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ABSTRACT

We present an analytical framework for providing Quality of
Service (QoS) using queuing policies that achieves a given
target distribution of packets in a network queue. Queuing
policies are employed in an attempt to control the sending
and receiving rates subject to the uncertainties in the environ-
ments. To a large extent, the stationary distribution of pack-
ets in the queue resulted from employing a certain queuing
policy directly controls the typical QoS metrics for multime-
dia applications. Therefore, using the packet distribution in
the queue as the metric, the proposed framework allows for a
more general and precise control of QoS beyond the standard
metrics such as bandwidth, jitter, loss, and delay. Moreover,
the proposed framework aims to find a fast queuing policy
that achieves a given target stationary distribution. This fast
adaptation is especially useful for multimedia applications in
fast-changing network conditions. As an example, we present
a general procedure for obtaining a queuing policy that op-
timizes for a given arbitrary objective along with the stan-
dard QoS requirements. Both theory and simulation results
are presented to verify our framework.

Index Terms— QoS, Queueing theory, Distribution
Shaping, Convex Optimization

1. INTRODUCTION

Since the development of packet-switched networks in early
1960s, queuing theory has been a critical part in the per-
formance analysis for most if not all the modern transmis-
sion protocols. The performance of TCP/IP protocols for ex-
ample, can be analyzed in the language of queuing theory
[1]. Many current wireless transmission protocols such as the
IEEE 802.11 protocols owed their analysis to queuing theory.
In fact, queues are so universal that they are virtually found
in every communication devices from the core Internet routers
and broadband modems to wireless LAN and cellular devices.
It is therefore, not a surprise that a point-to-point data flow is
typically modeled as a single queue or a network of queues.
Understanding the dynamics of packets in queues over time as
a result of employing certain queuing policy, enables the sys-
tem engineers to characterize and to predict various proper-
ties of the data flow such as bandwidth, packet loss and delay.
With the advent of multimedia communication applications
that require certain levels of Quality of Service (QoS), e.g.,

requirements on minimum bandwidth, maximum jitter, delay,
or loss, the role of queuing policy is becoming increasingly
more important.

Queue and Queuing Policy: In a typical packet-switched
network, the instantaneous arrival rates of packets at an inter-
mediate router can vary significantly. Hence packet loss oc-
curs when the arrival rate exceeds the sending rate at a router.
Therefore, a queue or a buffer is used to temporarily store
a burst of incoming packets in an attempt to prevent packet
loss. These packets waits for their turns in the queue to be
transmitted to the next hop, or to read by an application if the
queue is located at a receiving end device. Queuing policy
is a mechanism used to control various operations of a queue
that govern the packet’s entrance, departure, and drop. It is di-
rectly responsible for shaping the dynamics of packets in the
queue which characterizes the delay, loss, and bandwidth of a
flow. Depending on certain constraints, some queuing polices
are more limited in their operations than others. For exam-
ple, a simple queuing policy is the First In First Out (FIFO)
scheme which is typically implemented at the Internet core
routers. A router using FIFO policy sends out packets in the
order of their arrivals as fast as possible. Packets arriving at
the router are dropped when the queue is full. One impor-
tant observation is that the FIFO has no ability to control the
sending or dequeue rate, nor it has the ability to provide feed-
back to the upstream node for adjusting the incoming or en-
queue rate. On the other hand, a more sophisticated queuing
policy would be able to control, at least probabilistically, the
dequeue rate and the enqueue rate possibly via feedback in
order to achieve some given objectives such as queue stability
or average queue length.

The well-known Transmission Control Protocol (TCP) is
an example of end-to-end flow control in which the feedback
(ACK message) to the sender is used to control the sending
(enqueue) rate. The IEEE 802.11 protocol family also em-
ploys feedback in the form of collisions to adjust the send-
ing rates appropriately. Beyond network protocols, queues
are also extensively used in rate control for video coding [2].
The objective of rate control is to produce a coded video bit
stream with a certain average bit rate and variance. In this set-
ting, a “conceptual” queue is connected to a video encoder.
The feedback from the queue to the video encoder is used
by the video encoder to adjust the coded video bit rate using
the coding parameters such as quantization level and coding
mode appropriately.



