
The Laplace Transform



ECE352 1

Definition of the Laplace transform

• FT of x(t): X(jω) =
∫∞
−∞ x(t)e−jωtdt.

• Replacing jω with a point in the 2-D
complex plane s = σ + jω (complex freq.):

X(s) = X(σ + jω) =
∫ ∞

−∞
x(t)e−(σ+jω)tdt

=
∫ ∞

−∞
[x(t)e−σt]e−jωtdt
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Definition of the Laplace transform

• X(s) is the Fourier transform of x(t)e−σt, a
modified version of x(t).

• X(s) =
∫∞
−∞ x(t)e−stdt

is called the Laplace Transform of x(t).

• The relationship is expressed with the
notation:

x(t) L←→ X(s).
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Inverse Laplace transform

• The inverse Fourier transform of x(t)e−σt

must be X(σ + jω):

x(t)e−σt =
1
2π

∫ ∞

−∞
X(σ + jω)ejωtdω

x(t) =
1
2π

∫ ∞

−∞
X(σ + jω)e(σ+jω)tdω

• Substituting s = σ + jω and dω = ds/j, we
get the inverse Laplace Transform:

x(t) =
1

2πj

∫ σ+j∞

σ−j∞
X(s)estds
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Two types of Laplace Transforms

• Unilateral LT: X(s) =
∫∞

0− x(t)e−stdt.

? Convenient for solving differential equations with
initial conditions.

• Bilateral LT: X(s) =
∫∞
−∞ x(t)e−stdt.

? Offers insight into the nature of system
characteristics such as stability, causality, and
frequency response.
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Topics to be covered in this chapter

• Properties and inversion of unilateral and bilateral
Laplace Transform.

• Region of convergence (ROC).

• Solving differential equations with initial conditions.

• LT methods in circuit analysis.

• Transfer function.

• Causality and stability.

• Frequency response from poles and zeros.
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Eigenfunction of an LTI system

• Let x(t) = est be the input to an LTI system
with impulse response h(t).

y(t) = ?h(t) ∗ est =
∫ ∞

−∞
h(τ)x(t− τ)dτ

= est

∫ ∞

−∞
h(τ)e−sτdτ.

? Transfer function: H(s) =
∫∞
−∞ h(τ)e−sτdτ .

? y(t) = H(s)est: est is an eigenfunction the LTI
system, H(s) is the corresponding eigenvalue.
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Eigenfunction of an LTI system (cont.)

For input x(t) = e(σ+jω)t

y(t) = H(s)est = |H(s)|ejφ(s)est

= |H(σ + jω)|eσtej(ωt+φ(σ+jω))

= |H(σ + jω)|eσtcos(ωt + φ(σ + jω)) +

j|H(σ + jω)|eσtsin(ωt + φ(σ + jω))

• System changes input amplitude by |H(σ + jω)|.

• System changes input phase by φ(σ + jω).

• System does not change damping factor σ or input
frequency ω.
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Convergence

• A necessary condition: x(t)e−σt is
absolutely integrable∫ ∞

−∞
|x(t)e−σt|dt <∞.

? Example: FT of x(t) = etu(t) does not exist.
? If σ > 1, x(t)e−σt = e(1−σ)tu(t) is absolutely

integrable. The Laplace transform, which is the FT
of x(t)e−σt does exist.
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Convergence (cont.)

• The range of σ for which the Laplace transform
exists is termed the region of convergence (ROC).

• Complex frequency s can be graphically
represented in a complex plane, which is termed the
s-plane. The jω-axis divides the plane into left and
right half planes.

• If x(t) absolutely integrable, FT can be obtained by
setting σ = 0 as X(jω) = X(s)|σ=0
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Poles and zeros

The most commonly encountered form of
Laplace transform:

X(s) =
bMsM + bM−1s

M−1 + · · ·+ b0

sN + aN−1sN−1 + · · ·+ a1s + a0

=
bM

∏M
k=1(s− ck)∏N

k=1(s− dk)



ECE352 11

Poles and zeros (cont.)

•
∏M

k=1: product of M terms.

•
∑M

k=1: sum of M terms.

• ck are the zeros of X(s), will be denoted in the
s-plane with “o” symbol.

• dk are the poles of X(s), will be denoted in the
s-plane with “x” symbol.
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Examples
• Read examples 6.1 (p487) and 6.2 (p488).

• Example 1: Problem 6.1(b), find X(s) and ROC for
x(t) = e5tu(−t + 3).

X(s) =
∫ ∞

−∞
x(t)e−stdt =

∫ ∞

−∞
e−t(s−5)u(−t + 3)dt

=
∫ 3

−∞
e−t(s−5)dt, let l = −t

=
∫ ∞

−3
el(s−5)dl, if Re(s) < 5

X(s) = −e−3(s−5)

s− 5
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Examples

• Example 2: Problem 6.2(b), find X(s) and ROC for
x(t) = sin(3t)u(t).

X(s) =
∫ ∞

−∞
sin(3t)u(t)e−stdt

=
∫ ∞

0

1
2j

(
ej3t − e−j3t

)
e−stdt,

=
1
2j

∫ ∞

0

[
e−t(s−j3) − e−t(s+j3)

]
dt, if Re(s) > 0,

=
1
2j

(
−1

−(s− j3)
− −1
−(s + j3)

)
=

3
s2 + 9


