
http://www.csie.ntu.edu.tw/ cjlin/libsvm

[25] N. Cristianini and J. Shawe-Taylor, An introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge
University Press, 2003.

Duc A. Tran is an Assistant Professor at the Uni-
versity of Dayton, where he conducts research in the
areas of Computer Networks, Distributed Systems,
and Multimedia Systems. His current work is funded
by the NSF and the Ohio Board of Regents. Dr. Tran
has served as a Vice Program Chair for IEEE AINA
2007, journal guest-editor, TPC member for 12
international conferences, and referee for numerous
ACM/IEEE international conferences and journals.
His PhD degree in Computer Science was from the
University of Central Florida in May 2003, where

he also received the Distinguished Doctoral Research Award, IEEE-Orlando
Outstanding Graduate Student Award, and the Order of Pegasus Award.

Thinh Nguyen has been an Assistant Professor at
Oregon State University since 2004. He earned a
B.S. from the University of Washington, and an
M.S. and Ph.D. from U.C. Berkeley in 2000 and
2003, respectively. During 2003-2004, he was a post-
doctoral research associate at Lawrence Livermore
National Laboratory. During 1996-1998, he was a
graphics researcher at Intel’s Microcomputer Re-
search Lab. He also spent 6 months at Microsoft,
optimizing DirectX6 for Pentium III. Dr. Nguyen’s
current research interests include networking, signal

processing, computer graphics, machine learning, data analysis and data
mining.