In this paper, we consider a general class of queuing po-
lices that allows for the ability to adjust the sending and re-
ceiving rates probabilistically. The probabilistic framework
arises naturally from the unavoidable uncertainties in when
and how fast packets arrive due to the fluctuations in network
traffic. Furthermore, in some scenarios the ability to send
packets out (de-queue) successfully at any time is probabilis-
tic. For example, in a Wi-Fi network, a wireless node might
not be able to successfully send out a packet (de-queue) at a
certain time slot due to possible collision with other node’s
transmission. Also, its random back-off mechanism after a
collision can in fact be viewed as a dequeuing operation with
a certain probability. In this paper, we also limit our discus-
sion to the analysis of queuing policy for a single queue. We
believe the analysis for this simple case is still useful since
it is applicable to providing QoS in the last mile scenario or
single-hop networks such as a Wi-Fi or access networks.

Our contributions include an analytic framework for pro-
viding Quality of Service (QoS) using fast a queuing policy
that achieves a given target distribution of packets in a net-
work queue. Using the packet distribution in the queue as the
metric, the proposed framework allows for a more general and
precise control of QoS beyond the standard metrics such as
bandwidth, jitter, loss, and delay. The fast adaptive queuing
policies are especially useful for multimedia applications in
fast-changing network conditions. Finally, we show how even
faster queuing policy can be achieved when the solution only
need to produces the stationary distribution that is e-close to
the given target stationary distribution. Our framework is de-
veloped by the theory of fast mixing chain and convex opti-
mization. As an example, we present a general procedure for
obtaining a queuing policy that optimizes for a given arbitrary
objective along with the standard QoS requirements.

Our paper is organized as follows. In Section 2, we pro-
vide some background on the theory of Markov Chain and
Queuing as they are necessary for the development of our
proposed framework. In Section 3, we describe a convex op-
timization framework with multiple formulations for finding
fast queuing policies. As an example, in Section 4, we show
an application of our framework to finding a queuing policy
that optimizes for a given objective while ensuring the mean
and variance of queuing delay are within given bounds. Fi-
nally, we provide a few concluding remarks.

2. PRELIMINARIES

2.1. Queues, Markov Chain, and Mixing Times

Informally, a finite and discrete Markov chain is a set of se-
quence of random variables X, Xo, ... X,, such that given
the present states, the past and the future states are indepen-
dent. A finite state time-homogeneous Markov chain is for-
mally characterized by a time-invariant transition probability
matrix P. Let N be the number of the maximum physical
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Fig. 1. Queuing policy can be viewed as a tridiagonal transi-
tion probability matrix

queue length, X, be the number of packets in the queue at
time step n, then dynamics of the number of packets in the
queue can be mathematically represented by a Markov chain
with a square tridiagonal probability matrix PY*V . Each
entry P;; denotes the conditional probability that the chain
moves to state j in the next time step given that it is in state
¢ in the current time step. Note that P;; does not depend on
time n. Fig. 1 shows a queuing policy that adjusts the sending
and receiving rates probabilistically at different states and the
corresponding triadiagonal transition probability matrix.

We also consider queuing policies such that the diagonal
and off-diagonal entries in the corresponding tridiagonal ma-
trix is different from 1. This ensures that the chain in aperi-
odic and irreducible. Informally, an aperiodic and irreducible
chain has the properties that the chain can reach any state with
non-zero probability at some point, and that the time the chain
starts in any state ¢ and returns to the same state ¢ must not be a
multiple of /' > 1. This assumption is important as it allows
for the characterization of the stationary distribution with the
following Proposition:

Proposition 1 For an irreducible, aperiodic, finite and dis-
crete Markov chain with a transition probability matrix P,
there exists a unique stationary distribution 7 such that

lim vTP" =T, (D)
n—oo
(I
The stationary distribution approximately represents the
probabilities of the chain being in different states after a suf-
ficiently large number of time steps regardless of the initial
state of the chain.
In order to quantify “fast” queuing policy, i.e., how fast
a queuing policy drive an initial distribution to a given target
stationary distribution, it is necessary to define a similarity
measure between two distributions. One common similarity
measure is the total variance distance defined below:



