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ABSTRACT

We present an analytical framework for providing Quality of

Service (QoS) using queuing policies that achieves a given

target distribution of packets in a network queue. Queuing

policies are employed in an attempt to control the sending

and receiving rates subject to the uncertainties in the environ-

ments. To a large extent, the stationary distribution of pack-

ets in the queue resulted from employing a certain queuing

policy directly controls the typical QoS metrics for multime-

dia applications. Therefore, using the packet distribution in

the queue as the metric, the proposed framework allows for a

more general and precise control of QoS beyond the standard

metrics such as bandwidth, jitter, loss, and delay. Moreover,

the proposed framework aims to find a fast queuing policy

that achieves a given target stationary distribution. This fast

adaptation is especially useful for multimedia applications in

fast-changing network conditions. As an example, we present

a general procedure for obtaining a queuing policy that op-

timizes for a given arbitrary objective along with the stan-

dard QoS requirements. Both theory and simulation results

are presented to verify our framework.

Index Terms— QoS, Queueing theory, Distribution

Shaping, Convex Optimization

1. INTRODUCTION

Since the development of packet-switched networks in early

1960s, queuing theory has been a critical part in the per-

formance analysis for most if not all the modern transmis-

sion protocols. The performance of TCP/IP protocols for ex-

ample, can be analyzed in the language of queuing theory

[1]. Many current wireless transmission protocols such as the

IEEE 802.11 protocols owed their analysis to queuing theory.

In fact, queues are so universal that they are virtually found

in every communication devices from the core Internet routers

and broadband modems to wireless LAN and cellular devices.

It is therefore, not a surprise that a point-to-point data flow is

typically modeled as a single queue or a network of queues.

Understanding the dynamics of packets in queues over time as

a result of employing certain queuing policy, enables the sys-

tem engineers to characterize and to predict various proper-

ties of the data flow such as bandwidth, packet loss and delay.

With the advent of multimedia communication applications

that require certain levels of Quality of Service (QoS), e.g.,

requirements on minimum bandwidth, maximum jitter, delay,

or loss, the role of queuing policy is becoming increasingly

more important.

Queue and Queuing Policy: In a typical packet-switched

network, the instantaneous arrival rates of packets at an inter-

mediate router can vary significantly. Hence packet loss oc-

curs when the arrival rate exceeds the sending rate at a router.

Therefore, a queue or a buffer is used to temporarily store

a burst of incoming packets in an attempt to prevent packet

loss. These packets waits for their turns in the queue to be

transmitted to the next hop, or to read by an application if the

queue is located at a receiving end device. Queuing policy

is a mechanism used to control various operations of a queue

that govern the packet’s entrance, departure, and drop. It is di-

rectly responsible for shaping the dynamics of packets in the

queue which characterizes the delay, loss, and bandwidth of a

flow. Depending on certain constraints, some queuing polices

are more limited in their operations than others. For exam-

ple, a simple queuing policy is the First In First Out (FIFO)

scheme which is typically implemented at the Internet core

routers. A router using FIFO policy sends out packets in the

order of their arrivals as fast as possible. Packets arriving at

the router are dropped when the queue is full. One impor-

tant observation is that the FIFO has no ability to control the

sending or dequeue rate, nor it has the ability to provide feed-

back to the upstream node for adjusting the incoming or en-

queue rate. On the other hand, a more sophisticated queuing

policy would be able to control, at least probabilistically, the

dequeue rate and the enqueue rate possibly via feedback in

order to achieve some given objectives such as queue stability

or average queue length.

The well-known Transmission Control Protocol (TCP) is

an example of end-to-end flow control in which the feedback

(ACK message) to the sender is used to control the sending

(enqueue) rate. The IEEE 802.11 protocol family also em-

ploys feedback in the form of collisions to adjust the send-

ing rates appropriately. Beyond network protocols, queues

are also extensively used in rate control for video coding [2].

The objective of rate control is to produce a coded video bit

stream with a certain average bit rate and variance. In this set-

ting, a ”conceptual”’ queue is connected to a video encoder.

The feedback from the queue to the video encoder is used

by the video encoder to adjust the coded video bit rate using

the coding parameters such as quantization level and coding

mode appropriately.