Definition 1 (Total variation distance) For any two proba-
bility distributions v and 7 on a finite state space ), we define
the total variation distance as:

Iy =l = 5 3 Ioli) = 7).
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We now use the similarity measure to define an important no-
tion called mixing time below:

Definition 2 (Mixing time) For a discrete, aperiodic and ir-
reducible Markov chain with transition probability P and
stationary distribution m, given an € > 0, the mixing time
timiz (€) is defined as

inf {n : [T P" — 7|y < € forall

probability distributions v} .

tmiz (E) =

[
Essentially, the mixing time of a discrete time Markov chain
is the minimum number of time step n until the total variance
distance between the n-step distribution ad the stationary
distribution is less than e. We will use the mixing time to
characterize the convergence rate of a queuing policy. One of
the successful techniques for bounding the mixing time of a
stochastic matrix is via its spectral characterization, i.e., its
eigenvalues.

Eigenvalues and Eigenvectors. A non-zero vector v; is
called a right (left) eigenvector of a square matrix P if there
is a scalar \; such that: Pv; = \v; or (vl P = \v)). The
scalar ); is said to be an eigenvalue of P. If P is a stochastic
matrix, then |A;| < 1,Vi. Denote the set of eigenvalues in
non-increasing order:

1=X(P) = A(P) 2+ = Ng|(P) = —1

Definition 3 (Second largest eigenvalue modulus) The

second largest eigenvalue modulus (SLEM) of a matrix P is

defined as:
n(P) =

max

max  [X(P)] = max{2(P), Ao (P)} (2)

[
In this paper, we also make use the reversibility property
of Markov chain defined as follows:

Definition 4 (Reversible Markov Chain) A discrete
Markov chain with a transition probability P is said to be
reversible if

Pijm(i) = Pjim(j) 3

[
We now show an important bound that relates mixing time of
the Markov chain to the SLEM of a reversible matrix P.

Theorem 1 (Bound on mixing time) [3]. Let P be the
transition matrix of a reversible, irreducible and aperi-
odic Markov chain with state space (), and let T, =
mingecq 7w (x). Then

1

tmm(e) < 1— ,U/(P) log (Gﬁmin).
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It is not difficult to see that from Theorem 1, the error € re-
. e~ (I—n(P)t

duces over time at a rate of no greater than &———. Thus,

finding the matrix P with minimum p(P) would result in the

fastest convergence time. Next, we discuss previous results

on how to find reversible matrices or queuing policies with

fast convergence rates.

2.2. Finding Queuing Policy with Fast Convergence Rate

For a reversible, irreducible, aperiodic chain P with station-
ary distribution 7, it was shown in [4] that

w(P) = ||Dy*PDM?* — /x(vm)T |2, (5)

where D, denotes the square diagonal matrix whose diagonal
entries are taken from each elements of 7, and ||.|| denote [5-
induced matrix norm.

Then given a target distribution 7*, it is not difficult to see
that 41( P) is a convex function in P. Thus, in [4], the problem
of finding the reversible matrix P with the smallest SLEM,
or Fastest Mixing Markov Chain (FMMC) is the following
convex optimization:

FMMC framework.

Minimize ||D,1r42PD;}/2 — VT (VT2

. [ P1=1 (6)
Subject to : { D.P=PTD..

We note that the first constraint guarantee the matrix P to
be a valid transition probability matrix, while reversibility is
enforce in the second constraint. P is the only optimization
variable.

An extension of the FMMC problem is also considered
in [5], called the EFMMC problem. In the EFMMC problem
the goal is to produce even a faster mixing Markov chain
that the one the one obtained by the FMMC. However, the
resutlting stationary distribution is no longer exactly the
given target distribution, but is an e-approximation to the
target stationary distribution. Specifically, it have shown that
the solution of EFMMC can be obtained using the following
convex optimization:

Extended FMMC framework.

Minimize |\D71T42PD;}/2 — V)T
P1=1

|7 P -7 T|la <0

Other convex constraints on P.

7
Subject to : ™
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Fig. 2. Discrete queue model

By choosing appropriate value of §(¢) as discussed in [5],
we guarantee the solution to our EFMMC problem will pro-
duce a stationary distribution 7 that is e- approximation of 7%,
specifically |7 — 7*| < e.

Now we make the connection to the queuing policy and
reversible matrix with the following Proposition:

Proposition 2 Any tridiagonal transition matrix corresponds
to a reversible Markov Chain. [

Since every queuing policy corresponds to a tridiagonal
transition probability matrix, from the Proposition 2 all the
queuing policies that we considered are reversible. Also, it is
not difficult to add in additional convex constraints to ensure
that the solutions of the convex optimization problems above
to have the solution as a tridiagonal matrix.

However, it is important to note that for a given tridiag-
onal transition probability matrix, there might not be a valid
queuing policy for specific settings. Therefore, even if one
find the fastest reversible matrix for either two convex formu-
lations above, there might not be readily a feasible queueing
policy. In the next section, we show a method for find an ap-
proximate queuing policy based on the P found in the two
formulations.

3. TRIDIAGONAL MATRICES AND QUEUE POLICY

Depending on specific settings, the tridiagonal will not pro-
duce a valid queuing policy, more precisely, produce a feasi-
ble way for conrolling the enqueue and dequeue rates. Let us
consider the following scenario in which the arrival and de-
pature rates at the queue can controlled to some extent by a
queueing policy. Let us assume that as a result of the queuing
policy, the probabilities of a packet arriving at the queue and
departing from the queue when the queue length ¢ are a; and
s, respectively. We assume that packets can only arrive and
depart in each discrete time slot. The ability to control the
arrival rate seems impossible for physical queues in the In-
ternet routers, however, it is frequently implemented in high
level network protocols such as TCP in which virtual queues
are typically used to provide feedback to the sender for the
purpose of rate control. Using this queuing model as shown
in Fig. 2, let us denote:

o |Q]: Maximum queue length
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., ajq|) Where a|q| = 0: Arrival probability

Then it is not difficult to see that the dynamics of the num-
ber of packets in a queue over time is governed by a discrete
Markov chain with the transition probability matrix below:

lfa() ao

S1(1—CL1) 1—s81—a1+2s1a1 (1—81)0,1

s|e| 1= siq

3

Note that for each non-zero entry of each row, the left,

middle, and right entries denote the probabilities that the

number of packets in the queue decreases by 1, stays the

same, or increases by 1, respectively.

Now, let us compare the above matrix ) to P the solution

obtained from the problem FMMC (or EFMMC) above. In
general, P is tridiagonal matrix with the entries: r;, ¢;, p;.

To Do

g ™ p1
P = . ) )]

g TQ|

The main challenge is given r;, ¢;, p;, how to find the cor-
responding s; and a;, i.e., enqueues and dequeue rates. It
turns out that s; and a; might be negative or complex numbers
which cannot be used in a feasible queuing policy. However,
we dermine the conditions on ¢; and p; for which there exist
real and non-negative solutions for s; and a;, leading to a fea-
sible queuing policy. We proceed to derive the conditions as
follows.

From (8) and (9) to compute vector s and vector a, we
need to solve these following equations:

si(l—ai) =q; — a; :17(]1/81
(1—si)a; =pi = a; =pi/(1 - s7)

= 1—qi/si=pi/l —sifori=1,...,[Q -1



— (1—-si)8i=1—s))g+spifori=1,...,|Q| -1
— s?—5;(1+q—pi)+q =0fori=1,...,|Q|-1 (10)

In order to guarantee the existence of feasible solution of (10),
we need:

A=(1+q—p)*—4¢ >0fori=1,...,|Q -1 (11)

In theory, we can add these contraints to the two convex
formulations above. However, these contraints are not convex
constraint making it hard to solve in general. Therefore, our
approach is to relax (11) to a convex constraint as follows.

(11) < 14+¢ —pi > 2/g;since ¢; >0

= (1—-@) > p (12)

Consider function f = (1 — y/x)2 for x € (0,1), we can
find an approximate lower bound function of f in the form of
tangent y = ax + b where a = f'(x¢) and f'(z) = (Vx —
1)/+/x (See (Fig. 3)).