In this paper, we consider a general class of queuing po-

lices that allows for the ability to adjust the sending and re-

ceiving rates probabilistically. The probabilistic framework

arises naturally from the unavoidable uncertainties in when

and how fast packets arrive due to the fluctuations in network

traffic. Furthermore, in some scenarios the ability to send

packets out (de-queue) successfully at any time is probabilis-

tic. For example, in a Wi-Fi network, a wireless node might

not be able to successfully send out a packet (de-queue) at a

certain time slot due to possible collision with other node’s

transmission. Also, its random back-off mechanism after a

collision can in fact be viewed as a dequeuing operation with

a certain probability. In this paper, we also limit our discus-

sion to the analysis of queuing policy for a single queue. We

believe the analysis for this simple case is still useful since

it is applicable to providing QoS in the last mile scenario or

single-hop networks such as a Wi-Fi or access networks.

Our contributions include an analytic framework for pro-

viding Quality of Service (QoS) using fast a queuing policy

that achieves a given target distribution of packets in a net-

work queue. Using the packet distribution in the queue as the

metric, the proposed framework allows for a more general and

precise control of QoS beyond the standard metrics such as

bandwidth, jitter, loss, and delay. The fast adaptive queuing

policies are especially useful for multimedia applications in

fast-changing network conditions. Finally, we show how even

faster queuing policy can be achieved when the solution only

need to produces the stationary distribution that is ǫ-close to

the given target stationary distribution. Our framework is de-

veloped by the theory of fast mixing chain and convex opti-

mization. As an example, we present a general procedure for

obtaining a queuing policy that optimizes for a given arbitrary

objective along with the standard QoS requirements.

Our paper is organized as follows. In Section 2, we pro-

vide some background on the theory of Markov Chain and

Queuing as they are necessary for the development of our

proposed framework. In Section 3, we describe a convex op-

timization framework with multiple formulations for finding

fast queuing policies. As an example, in Section 4, we show

an application of our framework to finding a queuing policy

that optimizes for a given objective while ensuring the mean

and variance of queuing delay are within given bounds. Fi-

nally, we provide a few concluding remarks.

2. PRELIMINARIES

2.1. Queues, Markov Chain, and Mixing Times

Informally, a finite and discrete Markov chain is a set of se-

quence of random variables X1, X2, . . .Xn such that given

the present states, the past and the future states are indepen-

dent. A finite state time-homogeneous Markov chain is for-

mally characterized by a time-invariant transition probability

matrix P . Let N be the number of the maximum physical
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Fig. 1. Queuing policy can be viewed as a tridiagonal transi-

tion probability matrix

queue length, Xn be the number of packets in the queue at

time step n, then dynamics of the number of packets in the

queue can be mathematically represented by a Markov chain

with a square tridiagonal probability matrix PN×N . Each

entry Pij denotes the conditional probability that the chain

moves to state j in the next time step given that it is in state

i in the current time step. Note that Pij does not depend on

time n. Fig. 1 shows a queuing policy that adjusts the sending

and receiving rates probabilistically at different states and the

corresponding triadiagonal transition probability matrix.

We also consider queuing policies such that the diagonal

and off-diagonal entries in the corresponding tridiagonal ma-

trix is different from 1. This ensures that the chain in aperi-

odic and irreducible. Informally, an aperiodic and irreducible

chain has the properties that the chain can reach any state with

non-zero probability at some point, and that the time the chain

starts in any state i and returns to the same state i must not be a

multiple of K > 1. This assumption is important as it allows

for the characterization of the stationary distribution with the

following Proposition:

Proposition 1 For an irreducible, aperiodic, finite and dis-

crete Markov chain with a transition probability matrix P ,

there exists a unique stationary distribution π such that

lim
n→∞

νTPn = πT . (1)

The stationary distribution approximately represents the

probabilities of the chain being in different states after a suf-

ficiently large number of time steps regardless of the initial

state of the chain.

In order to quantify ”fast” queuing policy, i.e., how fast

a queuing policy drive an initial distribution to a given target

stationary distribution, it is necessary to define a similarity

measure between two distributions. One common similarity

measure is the total variance distance defined below:



Definition 1 (Total variation distance) For any two proba-

bility distributions ν and π on a finite state space Ω, we define

the total variation distance as:

‖ν − π‖TV =
1

2

∑

i∈Ω

|ν(i)− π(i)| .

We now use the similarity measure to define an important no-

tion called mixing time below:

Definition 2 (Mixing time) For a discrete, aperiodic and ir-

reducible Markov chain with transition probability P and

stationary distribution π, given an ǫ > 0, the mixing time

tmix(ǫ) is defined as

tmix(ǫ) = inf
{

n : ‖νTPn − πT ‖TV ≤ ǫ, for all

probability distributions ν} .

Essentially, the mixing time of a discrete time Markov chain

is the minimum number of time step n until the total variance

distance between the n-step distribution ad the stationary

distribution is less than ǫ. We will use the mixing time to

characterize the convergence rate of a queuing policy. One of

the successful techniques for bounding the mixing time of a

stochastic matrix is via its spectral characterization, i.e., its

eigenvalues.

Eigenvalues and Eigenvectors. A non-zero vector vi is

called a right (left) eigenvector of a square matrix P if there

is a scalar λi such that: Pvi = λivi or (vTi P = λvTi ). The

scalar λi is said to be an eigenvalue of P . If P is a stochastic

matrix, then |λi| ≤ 1, ∀i. Denote the set of eigenvalues in

non-increasing order:

1 = λ1(P ) ≥ λ2(P ) ≥ · · · ≥ λ|Ω|(P ) ≥ −1

Definition 3 (Second largest eigenvalue modulus) The

second largest eigenvalue modulus (SLEM) of a matrix P is

defined as:

µ(P ) = max
i=2,...,|Ω|

|λi(P )| = max{λ2(P ),−λ|Ω|(P )} (2)

In this paper, we also make use the reversibility property

of Markov chain defined as follows:

Definition 4 (Reversible Markov Chain) A discrete

Markov chain with a transition probability P is said to be

reversible if

Pijπ(i) = Pjiπ(j) (3)

We now show an important bound that relates mixing time of

the Markov chain to the SLEM of a reversible matrix P .

Theorem 1 (Bound on mixing time) [3]. Let P be the

transition matrix of a reversible, irreducible and aperi-

odic Markov chain with state space Ω, and let πmin :=
minx∈Ω π(x). Then

tmix(ǫ) ≤
1

1− µ(P )
log

( 1

ǫπmin

)

. (4)

It is not difficult to see that from Theorem 1, the error ǫ re-

duces over time at a rate of no greater than e−(1−µ(P ))t

πmin
. Thus,

finding the matrix P with minimum µ(P ) would result in the

fastest convergence time. Next, we discuss previous results

on how to find reversible matrices or queuing policies with

fast convergence rates.

2.2. Finding Queuing Policy with Fast Convergence Rate

For a reversible, irreducible, aperiodic chain P with station-

ary distribution π, it was shown in [4] that

µ(P ) = ||D1/2
π PD−1/2

π −
√
π(
√
π)T ||2, (5)

where Dπ denotes the square diagonal matrix whose diagonal

entries are taken from each elements of π, and ||.|| denote l2-

induced matrix norm.

Then given a target distribution π∗, it is not difficult to see

that µ(P ) is a convex function in P . Thus, in [4], the problem

of finding the reversible matrix P with the smallest SLEM,

or Fastest Mixing Markov Chain (FMMC) is the following

convex optimization:

FMMC framework.

Minimize ||D1/2
π∗ PD

−1/2
π∗ −

√
π∗(

√
π∗)T ||2

Subject to :

{

P1 = 1

Dπ∗P = PTDπ∗

(6)

We note that the first constraint guarantee the matrix P to

be a valid transition probability matrix, while reversibility is

enforce in the second constraint. P is the only optimization

variable.

An extension of the FMMC problem is also considered

in [5], called the EFMMC problem. In the EFMMC problem

the goal is to produce even a faster mixing Markov chain

that the one the one obtained by the FMMC. However, the

resutlting stationary distribution is no longer exactly the

given target distribution, but is an ǫ-approximation to the

target stationary distribution. Specifically, it have shown that

the solution of EFMMC can be obtained using the following

convex optimization:

Extended FMMC framework.

Minimize ||D1/2
π∗ PD

−1/2
π∗ −

√
π∗(

√
π∗)T ||2

Subject to :







P1 = 1

||π∗TP − π∗T ||2 ≤ δ
Other convex constraints on P.

(7)



Fig. 2. Discrete queue model

By choosing appropriate value of δ(ǫ) as discussed in [5],

we guarantee the solution to our EFMMC problem will pro-

duce a stationary distribution π that is ǫ- approximation of π∗,

specifically |π − π∗| ≤ ǫ.
Now we make the connection to the queuing policy and

reversible matrix with the following Proposition:

Proposition 2 Any tridiagonal transition matrix corresponds

to a reversible Markov Chain.