Hence, (12) is equivalent to the following convex con-
straints:

a(zo)g; +b(xo) >p;fori=1,...,]Q -1 (13)

Now, we can incorporate these constraints in (13) to the
FMMC and/or EFMMC problems, and still have convex for-
mulations to find feasible queuing policies.

4. OPTIMIZING A GIVEN OBJECTIVE VIA
QUEUING POLICY

4.1. Approach Illustration

In this section, we provide an example of applying our pro-
posed framework to find fast queuing policy that optimizes a
given objective while still satisfying other standard QoS re-
quirements. Our approach consists of two steps. In the first
step, we to find a stationary distribution 7* that optimizes a
given objective subject to all the given constraints assuming
that the given objective and the constraints are convex in T,
and thus 7* can be determined efficiently. In the second step,
we substitute 7* into either the FMMC or EFMMC with the
convex constraints in (13) to find the fastest queuing policy.
We give a specific example below.

Step 1. Let X be discrete random variable representing
the number of packets in the queue (X € [0,..., L]).
Suppose a video application requires that the queuing delay
average and second moment must be bounded by must be
bounded within a range. For example,

X1 < EX]<Y1
X2 < E[X? <Y2

Then E[X] and E[X?] can be computed from the stationary
distribution 7:

{ E[X] =Y w(z)e
E[X? = YF n(a)a?

Furthermore, suppose that there is a cost function ¢(z) where
x denotes the number of packet in the queue. ¢(z) could be
any arbitrary convex function that might represent energy, re-
sources that depends on the queue occupancy. Now, suppose
we want to minimize the total expected cost,

=L
T= Z c(x)m(x).
=0

Then the optimization problem can be formulated as follows.

L
X1< Zw(x)m <Yl
=0

Lo (14)
Subject to : X2< Z;)Tr(x)x <¥2

L

D w(z)=1

z=0
Tmin < 77(33) YV 2071,...71;

Step 2. The solution of (14) gives us the target station-
ary distribution 7* satisfying the QoS requirements and the
given objective. Now, we apply the FMMC and EFMMC for-
mulations to find tridiagonal matrices with fast mixing rates.
From these matrices, we can find the dequeuing and dequeu-
ing rates as function of the number of packets in the queue
that achieves the target distribution quickly.

4.2. Performance Evaluation

In this section, we present the performance evaluations of our
approach using the example above with specific parameters.
We assume the maximum physical queue length L = 9. To
demonstrate the flexibility of our approach, the cost function
¢(x) is chosen arbitrarily as shown in Fig. 5; X1 = 0;Y1 =
5; X2 =0;Y2 = 19; mnin = 0.01; Using the approximation
method for obtaining a feasible queuing policy in Section 3,
we choose the tangent at xp = 0.2; we set § = 0.001 in the
EFMMC framework.

Fig. 4 shows the shape of the target stationary distribution
7* and 7 as the results of steps 1 and 2 in Section 4.1, respec-
tively. As seen, 7* and 7 are very close indicating very good
approximation of our approach.

In addition, Fig. 6 shows that the EFMMC framework has
a faster convergence rate as expected than the that of FMMC
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as expected. Importantly, faster convergence rate is espe-
cially useful in non-stationary settings.

To illustrate this point, Fig. 7 shows the total variance be-
tween the current distributions produced by the FMMC and
EFMMC frameworks, and the target stationary distribution in
a non-stationary environment. The non-stationary environ-
ment is simulated based on the bursty traffic Poisson patterns
with A = 30. Specifically, in addition to the regular traffic,
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Fig. 7. Convergence of the system during environmental
change

there are bursts of 5 packets arriving at the queue. On average,
the time duration between these bursts are 30 time slots. As
shown in Fig. 7, both curves have spikes when the bursts of
packets arrive. This prevents the current distributions in both
frameworks from approaching the target stationary distribu-
tion (i.e, the curves approaching zero). On the other hand, the
queuing policy based on EFMMC framework is better than
that of FMMC since it produces as close as possible to the
target distribution quickly.

5. CONCLUSION

In this paper, we have proposed a framework for finding fast
queuing policies that can provide both flexible QoS require-
ments as well as optimize for a given objective. The analysis
and simulation results show that our framework is especially
useful in fast-changing network conditions.
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