Since every queuing policy corresponds to a tridiagonal

transition probability matrix, from the Proposition 2 all the

queuing policies that we considered are reversible. Also, it is

not difficult to add in additional convex constraints to ensure

that the solutions of the convex optimization problems above

to have the solution as a tridiagonal matrix.

However, it is important to note that for a given tridiag-

onal transition probability matrix, there might not be a valid

queuing policy for specific settings. Therefore, even if one

find the fastest reversible matrix for either two convex formu-

lations above, there might not be readily a feasible queueing

policy. In the next section, we show a method for find an ap-

proximate queuing policy based on the P found in the two

formulations.

3. TRIDIAGONAL MATRICES AND QUEUE POLICY

Depending on specific settings, the tridiagonal will not pro-

duce a valid queuing policy, more precisely, produce a feasi-

ble way for conrolling the enqueue and dequeue rates. Let us

consider the following scenario in which the arrival and de-

pature rates at the queue can controlled to some extent by a

queueing policy. Let us assume that as a result of the queuing

policy, the probabilities of a packet arriving at the queue and

departing from the queue when the queue length i are ai and

si, respectively. We assume that packets can only arrive and

depart in each discrete time slot. The ability to control the

arrival rate seems impossible for physical queues in the In-

ternet routers, however, it is frequently implemented in high

level network protocols such as TCP in which virtual queues

are typically used to provide feedback to the sender for the

purpose of rate control. Using this queuing model as shown

in Fig. 2, let us denote:

• |Ω|: Maximum queue length

• s = (s0, . . . , s|Ω|) where s0 = 0: Departing probabil-

ity vector
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• a = (a0, . . . , a|Ω|) where a|Ω| = 0: Arrival probability

vector.

Then it is not difficult to see that the dynamics of the num-

ber of packets in a queue over time is governed by a discrete

Markov chain with the transition probability matrix below:

Q =











1− a0 a0

s1(1− a1) 1− s1 − a1 + 2s1a1 (1− s1)a1

. . .
. . .

. . .

s|Ω| 1− s|Ω|











(8)

Note that for each non-zero entry of each row, the left,

middle, and right entries denote the probabilities that the

number of packets in the queue decreases by 1, stays the

same, or increases by 1, respectively.

Now, let us compare the above matrix Q to P the solution

obtained from the problem FMMC (or EFMMC) above. In

general, P is tridiagonal matrix with the entries: ri, qi, pi.

P =











r0 p0
q1 r1 p1

. . .
. . .

. . .

q|Ω| r|Ω|











(9)

The main challenge is given ri, qi, pi, how to find the cor-

responding si and ai, i.e., enqueues and dequeue rates. It

turns out that si and ai might be negative or complex numbers

which cannot be used in a feasible queuing policy. However,

we dermine the conditions on qi and pi for which there exist

real and non-negative solutions for si and ai, leading to a fea-

sible queuing policy. We proceed to derive the conditions as

follows.

From (8) and (9) to compute vector s and vector a, we

need to solve these following equations:

{

si(1− ai) = qi → ai = 1− qi/si
(1− si)ai = pi → ai = pi/(1− si)

⇐⇒ 1− qi/si = pi/1− si for i = 1, . . . , |Ω| − 1



⇐⇒ (1− si)si = (1− si)qi + sipi for i = 1, . . . , |Ω| − 1

⇐⇒ s2i−si(1+qi−pi)+qi = 0 for i = 1, . . . , |Ω|−1 (10)

In order to guarantee the existence of feasible solution of (10),

we need:

∆ = (1 + qi − pi)
2 − 4qi ≥ 0 for i = 1, . . . , |Ω| − 1 (11)

In theory, we can add these contraints to the two convex

formulations above. However, these contraints are not convex

constraint making it hard to solve in general. Therefore, our

approach is to relax (11) to a convex constraint as follows.

(11) ⇐⇒ 1 + qi − pi > 2
√
qi since qi > 0

⇐⇒ (1−√
qi)

2 > pi (12)

Consider function f = (1 − √
x)2 for x ∈ (0, 1), we can

find an approximate lower bound function of f in the form of

tangent y = ax + b where a = f ′(x0) and f ′(x) = (
√
x −

1)/
√
x (See (Fig. 3)).

Hence, (12) is equivalent to the following convex con-

straints:

a(x0)qi + b(x0) > pi for i = 1, . . . , |Ω| − 1 (13)

Now, we can incorporate these constraints in (13) to the

FMMC and/or EFMMC problems, and still have convex for-

mulations to find feasible queuing policies.

4. OPTIMIZING A GIVEN OBJECTIVE VIA

QUEUING POLICY

4.1. Approach Illustration

In this section, we provide an example of applying our pro-

posed framework to find fast queuing policy that optimizes a

given objective while still satisfying other standard QoS re-

quirements. Our approach consists of two steps. In the first

step, we to find a stationary distribution π∗ that optimizes a

given objective subject to all the given constraints assuming

that the given objective and the constraints are convex in π,

and thus π∗ can be determined efficiently. In the second step,

we substitute π∗ into either the FMMC or EFMMC with the

convex constraints in (13) to find the fastest queuing policy.

We give a specific example below.

Step 1. Let X be discrete random variable representing

the number of packets in the queue (X ∈ [0, . . . , L]).
Suppose a video application requires that the queuing delay

average and second moment must be bounded by must be

bounded within a range. For example,

{

X1 < E[X] < Y 1
X2 < E[X2] < Y 2

Then E[X] and E[X2] can be computed from the stationary

distribution π:

{

E[X] =
∑L

x=0
π(x)x

E[X2] =
∑L

x=0
π(x)x2

Furthermore, suppose that there is a cost function c(x) where

x denotes the number of packet in the queue. c(x) could be

any arbitrary convex function that might represent energy, re-

sources that depends on the queue occupancy. Now, suppose

we want to minimize the total expected cost,

T =
x=L
∑

x=0

c(x)π(x).

Then the optimization problem can be formulated as follows.

Minimize

x=L
∑

x=0

c(x)π(x)

Subject to :



















































X1 <

L
∑

x=0

π(x)x < Y 1

X2 <

L
∑

x=0

π(x)x2 < Y 2

L
∑

x=0

π(x) = 1

πmin < π(x) ∀x = 0, 1, . . . , L

(14)

Step 2. The solution of (14) gives us the target station-

ary distribution π∗ satisfying the QoS requirements and the

given objective. Now, we apply the FMMC and EFMMC for-

mulations to find tridiagonal matrices with fast mixing rates.

From these matrices, we can find the dequeuing and dequeu-

ing rates as function of the number of packets in the queue

that achieves the target distribution quickly.

4.2. Performance Evaluation

In this section, we present the performance evaluations of our

approach using the example above with specific parameters.

We assume the maximum physical queue length L = 9. To

demonstrate the flexibility of our approach, the cost function

c(x) is chosen arbitrarily as shown in Fig. 5; X1 = 0;Y 1 =
5;X2 = 0;Y 2 = 19; πmin = 0.01; Using the approximation

method for obtaining a feasible queuing policy in Section 3,

we choose the tangent at x0 = 0.2; we set δ = 0.001 in the

EFMMC framework.

Fig. 4 shows the shape of the target stationary distribution

π∗ and π as the results of steps 1 and 2 in Section 4.1, respec-

tively. As seen, π∗ and π are very close indicating very good

approximation of our approach.

In addition, Fig. 6 shows that the EFMMC framework has

a faster convergence rate as expected than the that of FMMC
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as expected. Importantly, faster convergence rate is espe-

cially useful in non-stationary settings.

To illustrate this point, Fig. 7 shows the total variance be-

tween the current distributions produced by the FMMC and

EFMMC frameworks, and the target stationary distribution in

a non-stationary environment. The non-stationary environ-

ment is simulated based on the bursty traffic Poisson patterns

with λ = 30. Specifically, in addition to the regular traffic,
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Fig. 7. Convergence of the system during environmental

change

there are bursts of 5 packets arriving at the queue. On average,

the time duration between these bursts are 30 time slots. As

shown in Fig. 7, both curves have spikes when the bursts of

packets arrive. This prevents the current distributions in both

frameworks from approaching the target stationary distribu-

tion (i.e, the curves approaching zero). On the other hand, the

queuing policy based on EFMMC framework is better than

that of FMMC since it produces as close as possible to the

target distribution quickly.

5. CONCLUSION

In this paper, we have proposed a framework for finding fast

queuing policies that can provide both flexible QoS require-

ments as well as optimize for a given objective. The analysis

and simulation results show that our framework is especially

useful in fast-changing network conditions.
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